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Scope of the Tutorial

• Illustrate the influence of representations on the performance

of EAS.

• Illustrate the relationship between problem difficulty and used

representation/operator.

• Review design guidelines for high-quality representations.

• Focus on some properties of representations

– Redundant representations and neutral search spaces

– High-locality representations

– (Exponentially scaled alleles)
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Structure of the Tutorial

• A Short Introduction to Representations

– Defining Representations

– Representations, Operators, and Metrics

– Direct and Indirect Representations

• Representations and Standard Test Problems

• Design Guidelines for Representations

• Properties of Representations

– Redundant Representations and Neutral Networks

– High-Locality Representations

– (Domino Convergence and Genetic Drift)
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Defining Representations

• A representation assigns genotypes to corresponding pheno-

types.

• Every search and optimization algorithms needs a represen-

tation.

• The representation allows to represent a solution to a specific

problem.

• Different representations can be used for the same problem.

• Performance of search algorithm depends on properties of the

used representation and how suitable is the representation in

the context of the used genetic operators.
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Defining Representations (2)

• There are many different representations.

• Standard representations are binary, real-valued vectors, messy

encodings, tree structures,...

• ... and we assume that everybody has some experience at

least with some of them.

A Short Introduction to Representations Page 4



Defining Representations (3)

Every optimization problem f (x) can be separated into a genotype-

phenotype mapping fg and a phenotype-fitness mapping fp:

fg(xg) : Φg → Φp,

fp(xp) : Φp → R,

where f = fp ◦ fg = fp(fg(xg)).

A change of fg also changes the properties of f .

The genetic operators mutation and crossover are applied to xg,

whereas the selection process is based on the fitness of xp.

fp(xp) determines the difficulty and complexity of a problem.

fg(xg) is the used representation.

There are ||Φg||! different representations.
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Defining Representations (4)

• Representations change

the character and dif-

ficulty of optimization

problems.

• For example fp = xp,

where xp ∈ N.

• Different problem de-

pending on the used rep-

resentations (Gray ver-

sus binary).
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Defining Representations (5)

• Phenotypic problem easy to solve for hill-climber.

• When using bit-flipping GA the Gray-encoded problem is eas-

ier to solve than the binary-encoded problem.

• Gray encoding induces less local optima when used on prob-

lems of practical relevance (compare Free Lunch theorem

(Whitley, 2000)).

• Resulting problem difficulty depends on used search method.

If other search methods (e.g. other operators) are used, then

problem difficulty is different (compare (Reeves, 2000)).
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Representations, Operators, Metrics

Representation, metric defined on Φg and Φp, and genetic oper-

ators depend on each other and are closely related.

• A representation is just a mapping from Φg to Φp. It assigns

any xg ∈ Φg to an xp ∈ Φp.

• In both search spaces, Φg and Φp, a metric is or has to be

defined. The metric determines the distances between the

individuals and is the basis for measuring similarities between

individuals. In general, the metric used for Φp is defined by

the considered problem. The metric used for Φg is determined

by the used search operators.

• Genotypic operators like mutation and crossover are defined

based on the used metric.
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Representations, Operators, Metrics (2)

Mutation:

The application of mutation to an individual results in a new in-

dividual with similar properties. There is a small distance betwen

offspring and parent.

Crossover:

Crossover combines the properties of two or more parents in an

offspring. The distance between offspring and parent should be

smaller than the distance between both parents.

(compare also (Surry and Radcliffe, 1996a) and (Liepins and Vose, 1990))
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Representations, Operators, Metrics (3)

Results:

• Metric on Φg and used operators depend on each other. The

one determines the other.

• Representations transform the metric on Φg to the (problem-

dependent) metric on Φp. (Compare locality, causality, and

distance distortion)
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Direct Representations

If the genetic operators are applied directly to the phenotypes it

is not necessary to specify a representation and the phenotypes

are identical with the genotypes:

fg(xg) : Φg → Φg,

fp(xp) : Φg → R.

