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Why Topology Matters

The spatial structure of a population will be called its topology

e Population topology has a marked influence on the dynamical

processes taking place in the population

e To some extent, the dynamics can be controlled by using the

appropriate topology

e Population topology can be mathematically characterized using

the tools of graph theory
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Main Categories of Population Topologies

e Multiple Populations, also called island models (each node of

the graph is a population in itself)
e Cellular Populations (each node of the graph is a single
individual)

e There are many possible hybrid models, such as islands of
cellular populations, or islands that themselves contain other
islands etc.
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Examples of Island Population Topologies

Mesh and Ring Topologies. Each circle represents a panmictic
population.

Random Topology
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Cellular or Lattice Topologies

Each individual occupies a cell in a 1-D, 2-D or 3-D lattice, or

another graph structure
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G )

M. Tomassini



Spatially Structured Evolutionary Algorithms GECCO 2004 - 5

Evolutionary Algorithms in Structured Populations

Island Models

The whole population is subdivided into a number of
subpopulations

Subpopulations are loosely coupled: they evolve independently
for a while

A topological pattern of communication is established among
the islands

From time to time selected individuals are exchanged between
populations and replace local individuals

A number of parameter values must be determined somehow:
number of islands (subpopulation size), topology of communication,
frequency of migration, individual replacement policy... Some of
those might even change during the run
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Evolutionary Algorithms in Structured Populations

Cellular Models

e Each individual occupies a cell in a regular lattice or a more
general graph

e Genetic operators are local. Selection, mutation and
recombination take place only within a small neighborhood.

e After selection and variation, each cell is replaced, e.g., by the
best individual in the neighborhood

©
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Case Study: Selection Pressure in Cellular EAs

It is a good case study because:

The effects of topology are most easily seen in cellular EAs
Selection pressure is a fundamental aspect of EAs
Variation operators do not interfere with the dynamics

The mathematical analysis is possible in some cases

M. Tomassini
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Selection Pressure and Takeover Times

Takeover Time is the time it takes for a single best individual to

take over the whole population

No variation operators: only selection is active with a probability

ps that depends on the selection method

Long takeover times mean less intense selection and viceversa for
short TT

Selection intensity is related to the explorative or exploitative

character of an EA: the stronger the selection the more exploitative
the EA
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Growth Curves in Panmictic Populations

In mixing populations the best individual propagates under
selection following a Logistic Curve.
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Analytical and experimental results indicate that, among the usual

selection methods, (i, A), tournament and ranking induce a
stronger selection pressure than fitness proportionate selection
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The Origins of Logistic Growth

Logistic growth occurs in situations where the growth is
exponential at first but then it flattens out being limited by
diminishing “resources”. In our case, it means that, as time goes
by, less and less individuals remain to be “conquered”

Thus, the growth rate is not simply proportional to the current
amount N, but rather to a maximum possible “capacity” 6, minus
the current amount (Verhulst):
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which has the solution:
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Growth Curves in Rings

In rings the best individual can only grow at a linear rate:
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The frontier of the growing region can only expand, at best, to the

next two individuals on the next time step
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Growth Curves in Two-Dimensional Lattices

In grids the best individual can only grow at most at a quadratic

rate:
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The diameter of the expanding region grows at a linear rate, and

thus the whole area, which is proportional to the population size,

grows at quadratic rate
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Growth Curves and Topology

The influence of the population structure is clearly seen:

Best Individual Copies
Best Individual Copies
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The growth rate, and thus the selection pressure, is much slower in

rings than it is in 2-D grids, which is in turn slower than the

mixing population
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Mathematical Models for Growth Curves 1

Our models are based on probabilistic difference equations. The
general recurrence for the expectation of N (t) for synchronous

dynamics is:

n—n—1

=i](i+) ) P[K = ZP ps (5, 1)

r=1 j=1 1=0

where N(t) is a random variable denoting the number of copies of
the best individual at time ¢; N(f — 1) = ¢ is this number at time

t — 1, K is the number of neighbors of a given individual, B; is the
number of copies of the best among the 5 neighbors of an
individual, and p,(j,1) is the probability of selecting a best among
the h best of the 5 neighbors. The Ps denote probabilities.
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Mathematical Models for Growth Curves 11

The previous equation is valid for any topology. However, it
can be exactly solved only in the linear lattice (ring) case [8].
For other topologies, approximations must be made, and the

recurrences cannot, in general, be given in closed form

For rings with a neighborhood of three individuals, the

solution is:
E[N(t)] =2pst + 1

where the actual probability ps should be inserted for different
selection methods

The equation can easily be checked for the deterministic case

ps = 1 in which N(t) is no longer an expectation (i.e. a random

variable)
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Comparing Theory and Experiments 11

