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Abstract. Despite many successes of evolutionary algorithms (EAs) in
real-world applications, theoretical knowledge in regard to these algo-
rithms is still in its infancy. In this work, we discuss a number of ap-
proaches to theory for EAs in regard to strengths and weaknesses of
statements for convergence-speed obtained with these methods. This in-
cludes the general convergence-analysis of a broad class of EAs in an
arbitrary-fitness-function black-box scenario similar to the setting for the
simulated annealing algorithm, and the runtime-analysis of specific EAs
on limited classes of fitness-functions within the framework of asymptotic
runtime-analysis for randomized algorithms.

We propose that a suitable merger of ideas put forward through the
latter two types of convergence-analysis may yield substantial progress
towards understanding convergence behavior of EAs. In particular, this
may yield a unified theoretical framework for EAs as well as probabilistic
estimates for runtimes of EAs used in real-world applications.

Introduction

This work continues the discussion begun in “L.M. Schmitt & S. Droste, Fea-
sible Approaches to Convergence Results for Evolutionary Algorithms. Part I:
Introductory overview and analysis of scaled genetic algorithms.” which is also
published in these workshop proceedings and contains a longer introductory
chapter.
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This work was done while he was visiting The University of Aizu whose financial
support is also kindly acknowledged.



I1.1. Overview of Runtime Analysis

In the analysis of classical algorithms, one wants to determine the number of
steps the algorithm makes until a solution to the problem instance (here: an op-
timum) is found. Since EAs are most often used in situations where the knowl-
edge about the problem instance is very limited, there exists usually no criterion
for stopping an EA that guarantees that an optimum has been found. Hence,
one often assumes that the mixing-selection cycle of the EA is repeated forever,
and one is interested in the number of steps until an optimum is attained for the
first time. Consequently, one does not analyze a finite algorithm but an infinite
random process.

Asymptotically exact estimates. The analysis of efficient deterministic
or randomized algorithms would not be successful, if the runtime were to be
analyzed in complete detail. Specifically designed and well-defined simplification
techniques and assumptions are applied, that make the analysis much easier, but
do not affect the correctness and significance of the results [38, 59]:

e Constant factors are not taken into account. Hence, e.g., runtimes of n? and
3n? are subsumed as functions of quadratic growth. This is motivated by the
fact, that constant factors depend on many issues such as computer speed or
implementation details that are out of the scope of regular analysis.

e One only cares about the fastest growing term, i.e., n% 4+ n is simplified to
n?, since the quadratic term dominates the linear term for growing n.

e Since one deals with large n in many applications, one does not care about
small n, ¢.e., in many estimates one does not consider inputs with dimension
bounded by some constant n,.

These assumptions are the basis of the well-known O-calculus used for the anal-
ysis of algorithms (see [38] for the formal definition). This gives a precise mathe-
matical foundation for the exactness of asymptotic runtime analysis results while
allowing to simplify computations.

Homogeneous Markov chain models. Since the next step of the mixing-
selection cycle of an EA, usually, only depends upon the actual population, it is
possible to describe such EAs using Markov chains. If we model such an EA in
exact fashion, then the state space of the Markov chain is the set of all possible
populations. However, the size of this state space increases exponentially fast in
the dimension (size) n of the problem instance and the size s of the population.
Thus, it is often easier and necessary but also sufficient to consider a simplified
version of the state space. One possibility would be to use the best, i.e., fittest
search point in the population to denote the state.

Even if one follows the latter plan for reduction of the size of the state space,
the size still may grow exponentially fast in n. Thus, one tries to find an even
smaller state space depending on the fitness function. A typical example for
further state space reduction techniques is incorporated in the analysis® of an
EA on the ONEMAX-function on bit-strings whose output is the number of ones

! See [21] for further details.



in its input. Since the position of the bits in a search point now has no relevance
for the analysis, one just identifies a search point with the number of its ones.

The previous, very simple example can be extended by using a potential
function, a common tool in the analysis of algorithms [12]: the potential function
maps the state of the algorithm to a range of numbers where the optimal state of
the algorithm is usually mapped to the maximal value of the potential function.
If we can determine an upper bound for the range of values of the potential
function, and a lower bound for the (expected) gain during a finite number of
steps of the EA, then we can determine an upper bound for the (expected)
number of steps until an optimum is found. This very flexible method was used,
e.g., in [21] where the expected runtime of the (1 + 1) EA on linear functions
was analyzed.