This means, fg is the identity function fg(xg) = xg.

Using direct representations do not neccessarily make life easier:

• Design of proper operators is difficult (compare (Tzschoppe

et al., 2004))

• Representation issues are not important any more (Φg = Φp

and fg(xg) = xg).
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Direct Representations - Genetic Programming

Representation issues are also relevant to Genetic Programming.

Phenotypes: Programs, logical expressions.

Genotypes: Bitstrings, trees, ...

Neglecting proper genotype-phenotype mappings can result in

low performance of GP approaches.
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Indirect Representations

The use of an explicite genotype-phenotype mapping has some

benefits:

• Specific constraints can be considered.

• Standardized genetic operators with known behavior and prop-

erties can be used.

• An indirect representation is necessary if problem-specific op-

erators are either not available or difficult to design.

• Representation can make problem easier by incorporating

problem-specific knowledge.
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Indirect Representations - Specific Constraints

Example: Tree optimization problems

A tree is a fully connected graph with exactly n − 1 links (for an

n node network). There are no circles in a tree.

A graph can be represented by its characteristic vector.

A

B

C

D E

m
0 1 0 0 0 1 0 1 0 1

A-B A-C A-D A-E B-C B-D B-E C-D C-E D-E
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Indirect Representations - Specific Constraints (2)

Prüfer numbers are a one-to-one mapping between trees and a

sequence of integers. A tree with n nodes is represented by a

string of length n − 2 over an alphabet of n symbols.

2

41 5

3

6
2  2  3  3 

Prüfer number:

Therefore, using Prüfer numbers allows to consider the con-

straint that the graph is a tree (For other representations repair

operators are necessary).
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Indirect Representations - Standardized Operators

• When mapping many different types of phenotypes on only

a few types of different genotypes (binary, integer, or con-

tinuous representations), it is possible to use standardized

operators.

• Behavior of EAs for standard representations like binary (sim-

ple GAs) or continuous (evolution strategies) representations

well understood.

• Mapping phenotypes on binary genotypes allows the use of

schemata and effective linkage learning GAs (under the as-

sumption that the problem still remains decomposable and

that binary encodings allow a natural encoding of the prob-

lem).
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Indirect Representations - Problem-specific Operators

• For many real-world problems there

are no problem-specific operators

available.

• Developing of problem-specific op-

erators is difficult and often addi-

tional repair mechanisms must be

used to ensure a valid solution.

(from (Raidl, 2000))
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Indirect Representations - Problem-specific Operators (2)

For some types of problems no problem-specific operators exist

that can be applied to direct representations.

A Short Introduction to Representations Page 18



Indirect Representations - Problem-specific Knowledge

Incorporating problem-specific knowledge in the representations

to increase GA performance:

• Increase the initial supply of solutions that are similar to the

optimal solution.

• Use high-locality representations for easy problems.

• Consider specific properties of the optimal solution (e.g. stars

and trees).

• Use representations that make a problem easier for a specific

optimization method.
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• A Short Introduction to Representations

• Representations and Standard Test Problems

• Design Guidelines for Representations

• Properties of Representations

– Redundant Representations and Neutral Networks

– High-Locality Representations

– (Domino Convergence and Genetic Drift)
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The One-Max or Bit-Counting Problem

The one-max problem

number of ones u 0 1 2 3 4

fitness f (u) 0 1 2 3 4

Commonly used standard test

problem for GAs.

• What problem does it want to

solve?

• What are the phenotypes xp?
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The One-Max or Bit-Counting Problem (2)

Possibility 1:
phenotype xp fitness f (xp)

000 0

001 1

010 1

011 2

100 1

101 2

110 2

111 3
Possibility 2:
phenotype xp fitness f (xp)

0 0

1 1

2 2

3 3

The problem is defined on

binary phenotypes. The

standard formulation of the

one-max problem uses u

only to characterize the

properties of the considered

binary strings.