As expected, for the ring case the agreement between theory and
experiment is excellent. The experimental curve (black) is the
average of 100 runs. Selection method: binary tournament.
Population size is 1024.

error = 3.2059
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Mathematical Models for Growth Curves 111

e For the synchronous growth curve in a 2-D torus, assuming a 5
cell (NWCES) neighborhood we get:

N(t—1) + 4pp ¥ =

N(t —1) +4dps/n— N(t — 1)

e The approximation is geometrical and is based on the growth
of a closed planar shape that contains the region of interest (a
45 degrees rotated square). po is the selection-dependent
probability of selecting the best individual when there are two
copies of it in the neighborhood [9]
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Comparing Theory and Experiments 111

For the torus case the agreement between theory and experiment is
still good, in spite of the approximations in the model. The
experimental curve (full) is the average of 100 runs. Selection is by
binary tournament. Population size is 1024.
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What About the Neighborhood?

e What happens if the neighborhood’s size and shape change?
e It would be easy to modify the model to take that into

account. However, the effects had already been empirically
studied by Sarma and De Jong for 2-D grids [11,12]

Their conclusion: propagation times, and thus selection
pressure, are closely related to the neighborhood’s size. Larger
neighborhoods imply stronger selection pressure

Also: neighboorhoods having the same “linear extension” such
as L9 and C13 induce a similar selection pressure; thus,
neighborhood’s shape matters too

M. Tomassini
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Neighborhood Size and Shape: the Ratio

Sarma and De Jong were able to characterize the global
induced selection pressure by a single parameter: the ratio r

The ratio is, in essence, the radius of a circle centered on the
mean center (Z,y) of a neighborhood pattern of n points

Under this measure r(L9) = 1.49 and r(C13) = 1.47, which
explains why the selection pressure is similar

As the ratio — size of the grid, selection pressure — panmictic

Alba and Troya later extended the concept of ratio to take into
account the whole grid shape

Selection pressure decreases as the grid flattens
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Mathematical Models for Growth Curves IV

The last two cases are the usual panmzictic population, and the

random graph structure

e A random graph with n vertices can be constructed by taking
all possible pairs of vertices and connecting each pair with
probability g, or not connecting it with probability 1 — ¢

e A panmictic population can be seen as a completely connected
graph or, equivalently, as a random graph with probability
g = 1 of having an edge between any pair of vertices; such a

graph has thus in(n — 1) edges.

M. Tomassini
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Mathematical Models for Growth Curves V

In the completely connected graph (i.e. panmictic population),

the number of neighbors of any individual is n — 1

The random graph case is difficult to solve, since the number of

neighbors (i.e. vertex degree) of a given vertex is a binomially

distributed random variable. However, the mean degree is a
constant equal to g(n — 1). We thus use the mean-field
hypothesis, taking for all individuals the same average number

of neighbors

We only consider connected RGs. Disconnected components do

not make sense here

M. Tomassini
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Mathematical Models for Growth Curves VI

With the mean-field approximation, it turns out that both the

panmictic and random graph topologies obey the same growth

equation. The growth is obviously logistic in form, and is given as a

discrete recurrence:

M. Tomassini
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Comparing Theory and Experiments IV
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Comparing Theory and Experiments V

The agreement between theory (full curve) and experiment (light
curves) is very good for the random graph with ¢ = 0.1:

15 20 25 30 0 5 10 15
Time Steps Time Steps

q=20.1 q = 0.01

The fit is bad for small g. This is due to the mean-field
approximation: for n = 1024 the average number of neighbors is

~ 100 for ¢ = 0.1, while it is ~ 10 for ¢ = 0.01. The o is thus ~ 10
and ~ 3 respectively. Thus, many nodes will have very few edges
for ¢ = 0.01, slowing down the propagation

M. Tomassini
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The Time Dimension

e Up to now, only “space” in the form of topological population
structures has entered into the picture

e Time has been considered synchronous; i.e., all the individuals

act simultaneously at the ticks of a global clock

e But does this global synchronization make sense or is it only a
useful abstraction?

M. Tomassini
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Asynchronous Evolution

e Synchronous evolution is simple and can be used in artificial

systems, where no physical limitation exists

e Asynchronous evolution is more complex but it is more faithful
to Nature. No global clock. Signals can only travel at finite
speed in physical and biological systems

e Since there can be many different sequential update orders for
a cellular system, asynchronous evolution gives another degree
of freedom to play with

M. Tomassini
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Asynchronous Evolution: the Models

Three asynchronous evolution models will be used: Line Sweep,

Uniform Choice, and Random Sweep

e In Line sweep (LS), the n cells are updated sequentially from
left to right and line after line starting from the upper left

corner cell.