Simplification techniques for stochastic matrices. If one has found
an appropriate state space {0,..., N}, N € N, then the EA under consideration
is modeled by a Markov chain M = (Mj;);cq1,..,n} Where Mj; denotes the
probability of moving from state i to state j in one step (cycle) of the algorithm.
A further simplification technique is to assume without loss of generality, that
the optimal state is state IN. Now, one only takes the transition probabilities
into consideration in order to estimate the expected runtime of the EA asymp-
totically. Finding methods to estimate the expected runtime of the occurring
Markov chains M is then the key for a runtime analysis of the corresponding
EA.

Probably the most simple Markov chains are those that can only move from
a state ¢ to a state j with j > i, i.e., they can only improve towards the optimal
state N. The simplest method to obtain an upper bound for the expected runtime
of such a process is to find a lower bound for the probability M;;,; of making
an improving step from state ¢ to state ¢ + 1. The expected time to arrive at
state ¢ + 1 is then at most 1/M;44 ;; and the expected time to reach state N
starting from 4 is bounded from above by

1 1 n N 1
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It is intuitively clear that disregarding possible transitions from ¢ to states j >
i + 2 makes the process under consideration only slower (see [18] for a proof).
Application of this simple observation often yields asymptotically exact results,
if the EA under consideration prefers small improvements which makes M;11 ;
larger than the combined probability for all other transitions.

If the process under consideration is also allowed to make steps that reduce
the fitness value, i.e., move away from the optimal state IV, then we cannot ignore
any such steps in estimates for an upper bound of the runtime. The simplest case
of such a process is a so-called {—1,0,1}-process which, by definition, can only
move from state ¢ € [0, N] to {i—1,4,i+1}N[0, N]. Let E(T;41,;) be the expected
time to reach state ¢ + 1 under such a process for the first time when starting
in state i. In the case of a {—1,0,1}-process, one can compute the expected



runtime very easily by using the following recursive formula for E(T;41 ;):
ETit1,:) =14+ Miy1;+ M ;- E(Tiqa5) + Mii—1 - (E(Th-1) + E(Tig1,:)) -

This is based on the simple fact that the first step is followed either by no
additional step (if state 7+ 1 has been reached), by E(T;41,;) steps (if the process
remains in state i), or by E(T;;_1) + E(Tiy1,:) steps (if the process has moved
to state ¢ — 1). Recursively using the above equation and using that E(T; o) =
1/M , one gets a rather simple equation for E(T;41), ¢f. [20].

If the process under consideration is only allowed to make steps that reduce
the fitness value by one, i.e., steps from state i to state j < i — 1 are not
possible, then one can simplify the process by omitting all steps that improve
the fitness value by more than one and get a {—1,0,1}-process whose runtime
stochastically dominates the runtime of the original process. Upper bounds of
the expected runtime for (1 + 1) EAs were achieved in this way in [17-19].

If the process under consideration is possibly given by a fully positive stochas-
tic matrix, then one has to apply a more carefully designed simplification pro-
cedure. As a first step, one would omit all improvements in the process by more
than one, i.e., one would replace all entries M ; for j >4+ 1 by 0 and M;; by
M;; + > i>itl M; ;. This yields a so-called <1-process which shall be denoted

by M@ in what follows below. M(Ycan only move from state i to a state in
[0, + 1].

The goal is now to find a {—1,0,1}-process M whose runtime dominates
the runtime of the M(1). This can be achieved by using the following ideas (see
[18] for a formal description): Let us assume that we have a partition

SiUuSiU...US,

of the set {—1,0,1}! of all sequences of length [ of steps of M () starting from
state 4 such that every sequence in S leads the process M (2) from state 7 to state
i + k. We can also deal with sequences of varying length but omit this case for
the sake of brevity. If the joint probability of all sequences in S; is higher than
M, Z(i),” for negative k and lower than M, Z(Jlr),“ for positive k, then the process M (%)
has a “a stronger tendency towards worse states”. By making these arguments
more formal, we can prove that the runtime of M(?) stochastically dominates the
runtime of M. This technique of partitioning transition sequences has been
used in [18,19] to obtain upper bounds for the expected runtime of EAs that
are allowed to make steps that reduce the fitness value by more than one.

Special lower bound techniques. For lower bounds, in particular, super-
polynomial lower bounds, one has to analyze the Markov process associated with
an EA in much more detail. Often it is the case that the probability for moving
away from the optimum is larger the closer the algorithm gets to the optimum.
In the associated Markov chain model this is equivalent to

Mo;+ -+ Mi—1; >0 (M1, +---+Mni), a>1,



if 4 is in a particular set of states close to the optimal state N. Depending upon
the range of values of i where the latter inequality holds and the value of the
fixed constant a, one can distinguish different cases where the runtime is super-
polynomial or not.

