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A Social Psychology Paradignm lieur

e [atane’s dynamic sociallimpact theory,
e Axelrod's culturermodel
e Kennedy'siadaptive culture model




[Catane s Dynamic Social Impact
Tlheony

e Behaviors of individuals can berexplained in terms of the
self=erganizing properties; of theirsocial system

e Clusters ofi individuals developrsimilar beliefs
e Subpopulations diverge from one another (polarization]

Dynamic Secialllimpact ey
Characteristics

Consoelidation: Opihion diversity: s reduced as ihdividuals
are exposed o ia|onty:arguments

Clustering: /ndividuals become morelike their neighborsin
Soclal space

Correlation: Attiiudes: that were originallyrndependent
tend o) beconie assoc/ated.

Continuing diversity: " Clustering prevents minonty Views
frofconiplete corsolidatorn




Dynamic Sociallimpact Theory:
Summary.

Individualsiinfluence ene anether; and'in doing so
become morersimilar

Patterns of belief held by individualsitend io correlate
within regions: ofi a pepulation
Iihisimodellisiconsistent with findings:in the fields of;
social psychelogy, sociology, economics; and
anthropology:

Axelrod's Culttre Vodel

Populations;ofiindividuals: ane pictured as; strings of
symbols, or “features”

Probability of interaction: between twojindividualsiisia
function of theirsimilarity

Individuals become moressimilar asiairesult of
Interactions

Jhelebservedidynamic s polarization:, homogeneous
subpopulations: that differ fromione another




Kennedy's Adaptive Culture Moedel

e No effiect of similarity’on probability: of interaction

e [he efiiect of similarity isinegative, in that it is
dissimilarity: that creates boundaries between cultural
regions
Interaction occurs)ififitnesses: arne different

Culture and Cognition Summany

Individuals; searching for solutions leanni fiom the
experiences ofiothers (individuals learn friom their
neighbers)

Anjobserver of the population perceives pRenomenalof
whichi the individuals are the parts; (individuals that
interact freguently:become similar)

Culture affects the performance of individuals; that
comprise it (individualsigainibenefit by imitating their
NEIgRBOLS)




S0, what abeut intelligence?

Social behavior increases the ability of an individual
toradapt

Tihere is airelationship betweeniadaptability:and
intelligence

Intelligence  arisesi frominteractions among
individuals

A Brief llour off Evoelutionary:
Computation

Evolutionary coniputation: Machine learning
optimization and classification paradigms roughly;
based on mechanisms ofi evolution' such as;bioclogical
genetics and natural selection




[Features; o Evolutienany Computation
(EC) Paradigms

e EC paradigms utilize a population of points (petential
selutions) in their searnch

e EC paradigmsiuse direct “fitness" information instead of
function derivatives or other related knowledge

e EC paradigmsiuse probabilistic, rather tham
deterministic; transition rules

Evelutionany Computation Algerithms

1. Inmitialize the population

2. Galculate the fitness of each individualin the
popuiation

3!, Reprodiice selectedindividials toformanew.
popuiation

4. Beriorm evolutionary operations suchasicrossoveran
mitation'onthepopuiation

oxloopiosien 2until some contitionjisimet




Evoelutionary Computation Paradigms

Genetic algorithmsi (GAs) - John Holland

Evolutionany programming (EP) = Larmy/ Fogel

Evolution strategies (ES) - |. Rechenberg

Genetic programming| (GP) - John Keza

Particle swarm optimization (PSO) - Kennedy & Eberhart

SWARMS

Coherence without
choreography

Bonabeau, Millonas,
J.-L. Deneubourg, Langton,
etc.

Particle swarms
(physical position not a factor)




Intelligent Swarnm

e A population ofiinteractingindividuals that eptimizes
a fiunction o' goall by collectively: adapting| to the local
and/orglebal environment

Swarm intelligence = collectiveradaptation

Basic Principlesioff Swanm Intelligence
(Mark-Millonas, Santa Fe lnstitute)

Proximity’ principle:: the population shouldibe able te
carny outisimple space anditime computations

Quality principle: the population should be able to
respond to guality: factersiin  the envirenment

Diverse response principle: the population should not
commit its activities;aleng excessively narmow: channels

Stability principle: the population should net changeits
mode; ol behavior every time the envirenment changes
Adapability. principle: the population must be able to
changewehavior mede whenjit'siwerthithe computational
price




Introduction: te Particle Swarrm
Optimization

e A “swarm' isianiapparently disorganizedi collection
(pepulationyrei"moevinglindividualsithat tend to cluster
together while eachiindividualiseems, to/ve movingfin
a random direction

e Ve alsoiuse swarm' to describe a centain family: ofi
social processes

Intreduction: te; Particle Swarrm
Optimization (PSO);, Continued

A concept for optimizing nenlinear functions

Has roots injartificiallliferand evelutionary: computation
Developed by Kennedy andl Eberhart (1995)