In Fixed Random Sweep (FRS), the next cell to be updated is

chosen with uniform probability without replacement; this will

produce a certain update sequence (¢, c¥,...,c™), where ch
means that cell number p is updated at time g and (4, %, ..., m)
is a permutation of the n cells. The same permutation is then
used for all update cycles.

M. Tomassini
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Asynchronous Evolution: the Models 11

e The New Random Sweep method (NRS) works like FRS,
except that a new random cell permutation is used for each
sweep through the array.

e In uniform choice (UC), the next cell to be updated is chosen
at random with uniform probability and with replacement.
This corresponds to a binomial distribution for the updating

probability.

A Time Step is defined as updating n times sequentially, which
corresponds to updating all the n cells in the grid for LS, FRS and
NRS, and possibly less than n different cells in the uniform choice
method, since some cells might be updated more than once

M. Tomassini
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Asynchronous Evolution: Results

Results can be summarized as follows [8,9]:

e As in the synchronous case, asynchronous evolution in lattices
produces a selection pressure that is lower than the panmictic
case. The ranking does not change, with selection being more
intense in mixing populations than in grids, which is in turn
more intense than rings

Selection intensity using asynchronous evolution is slightly
stronger than for the synchronous case for the same topological
parameters. Uniform choice is close to synchronous

In a given topology, different asynchronous update methods
give rise to different global induced selection pressures

Thus, selection intensity in cellular populations can be
changed, even dynamaically, by using different cell update
methods, different grid or neighborhood ratios, or both

M. Tomassini
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Asynchronous Evolution: Results

Takeover Times results for rings for various update methods

(%]
2
<%
[}
O
©
>
k=i
=
°
£
=
7}
o}
a]

— synchronous
uniform choice
- = new random sweep
- fixed random sweep
line sweep
T T

L L
400 600 800 1000 1200
Time Steps

Takeover times with binary tournament selection: mean values over
100 runs. The vertical axis represents the number of copies of the
best individual as a function of the time step

M. Tomassini



Spatially Structured Evolutionary Algorithms GECCO 2004 - 32

Asynchronous Evolution: Results

Takeover Times results for tori for various update methods
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What About “Real” Cellular EAs?

e Typical benchmarks have been used, both continuous and
discrete

massively multimodal deceptive problems (MMDP)
satisfiability (SAT) problems
multimodal problem generator (P-PEAKS)

maximum cut of a graph (MAXCUT)
scheduling problems (MTTP)

continuous functions such as: Frequency Modulation Sounds
(FMS), Ackley, Rastrigin etc.

e Those cover most classes of problems found in practice and
should give an indication as to the observed tendencies

(The problems and the experiments are described in [4])

M. Tomassini
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Parameters Used in the Cellular EA runs

Population Size 400 individuals

Selection of Parents binary tournament + binary tournament
Recombination DPX, p. = 1.0

Bit Mutation Bit-flip, p,, = 1/L (10/L for FMS)
Individual Length L

Replacement Rep_if_Better

Table 1: Parameterization used in the algorithm for the binary en-

coded problems. DPX indicates standard double point crossover.

Name (shape of population) | Value of ratio

Square (20 x 20 individuals) 0.11
Rectangular (10 X 40 individuals) 0.075
Narrow (4 X 100 individuals) 0.031

Table 2: Studied ratios.

M. Tomassini
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Summary of Results

Algorithm Avg. Solution (best=20) Avg. Generations Hit Rate

Square 19.813 214. 57%
Rectangular 19.824 236. 58%
Narrow 19.842 299. 61%
LS 19.518 343. 23%
FRS 19.601 209. 31%
NRS 19.536 152. 28%
ucC 19.615 295. 36%

Table 3: MMDP problem with a maximum of 1000 generations.

Algorithm Avg. Solution (best=1) Avg. Generations Hit Rate

Square . 51. 100%
Rectangular . 50. 100%
Narrow . 53. 100%
LS . 34. 100%
FRS . 38. 100%
NRS . 38. 100%
ucC . 40. 100%

Table 4: P-PEAKS problem with a maximum of 100 generations.

M. Tomassini
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Algorithm Avg. Solution (best>100) Avg. Generations Hit Rate

Square 90.46 437. 57%
Rectangular 85.78 404. 61%
Narrow 80.76 610. 63%
LS 81.44 353. 58%
FRS 73.11 386. 55%
NRS 76.21 401. 56%
ucC 83.56 405. 57%

Table 5: FMS problem with a maximum of 3000 generations.