The problem is defined on u.
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The One-Max or Bit-Counting Problem - Possibility 1

For possibility 1, the more correct formulation of the one-max

problem would be:

xg xp f (xp)
000 000 0

001 001 1

010 010 1

011 011 2

100 100 1

101 101 2

110 110 2

111 111 3 000 001 010 011 100 101 110 111

2

3

1

0

fitness

xg,p
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The One-Max or Bit-Counting Problem - Possibility 2

If the one-max problem is defined on the integers u, then there

are different representations possible (altogether there are 2l! dif-

ferent ones):

• unary representation xp = fg(xg) =
∑l−1

i=0 xg,i,

• binary representation xp = fg(xg) =
∑l−1

i=0 2ixg,i,

• Gray representation.

f (xp) xp
xg

binary Gray unary

0 0 00 00 000

1 1 01 01 001, 010, 100

2 2 10 11 110, 101. 011

3 3 11 10 111
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The One-Max or Bit-Counting Problem - Possibility 2 (2)

• The difficulty of the

one-max problem is de-

termined by the used

representation.

• 20 concatenated sub-

problems of size |Φp = 16|
(xp ∈ {0, 1, . . . 15}).

• simple GA using uniform

crossover

• tournament selection

(without replacement)

of size 2.
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The One-Max or Bit-Counting Problem - Possibility 2 (3)

• 20 concatenated subproblems

of size |Φp = 32| (xp ∈
{0, 1, . . . 31}).

• simple GA using uniform

crossover

• tournament selection (with-

out replacement) of size 2. 0
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Representations and Standard Test Problems - Summary

• There must be a clear idea what is the problem, and what is

the representation.

• The difficulty of a problem is determined by the problem fp,

but can be modified by the used representation fg (and of

course the used operators and metric).
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• A Short Introduction to Representations

• Representations and Standard Test Problems

• Design Guidelines for Representations

• Properties of Representations

– Redundant Representations and Neutral Networks

– High-Locality Representations

– (Domino Convergence and Genetic Drift)
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Goldberg’s Recommendations

• Principle of meaningful building blocks: The schemata should

be short, of low order, and relatively unrelated to schemata

over other fixed positions.

• Principle of minimal alphabets: The alphabet of the encoding

should be as small as possible while still allowing a natural

representation of solutions (qualified by (Goldberg, 1991))

from (Goldberg, 1989))
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Goldberg’s Recommendations (2)

• The recommendations caused a lot of critics (Radcliffe, 1997;

Fogel and Stayton, 1994).

• What is a natural representation of a problem? (For exam-

ple, is using binary representations for encoding real-valued

phenotypes a natural representation?)

• Principles mainly aimed at binary representations and crossover-

based GAs that process schemata. Not big help for other

search methods like evolution strategies or evolutionary pro-

gramming as these search methods do not process schema.
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Radcliffe’s Recommendations

Representation and operators belong together and can not be

separated from each other (Radcliffe, 1992).

Design of representation-independent evolutionary algorithms is

possible if the following properties are considered (Surry and

Radcliffe, 1996b):

• Respect: Offspring produced by recombination are members

of all formae to which both their parents belong.

• Transmission: Every gene is set to an allele which is taken

from one of the parents.

• Assortment: Offspring can be formed with any compatible

characteristics taken from the parents.

• Ergodicity: Iterative use of operators allow to reach any

point in the search space.
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Palmer’s Recommendations

• An encoding should be able to represent all possible pheno-

types.

• An encoding should be unbiased in the sense that all possible

individuals are equally represented in the set of all possible

genotypic individuals.

• An encoding should encode no infeasible solutions.

• The decoding of the phenotype from the genotype should be

easy.

• An encoding should possess locality. Small changes in the

genotype should result in small changes in the phenotype

(compare statements about metric).

from (Palmer, 1994))
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Ronald’s Recommendations

• Encodings should be adjusted to a set of genetic operators in

a way that the building blocks are preserved from the parents

to the offspring (Fox and McMahon, 1991).