Simple iniconcept

Easy to implement

Computationally efficient

Effective on a variety of problems




Evolution ot PSO Conceptiand
Paradigm

Discovered through simplified socialimode!l simulation

Related to bird flocking, fishischeoling), and swarming
theory,

Related/to evolutionary computation; Seme similarities to
genetic algorithms and evelution strategies

Kennedy developed the “connfield vector” for birds
seeking|food

Bird flock became a swarm
Expanded tomultidimensionallsearch
Inconporatedraceeleration by distance
Paradigmisimplified

Eeatlres off ParticlerSwarnrm
@ptmization

e Populationiinitialized by assigning random pesitions and
velogities; potential solutions, are then flowrn: through
Ryperspace.

e Each particle keeps track ofiits “best” (highest fitness)
position INFAYpPErSpace.
Tihisiis calledphest“foraniindividual particle
Itis called“gbest” forrthe: best inithe pepulation
IS called Ibest” for thebest inia defined neighborhood
o Ateachitime step, each particle stochastically,
accelerates towardiitsiphbest and ghbest (or [best):




Particle: Swarm| Optimization Process

1. Initialize; population in hyperspace.

2. Evaluate fitness offindividual particles:

3. Modifyivelogcities based oni previous best and glebal
(er'neighborhood) best:

4. Jlerminate on some condition;

5. Goto step 2.

PSSO Velocity Update Equations

o Glehal version:

Where d is the dimension, ¢, and ¢, are positive constants,
rand and Rand are random functions, and w is the inertia

weight.

For neighborhood version, change p,, to py,.




Eurther Details of PS©

Performance ofi eachi particle measured according to a
predefined fitness function.

Inertiarweight infllences; tiadeofi between gleballand
locallexploration.

Good approachiis te reduce inertia weight during run
(ite., fromi 0.9 16 0.4 over 1000 generations)

Usually'set ¢, and ¢, to 2

Usually set maximum Velogcity te dynamic range of
varanle

PSO Adherenceto Swarmilntelligence
Principles

Proximity: n-dimensionallspace calculations; carriedl out
oVver series of time steps

Quality: populationirespendsiterquality factors: pbest
and gbest (or /best )

Stability: populationchanges stateronly:whenigbest (ox
Ibest ) changes

Adaptability:: population does: change staterwhen|gbest
(or¥ibest) chianges




Benchmark Tests

DerJongfsi test set
Schaffer’'s E6ifunction

EVelve neuralinetwerk weights
Irisidatarset
Electric vehicle state of ehange system

©Over 20l other benchmark flnctions tested

EvVolving Fuzzy Systems

e Develop (evolve) fuzzy expert systems using
evoelutienary algerithms such as GA or PSO
Evolve rules
Evolve membenship fiUnction types
Evolve membenshipsfunction locations
e |n turn;, adapti parameters of the EA using fuzzy rules
Forexample: Ivarniance of fithess)isilow, setmutationfraterhigh’




Journal Paper

“Implementation of EVolutionany Fuzzy Systems?
Authoers: Shil, Eberhart, Chen

IEEE Tiransactions oni Euzzy Systems
April1999

Evelving Artificiall Neural Netwerks: Outline

Introduction

Definitions;and review! of previous Work
Advantages andidisadvantages off previous
approaches

Using particlerswarmi optimization (PS©)
Aniexample application

Conclusions




Intreduction

Neural networksiare very good! atisome problems,
suchias mapping Input Vectors teroutputs

Evelutionany algerithms ane veny good at ether
problems, such as optimization

Hybrid tools are pessible that ane better than either
approach by itself

Review! articles on  evelving neural networks:
Schatfer, Whitley, and Eshelman (1992); Yao (1995);
andi=egel (1998)

Evelutionany/ algerithms usually’ usedito evolve
netwosk weights, but semetimes Used torevoelve
structuresiand/orleanning algorithms

Evelvingl NeuraltNetwerks withr Particle
Swanrm Optimization

Evelve neural netwerk capable of beingluniversal
approximator, suchi as, backpropagation or radiallbasis
fiunction network.

I backpropagation, moest commoen| PE transfer function
is sigmoidalifunction: output = 1/1 + e-"P*")
Eberhart, Dobbins, andi Simpson (1996) first used PSO
torevolve network weights (replacedibackpropagation
learnhing algorithm)

PSOxcan alsobelused torindirectly evolve the structure
of a network. An added benefit is that the preprocessing
of inputi@ataiis\made UnNECESSaNy.




Evolving Neural-Networks withrParticle
Swarm Optimization, Continued

EVolve boeth the network weights and: the slopes ofi
sigmoidal transfer functions offhiddeniand output: PES.

If transfer function now is: output = 1/(1 = e X mpily
then we are evolving k in addition| te evelving the
weights.

Iihe method is generall, and canibe applied to other
topologies and other transfer functions.