Algorithm Avg. Solution (best=56.74) Avg. Generations Hit Rate

Square 56.74 11. 100%
Rectangular 56.74 11. 100%
Narrow 56.74 11. 100%
LS 56.74 9. 100%
FRS 56.74 9 100%

56.74 9. 100%
ucC 56.74 9 100%

Table 6: MAXCUT problem with a maximum of 100 generations.

M. Tomassini
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Algorithm Avg. Solution (best=0.02439) Avg. Generations Hit Rate

Square .02439 . 100%
Rectangular .02439 . 100%
Narrow .02439 . 100%
LS .02439 . 100%
FRS .02439 . 100%
.02439 . 100%
ucC .02439 . 100%

Table 7: MTTP problem with a maximum of 50 generations.

Algorithm Avg. Solution (best=430.0) Avg. Generations Hit Rate

Square 429.54 703.1 79%
Rectangular 429.67 706.3 84%
Narrow 429.61 763.7 81%
LS 429.52 463.2 78%
FRS 429.67 497.7 85%
429.49 610.5 75%
ucC 429.50 725.5 76%

Table 8: SAT problem with a maximum of 3000 generations.

M. Tomassini
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Algorithm Avg. Solution (best< 0.1) Avg. Generations Hit Rate

Square .0999 321. 78%
Rectangular .0994 293. 73%
Narrow .1037 271. 65%
LS .0932 302. 84%
FRS .0935 350. 92%
.0956 335. 87%
ucC .0968 335. 85%

Table 9: ACKL problem with a maximum of 500 generations.

Algorithm Avg. Solution (best< 0.1) Avg. Generations Hit Rate

Square .0900 323. 100%
Rectangular .0883 309. 100%
Narrow .0855 354. 100%
LS .0899 280. 100%
FRS .0900 289. 100%
NRS .0906 292, 100%
ucC .0892 292, 100%

Table 10: RASTR problem with a maximum of 700 generations.

On the whole, results agree with expected selection pressures

M. Tomassini
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Island Models

Island models have been often used in Evolutionary

Computation

The most complete modeling and analysis has been done by
Canti-Paz for GAs [3]

Empirically, they have been found nearly always more efficient
than the panmictic population model

Here we will focus on Multipopulation Genetic Programming

M. Tomassini
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Multi-Population Genetic Programming

A number of parameters must be considered:

e The number of islands (subpopulations)
The size of the subpopulations
The communication topology
The number and type of migrating individuals
The frequency of migration

These parameters have been empirically investigated in Fernandez
et al.[5], on standard and real-life problems. Details of the test
problems and results can be found there

M. Tomassini
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Multi-Population Genetic Programming: Results

e In general, multi-population GP is more efficient than standard
panmictic GP on those problems: better results with the
same computational effort

For a given total population size, there is a preferred interval
for subpopulation size which is problem-dependent

If the subpopulations are two small, island GP does not

perform well

The “optimal” number of individuals to exchange is about 10%
of the subpopulation size; the frequency of exchange should be
between 5 to 10 generations independent of the problem

The influence of inter-island communication topology is
comparatively less important

M. Tomassini
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Experimental Results: Ant Problem
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Experimental Results: Even Parity Four
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Symbolic Regression
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Comparing Topologies

The empirical result is that, for island models, the precise
migration topology is relatively unimportant, at least for the cases
studied here. This is reasonable, given that evolution is still mainly

panmictic
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Maintaining Diversity in Island GP

A better global phenotypic diversity during the run seems to be
correlated with the good results obtained with multi-population

GP
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Maintaining Diversity in Island GP
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Effectivity of Multi-Population EAs

Summarizing, and extending to other island EAs for which many

results exist:

e Most empirical results tend to show that island EAs are more
efficient than panmictic EAs

e The effectivity of multi-population EAs seems to depend on the
nature of the problem

e Overall population diversity is better maintained in a
multi-population setting

e Separable problems and problems with multiple solution paths
seem to be more suitable for the distributed approach

M. Tomassini
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A Note on Implementation I

We have been talking of models, without any implementation
details

All the models described previously can be implemented as
sequential algorithms on sequential architectures

However, they are easy to implement on parallel or distributed
architectures with good performance gains

This is because communication and synchronization overheads

are minimal for EAs (except for asynchronous cellular EAs)

M. Tomassini
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A Note on Implementation 11

e Island models can be very easily and efficiently implemented on
dedicated clusters (Beowulf-style systems), with both
synchronous and asynchronous migration patterns, using

message-passing libraries (e.g. MPI)

e Synchronous cellular systems can be implemented on clusters
by using domain decomposition techniques and message
passing for the domain borders [7]

e Load balancing is only needed for cellular GP systems [6]

M. Tomassini
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