• Encodings should minimize nonlinearities in fitness functions

(Beasley et al., 1993). This means, representations should

make the problem easier.

• Feasible solutions should be preferred.
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Ronald’s Recommendations (2)

• The problem should be represented at the correct level of

abstraction.

• Encodings should exploit an appropriate genotype-phenotype

mapping process if a simple mapping to the phenotype is not

possible.

• Isomorphic forms, where the phenotype of an individual is

encoded with more than one genotype, should not be used.

from (Ronald, 1997))
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Design Guidelines - Summary

• Based on observations for specific test problems there are

some common, fuzzy ideas about what is a good represen-

tation.

• Recommendations too general to be helpful for designing or

evaluating representations.

• There is a lack of analytical models describing the influence

of representations on EAs.

• To verify (or reject) observations analytical models are nec-

essary.

Design Guidelines for Representations Page 35



• A Short Introduction to Representations

• Representations and Standard Test Problems

• Design Guidelines for Representations

• Properties of Representations

– Redundant Representations and Neutral Networks

– High-Locality Representations

– (Domino Convergence and Genetic Drift)
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Redundant Representations

Representations are redundant if the number of genotypes is

larger than the number of phenotypes.

• Using redundant representations fg means changing f = fp(fg).

There are additional plateaus in the fitness landscape.

• Redundant representations are more inefficient encodings which

use a higher number of alleles but do not increase the amount

of encoded information.

• Redundant representations are not an invention of AI re-

searchers but are commonly used in nature.
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Redundant Representations (2)

There are different opinions regarding the influence of redundant

representation on the performance of EAs.

• Redundant representations reduce EA performance due to

loss of diversity (Davis, 1989; Eshelman and Schaffer, 1991;

Ronald et al., 1995)

• Redundant representations increase EA performance (Gerrits

and Hogeweg, 1991; Cohoon et al., 1988; Julstrom, 1999)
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Redundant Representations (3)

• Large amount of work considers the neutral theory (Kimura,

1983). This theory assumes that not natural selection fixing

advantageous mutations but the random fixation of neutral

mutations is the driving force of molecular evolution.

• Following these ideas redundant representations (neutral net-

works) are used in EAs with great enthusiasm.

• There is hope that increasing the evolvability of a system

also increases the performance of the system (Barnett, 1997;

Barnett, 1998; Shipman, 1999; Shipman et al., 2000b; Shackleton et al.,

2000; Shipman et al., 2000a; Ebner et al., 2001; Smith et al., 2001c;

Smith et al., 2001a; Smith et al., 2001b; Barnett, 2001; Yu and Miller,

2001; Yu and Miller, 2002; Toussaint and Igel, 2002).

• (Knowles and Watson, 2002) showed exemplarily that this is

not true!
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Redundant Representations (4)

from (Ebner et al., 2001)

Neutral Network: Set of geno-

types connected by single-point

mutations that map to the same

phenotype.
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Redundant Representations (5)

Benefits of Neutral Networks

• Population can drift along these neutral networks.

• Reducing the chance of being trapped in sub-optimal solu-

tions.

• Population is quickly able to recover after a change has oc-

curred.

• Evolvability of the system increases.
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In the following slides we present a model that

• explains how redundancy changes the performance of EAs

and

• allows quantitative predictions of EA performance.

• (presented in (Rothlauf and Goldberg, 2003))
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Synonymously versus Non-synonymously Redundant

Representations

When using redundant representations it can be distinguished

between:

• Synonymously redundant repre-

sentations: All genotypes that en-

code the same phenotype are similar

to each other.

• Non-synonymously redundant

representations: Genotypes that

encode the same phenotype are not

similar to each other.
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Synonymously versus Non-synonymously Redundant Rep. (2)

• Non-synonymously redundant

representations do not allow

guided search.

• EA search becomes random.