Elexibilityiis gained by allowing slopes to be positive or
negative: YA change inisign for the slope isieguivalent to
a change i signs ofi allinput weights:

Evelving the Netwerk Structure with
PSO

li"evoelved slopeisisuificiently small; sigmoeidalloutput can
be clamped te) 0.5, and hidden PE can be removed.
Weightsifrom bias  PE to eachi PE intnext [ayer are
increased! by one-half‘the value of the weight fromi the
PE beinglremoved to the next-layer PE. PEs are thus
pruned, reducing network complexity.

li"fevolved slope I1s sufficiently high) sigmoid transier
function cani be replaced by stepitransfer function. This
works withilarge negative or positive slopes. Network
computational complexity is thus reduced.




Evoelving|the Network Structure with
PSO; Continued

e Since slopes,can evolve to large values, input
nermalizationiisigenerally not neededt This
simplifies;applications, process;and shortens
development time:

e [[he PSO process Is continuous, so neural
networnk evoelution| s alse continuous: No
sudden discontinuities existisuchias;those
that plague other approaches.

o [his appreachiis now: pretecied by a U.'S.
Patent

Tiracking and Optimizing Dynamic
Systems withr Particle: Swarms

Acknowledge:
YuhuitShitand Xiachuil Hu
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OriginalVersionwith Inertia VWWeight

Where d is the dimension, ¢; and ¢, are positive constants,
rand and Rand are random functions, and w is the inertia
weight.  For neighborhood version, change p,, to p,.




Constriction Eactor \VVersion

(¢ was set to 4.1, so K = .729)

Dynamic System Types

ocation| ofi optimumivalue canichange
Optimum value canivany

Number oftoptima canichange
Combinations; of the above can eccur

In this project, we varied the location of the
optimum.




Practical /Application Requirements

Few practical problems; are static; most are dynamic
\Viestitime is spent re-optimizing (re-scheduling, ete.)
Many:systems invelvermachines and people

Jihese systems have inertia

10=400 seconds, often available for re-optimization

Eberhart's [Law oft Sufficiency: applies: liithe selution|is
good enoughi fast enough;, and cheap enough, theniitis
sufficient

Previous Werk

e lesting Parabolic Eunction

N
error = Z (x, — offset)’
i=l1

Offset = offset + severity,

Severity 0.04, .1, .5

2000'evaluations per change
Sdimensions, dynamic range 50 to)+50




Previeus \Work: References

e Angeline, P.J. (1997 iracking| extiema in dynamic
envirenments. Proc: Evol., Programiming Vi,
Indianapolis, IN; Berlin: Springer-Verlag, pp. 885-345
Back; Ii. (1998)." On the behavior of evelutionany.
algorithms intdynamic envirenments. Proc. Int. Conf. 6
Evol. Conmiputation, Anchorage, AK. Riscataway, NJk
IEEE Press, pp. 446-451

ExperimentaliDesign

Tiwo pessibilities withrswarm
Continue onl fromwhere we were
Re-initialize therswarm
Inertiaiweight; of [0:5+(Rnd/2.0)] used
20 particles; update interval of 100/ generations
Whenichange eceuried:
Retained the position ofieach particle
Reset valuesi of' pbest (also off gbest)




PSO) average best overall runs
Severity' = 0.5
Jihree dimensions

]
E
g
=
=
a
a
=]
]
=
]
H
=
[
]
F-
[
L]
=
a
H]
L

PSO average best over all runs
Severity =0.1
Jihree dimensions




PSO) average best overall runs
Severity' = 0.1
10 dimensions

PSO average best over all runs
Severity =0.5
10 dimensions




PSO) average best overall runs
Severity' = 1.0
10 dimensions

Comparisen o Results:
Error Values Obtained in 2000 Evaluations

P pee
Shi




Conclusions and Euture Efforts

e Our results; including those in 10 dimensions and
withiseverity' = 1, are promising

e \We are applyinglapproach toretherbenchmark
fiunctions; and to practicall legistics applications

ExamplerApplication:
Reactive Powerrand Veltage Control

e Japanese electric utility,
e PSO used to determine control strategy:
Continueus and discrete controlivariables
e Hybrid binary/real-valued version of PSOIdeveloped

e System voltage stability achieved using|a
continuation; power: flow: technigue




Scheduling Systemfor Integrated
Automated Container rerminal

* Objective - develop planning and scheduling algorithm for
fully integrated automated container terminals

» Approach - Fuzzy system and evolutionary programming

fuzzy reasoning

facility state

evolutionary
programming

Scheduling System for IACH — Workiflow,

Container
Reservations

Yard Planning

Container Sequence Container
Planning Yard

Machine Planning

Container
Locations

Machine
Worklists

Machine Operations




Container’ Planning Sequences

() Containers

e Move from yardito
staging|area along the
berth

e Planning results
o NUmber off movements:

i<t 10

Viore Examples off Recent Applications

e Scheduling (Marine Corps legistics)

e Vianufacturingl(Preduct content combination
optimization)

e [Figure ofi merit for electric vehicle battery pack

e Vedicallanalysis/diagnosisi (Parkinson’s
disease and essential tremor)

¢ tlumaniperfermance prediction (cognitive and
physical)
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