In [18], it was shown that the runtime is super-polynomial with high probabil-
ity if this inequality holds for all ¢ € [N —log(N)B(N), N] and a > B(N). Here,
B(N) is an unbounded function of N. Consequently, a region of more than loga-
rithmic length log(N) cannot be successfully bridged, if the tendency a towards
worse states is more than a constant. (Essentially, « is a lower bound for the
quotient of the probability for worsening over the probability for improvement).

Similarly, it has been shown in [19] that the runtime of an EA is super-
polynomial with high probability, if the above inequality holds for all i € [N —
N N] and a > 1+« where € €]0,1[ and v > 0 are constant.

The proofs for the above results in [18,19] rely heavily on Chernoff bounds
(see [38]). Consider a random variable X which is the sum of m binary random
variables X7,...,X,,. Intuitively, it becomes very unlikely that this random
variable varies largely from its expected value, if m is large. Chernoff bounds
formalize this by showing that the probability P(X > (1 + ¢) - E(X)) decreases
exponentially in E(X) for a constant ¢. Hence, Chernoff bounds can be applied,
in cases one is able to achieve the following two objectives: first, one must de-
termine lower and upper bounds for the expected values of the binary random
variables X;; and secondly, one must show that the event one wants to show to
be unlikely implies that X has to be by a constant factor > 1 larger than its
expected value on the set of states pertaining to that event.

The methods presented here are only a small portion of a wide range of meth-
ods that can be used for the runtime analysis of EAs (see [65] for an overview).
Often a combination of these methods has to be used to get asymptotically
matching upper and lower bounds. But they all have in common that the Markov
process representing the EA is simplified in a well-defined way in order to make
it more easily analyzable.

Applications to general convergence analysis of EAs. The authors
think that the methods discussed above can also be applied to the case of general
convergence analysis of EAs (GAs) as described in section 2. It seems feasible
that in the case of general convergence analysis, the underlying inhomogeneous
Markov chain can be replaced by an asymptotically equivalent, simpler inho-
mogeneous Markov chain in the spirit of the above discussion. Thus through
simplification of the mutation operator and the associated neighborhood struc-
ture and/or the fitness landscape, one is able to replace one inhomogeneous
Markov chain by a simpler one, similar to the process of replacing a general
homogeneous Markov chain by a more manageable one in the above discussion.
This may, at least for certain sets of fitness functions, lead to a more successful
and thorough analysis of scaled EAs (in particular, scaled GAs). Compare [25]
in this regard, where the proof of the main result is first obtained for special
landscapes.



11.2. Summary

Although there are quite a number of different approaches to EA theory, none
of these has yet proven itself to be of outstanding value for practitioners. Hence,
theory of EAs should be considered as being still in its very beginning stage.
In the present paper, the authors have argued why trying to merge two
specific approaches to EA theory, i.e., general convergence analysis using in-
homogeneous Markov chains and asymptotic runtime analysis for EAs using
homogeneous Markov chains, is a promising route of endeavor that may increase
the knowledge about asymptotic behavior of certain families of EAs. Both ap-
proaches use well-founded mathematical models and assumptions that are estab-
lished methods in recognized fields of science. Both approaches also have proven
themselves as being successful in the analysis of EAs to a non-trivial extent.
The main ideas that have emerged in the discussion in this paper are:

1. Can variations of the techniques to obtain the mutation-flow inequality and
the steady-state inequality in [50-52, 54-57] yield fruitful applications in the
runtime analysis of EAs on certain limited classes of fitness functions inves-
tigated in [17-19,21, 29, 23,65, 66]?

2. Can variations of the techniques for simplification of homogeneous Markov
chains that arise in the runtime analysis of EAs in, e.g., [17-19,21, 29,23, 65,
66] yield fruitful applications in the general convergence analysis of scaled
GAs. Thus, can those techniques be made applicable to the setting of inho-
mogeneous Markov chains considered in, e.g., [50,51]7

3. Is there an interplay of simplifications and improvements in regard to pos-
itively answering both questions in (1) and (2) by developing new mathe-
matical techniques?

We have given overviews of the different methods and ideas used in global conver-
gence analysis resp. asymptotic runtime analysis to emphasize common ground.
We also have indicated where such common ground may yield new insights by
applying ideas obtained through one of the approaches within the framework
of the other. Future research in this regard must follow in order to make these
ideas more explicit. Although one cannot hope to keep the strengths of both
approaches (general applicability resp. exactness of runtime bounds), a merger
of ideas associated with the two approaches might lead to quite general con-
vergence results on non-trivial classes of fitness-functions that are interesting
for practical applicability of the EAs under consideration. This may yield faster
annealing schedules for certain scaled genetic algorithms on certain classes of
fitness-functions while preserving asymptotic convergence to global optima. This
may also lead to distinctions between, e.g., polynomial vs. super-polynomial con-
vergence time for certain EAs on distinct classes of problem instances.
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