• Similar effect as low locality rep-

resentations. Φg
o o
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Modeling Redundant Representations

Synonymously redundant representations can be described using

• order of redundancy kr =
log(|Φp|)
log(|Φg|) and

• over-, resp. underrepresentation r of the optimal solution

due to the problem representation fg.

When using the notion of BBs and binary representations:

• kr =
kg
kp

• r: Number of genotypic BBs of order kg that represent the

optimal phenotypic BB of order kp.
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Modeling Redundant Representations (2)

Example 1:

genotypes xg xp

00 00, 00 01, 01 00, 01 01 0 0

10 00, 10 01, 11 00, 11 01 1 0

00 10, 01 11, 00 11, 01 11 0 1

10 10, 10 11, 11 10, 11 11 1 1

• k = 2 (order of phenotypic

BBs)

• kr = 2 (One allele of a pheno-

type is represented using two

alleles of a genotype)

• Uniform redundancy: r = 4

(the best BB (e.g.. xp = 11) is

represented by four genotypic

BBs)
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Modeling Redundant Representations (3)

Example 2:

genotypes xg xp

000, 001, 010, 100, 101, 110, 011 0

111 1

• k = 1 (order of phenotypic BBs)

• kr = 3 (One phenotypic allele is represented using three geno-

typic alleles)

• Non-uniform redundancy: r = 1 (best BB (xp = 1) is repre-

sented by one genotypic BB (xg = 111))
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Population Sizing for GAs

The gambler’s ruin model (Feller, 1957) can be used for model-

ing the iterated decision making in GAs.

A gambler with initial stake x0 wishes to increase his funds to a

total of N units by making a sequence of bets against a gaming

house. Each bet has fixed probability p of winning (q = 1 − p

of losing), and we wish to know the probability of succeeding

(getting N units) or failing (losing all units).

Following (Harik et al., 1997) the probability that a GA with a

population size N converges after tconv generations to the correct

solution is

Pn =
1 − (q/p)x0

1 − (q/p)N
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Population Sizing for GAs (2)

After some calculations we get:

N ≈ −2k−1 ln(α)
σBB

√
πm′

d

N is the necessary population size, α = 1 − Pn the probability Pn that the
optimal BB cannot be found (probability of failure) and k is the order of the
BBs.

σBB (variance of BBs), d (fitness difference between best and second best

BB), m′ = m − 1 (number of BBs) and k are problem-dependent.
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Population Sizing for GAs (3)
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Population Sizing for GAs (4)

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80 90 100

pr
op

or
tio

n 
of

 c
or

re
ct

 B
B

s 
(1

−a
lp

ha
)

population size N

prediction gamblers ruin model
experimental results

Ten concatenated 3-bit deceptive traps (k = 3, σBB = 1, d = 1 and m = 10)

Redundant Representations Page 51



Population Sizing for GAs (5)

Now we have to ask how the redundancy of a representation

influences GA performance?

Observation: Redundant representation change the initial

supply x0 of BBs.

For binary problem representation:

x0 = N
r

2kkr
,

where N is the population size.
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Population Sizing for GAs (6)

When using synonymously redundant representations the existing

model can be extended:

N ≈ −2krk−1

r
ln(α)

σBB

√
πm′

d

The population size N that is necessary to find the optimal so-

lution with probability Pn = 1 − α goes with O

(

2kr

r

)

.
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Population Sizing for GAs (7)

Conclusions from this model:

• Redundant representations can change the performance of

EAs.

• If representations are synonymously redundant:

– Uniformly redundant representations do not change the

performance of EAs!

– If the optimal BB is overrepresented GA performance in-

creases.

– If the optimal BB is underrepresented GA performance

decreases.

• Redundant representations can not be used systematically if

there is no problem-specific knowledge!
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Population Sizing for GAs (8)

What must be considered when using redundant representations?

1. How does the used representation change the size of the

search space?

2. Is the representation synonymously redundant?

3. Are some solutions overrepresented?

Examining these properties allows the user to increase the per-

formance of GAs!
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In the following slides we show how this theory can be used for

predicting GA performance when using the trivial voting

mapping for binary problems.
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Trivial Voting Mapping

• The trivial voting mapping (TVM) assigns binary phenotypes

to binary genotypes.

• One bit of the phenotype is represented by kr genotypic bits.

• In general, a phenotypic bit is 0 if less than u genotypic

bits are zero. If more than u genotypic bits are 1 then the

phenotypic bit is 1.

• For u = kr/2 the value of the phenotypic bit is determined by

the majority of the genotypic bits (majority vote)

In general:

x
p
i =







0 if
∑kr−1

j=0 x
g
kri+j < u

1 if
∑kr−1

j=0 x
g
kri+j ≥ u,

where u ∈ {1, . . . , kr}.
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Trivial Voting Mapping (2)

Examples:

genotypes xg xp

000, 001, 010, 100 0

110, 101, 011, 111 1

genotypes xg xp

000 0

001, 010, 100,110, 101, 011, 111 1

• k = 1

• kr = 3

• u = 2

• k = 1

• kr = 3

• u = 1
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Trivial Voting Mapping (3)
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Trivial Voting Mapping (4)
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150-bit one-max problem using the trivial voting mapping for kr = 3.
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Trivial Voting Mapping (5)
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Experimental and theoretical results of the proportion of correct BBs for ten

concatenated 3-bit deceptive traps and kr = 2.
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Trivial Voting Mapping (6)
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Redundant Representations - Summary

• There are theoretical models that allow us to predict the

expected GA performance when using redundant representa-

tions (N = O(2kr/r)).

• There are guidelines for the design of redundant representa-

tions:

– Do not use non-synonymously redundant representations

(No significant schemata)!

– If you use redundant representations you have to investi-

gate:

∗ How does the representation change the size of the

search space?

∗ Are solutions similar to the optimal solution overrepre-

sented?

– If there is no knowledge about the optimal solution use a

uniformly redundant representation.
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• A Short Introduction to Representations

• Representations and Standard Test Problems

• Design Guidelines for Representations

• Properties of Representations

– Redundant Representations and Neutral Networks

– High-Locality Representations

– (Domino Convergence and Genetic Drift)
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Locality

• Representations (genotype-phenotype mappings) can change

the structure of the neighborhood and the structure of the

fitness landscapes.

• Each neighbor can be reached directly by a move (mutation,

crossover, etc.). Therefore, the neighborhood structure de-

pends on the used operator and the used metric.

• The set of neighbors can be different for the genotypes and

phenotypes.

• The distance between two individuals is determined by the

number of moves between both individuals.
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Locality (2)

The locality of a representation describes how well neigh-

boring phenotypes correspond to neighboring genotypes.

Therefore, the locality of a representation is high, if neighboring

genotypes correspond to neighboring phenotypes.

Locality, causality, and distance distortion describe how well the

metric on Φp fits to the metric on Φg. If they fit well the locality

is high.

Hypothesis: Representations fg that change the distances be-

tween corresponding genotypes and phenotypes can modify the

difficulty of the problem (difficulty(f ) 6= difficulty(fp)).
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Locality - An Example

• Both, genotypes and

phenotypes are binary.

• We use the bit-flipping

operator as a move

(Hamming distance).

• One-max problem.

• All building blocks (re-

garding genotypes and

phenotypes) are of size

k = 1. Therefore, prob-

lem is easy for selectore-

combinative GAs.
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Locality - An Example (2)

• A representation with lower

locality.

• The neighborhood structure

changes.

• Not all genotypic building

blocks are of size 1. Although,

fp remains unchanged, f be-

comes more difficult. 111
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Locality - An Example (3)

xg000 001 010 011 100 101 110 111

2

3

1

0

fitness

xg000 001 010 011 100 101 110 111

2

3

1

0

fitness

• High-locality rep-

resentation.

• Problem easy for

selectorecombina-

tive GAs.

• Different fitness

for genotypes 000

and 001.

• Problem more dif-

ficult for selectore-

combinative GAs.

• Neighborhood not

preserved by repre-

sentation.
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Locality - An Example (4)

Neighborhood structure of the

genotypes:

000

001 010 100

011 101 110

111

Resulting neighborhood struc-

ture of the phenotypes:

000

001 010 100

011 101 110

111
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Comparing Representations

• We compare the performance of selectorecombinative GAs

over all different representations for the one-max problem.

• When focusing on binary bitstrings and assigning l-bit geno-

types to l-bit phenotypes, there are 2l! different representa-

tions.

• For l = 3 there are 8 different genotypes, resp. phenotypes,

and 8! = 40 320 different representations.

• 36 different representations result in the same overall problem

f (for the one-max problem).
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Comparing Representations (2)

• To reduce problem complexity, xg = 111 is always assigned to

xp = 111. Therefore, there are 7! = 5040 different representa-

tions.

• We concatenate ten 3-bit problems and use a GA with tour-

nament selection of size 2, uniform crossover, and N = 16.
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Comparing Representations (3)
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Comparing Representations (4)
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fp
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phenotypes fitness • We compare the performance of selec-

torecombinative GAs over all different

representations for the deceptive trap

problem.

• To reduce problem complexity, xg = 111 is

always assigned to xp = 111. Therefore,

there are 7! = 5040 different representa-

tions.

• We concatenate ten 3-bit problems and

use a GA with tournament selection of

size, uniform crossover, and N = 16.
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Comparing Representations (5)
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High-Locality Representations - Summary

• When using high locality representations, genotypic neigh-

bors correspond to phenotypic neighbors.

• High locality representations do not change the structure and

difficulty of the problem.

– Easy problems remain easy.

– Difficult problems remain difficult.

• Locality depends on the used distance metrics which depend

on the used operators.
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• A Short Introduction to Representations

• Representations and Standard Test Problems

• Design Guidelines for Representations

• Properties of Representations

– Redundant Representations and Neutral Networks

– High-Locality Representations

– (Domino Convergence and Genetic Drift)
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Exponentially Scaled Alleles

The alleles of a genotype can be of different importance for the

construction of the phenotype.

In many real-world problems it is unclear if the genotypic alleles

are uniformly or non-uniformly scaled.

A GA solves the most important alleles first and continues with

lower salient alleles (domino convergence)

Genotypic alleles that have little influence on the phenotype are

randomly fixed due to genetic drift.
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Domino Convergence

The contribution of the genotypic alleles to the construction of

the phenotype can be either uniformly or non-uniformly scaled.

• Uniformly scaled representations:

– Unary encoding, Gray encoding

– All alleles are solved implicitly in parallel.

• Exponentially scaled representations:

– Binary encoding

– The alleles are solved step by step and domino conver-

gence occurs.
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Domino Convergence (2)

The BinInt problem: f (x) =
∑l−1

i=0 xi2
l−i−1 can be decomposed in

the exponentially scaled representation fg(xg) =
∑l−1

i=0 2ixg,i, and

the problem fp(xp) = xp.

When using GAs and non-uniformly scaled representations domino

convergence occurs.

1

string
position

already converged not yet converged

λ l

low salience alleleshigh salience alleles

s
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Domino Convergence (3)

Domino convergence changes the dynamics of selectorecombi-

native GAs.

Time complexity (neglecting genetic drift):

Uniformly scaled alleles Exponentially scaled alleles

const sel. int. prop. sel. const sel. int. prop. sel.

O(
√

l) O(l ln(l)) O(l) O(2l)

Exponentially scaled representations result in longer GA runs!
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Domino Convergence (4)

uniformly scaled
exponentially scaled

generations

correct alleles

ls lst 2t

2m

m

mls

exp exp t texp exp

Comparison of time

complexity using con-

stant selection inten-

sity:

texp: time for solving one
exponentially scaled allele

m: number of exponen-
tially scaled building blocks

ls: length of one exponen-

tially scaled building block
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Genetic Drift

If there is no selection pressure, genetic drift occurs. The random

process of sampling individuals can result in in a population with

only one type of allele.

from: (Hartl and Clark, 1997, p. 271)

Domino Convergence and Genetic Drift Page 83



Genetic Drift (2)

from: (Hartl and Clark, 1997, p. 274)
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Genetic Drift (3)

from: (Hartl and Clark, 1997, p. 281)
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Genetic Drift (4)

The drift time – using

random sampling with re-

placement – in GAs is

proportional to the pop-

ulation size N :

tdrift = cN,

where c depends on the

initial proportion.

from: (Lobo et al., 2000)
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Genetic Drift and Domino Convergence
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from: (Thierens et al., 1998)

Combining domino convergence

and drift models:

• Drift models predict a con-

stant generations upper

boundary.

• Lower salient alleles are fixed

randomly due to genetic drift.
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Genetic Drift and Domino Convergence - Empirical Results
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Genetic Drift and Domino Convergence - Empirical Results
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Exponentially scaled Representations - Summary

• Representations using exponentially scaled alleles change the

dynamics of selectorecombinative GAs.

– Exponentially scaled representations allow to find rough

approximations after short time.

– Uniformly scaled representations allow to find the best

solution in shorter overall time.

• Due to genetic drift GAs using exponentially scaled represen-

tations need a larger population size.
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Take home message

• Representations are important!

• Representations change the difficulty of a problem!

• Distinguish carefully between genotypes and phenotypes!

• Representations that are non-synonymously redundant are no

good idea.

• Synonymously redundant representations can help you if you

have problem-specific knowledge!

• Representations should have high locality (and low distance

distortion) if you want to solve easy problems.

• (Scaling of alleles changes dynamics of search. Non-uniformly scaled

alleles are fast, but inaccurate.)
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Last remark

Thanks for your attention and patience!

Further reading:

Rothlauf, Franz (2003). Representations for Genetic and Evolutionary Al-

gorithms. Studies on Fuzziness and Soft Computing. Springer, Berlin, 2nd

print.
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Thierens, D., Goldberg, D. E., and Pereira, Â. G. (1998). Domino convergence, drift, and the
temporal-salience structure of problems. In of Electrical, I. and Engineers, E., editors,
Proceedings of 1998 IEEE International Conference on Evolutionary Computation,
pages 535–540, Piscataway, NJ. IEEE Service Center.

Toussaint, M. and Igel, C. (2002). Neutrality: A necessity for self-adaptation. In Fogel, D. B.,
El-Sharkawi, M. A., Yao, X., Greenwood, G., Iba, H., Marrow, P., and Shackleton, M.,
editors, Proceedings of the 2002 Congress on Evolutionary Computation CEC2002,
pages 1354–1359. IEEE Press.

Tzschoppe, C., Rothlauf, F., and Pesch, H.-J. (2004). The edge-set encoding revisited:
On the bias of a direct representation for trees. In Deb, Kalyanmoy et al., editor,
Proceedings of the Genetic and Evolutionary Computation Conference 2004, page
unknown, Heidelberg. Springer.

Whitley, D. (2000). Walsh analysis, schemata, embedded landscapes and no free lunch. Joint
Tutorials of SAB 2000 and PPSN 2000.

Yu, T. and Miller, J. (2001). Neutrality and evolvability of Boolean function landscapes.
In Proceedings of the 4th European Conference on Genetic Programming (EuroGP),
volume LNCS 2038, pages 204–217. Springer.

Yu, T. and Miller, J. (2002). Finding needles in haystacks is not hard with neutrality. In
Proceedings of the 5th European Conference on Genetic Programming (EuroGP),
volume LNCS, pages 13–25. Springer.


