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Abstract. Despite many successes of evolutionary algorithms (EAs) in
real-world applications, theoretical knowledge in regard to these algo-
rithms is still in its infancy. In this work, we discuss a number of ap-
proaches to theory for EAs in regard to strengths and weaknesses of
statements for convergence-speed obtained with these methods. This in-
cludes the general convergence-analysis of a broad class of EAs in an
arbitrary-fitness-function black-box scenario similar to the setting for the
simulated annealing algorithm, and the runtime-analysis of specific EAs
on limited classes of fitness-functions within the framework of asymptotic
runtime-analysis for randomized algorithms.

We propose that a suitable merger of ideas put forward through the
latter two types of convergence-analysis may yield substantial progress
towards understanding convergence behavior of EAs. In particular, this
may yield a unified theoretical framework for EAs as well as probabilistic
estimates for runtimes of EAs used in real-world applications.

Introduction

The lack of a comprehensive approach to analysis of EAs. Evolu-
tionary algorithms (EAs) have already a long history of successful application
for optimization purposes. See, e.g., [62]. Successful applications of EAs have
been especially noticeable and valuable in situations when there exists no ex-
actly solvable mathematical model for the problem at hand, or there is no time
to develop such a model and/or a problem-specific algorithm. Although there
are many different approaches to develop a theory for EAs, none of the existing
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theories gives practitioners direct hints or guidelines showing which problems
can be successfully tackled by what kind of EA in a manner comparable to the
theory of NP-completeness for classical optimization algorithms. (See [22] for
an introduction to NP-completeness). In particular, results in [45,48-52, 54-57]
which understand EAs as analogues of the simulated annealing algorithm and
analyze asymptotic behavior show a very slow convergence of certain classes of
EAs in a general black-box scenario. On the other hand, results in [17-19,21, 29,
23,65-67] that understand EAs as randomized algorithms and apply results for
asymptotic runtime-analysis of such as in [38] show better types of convergence
only on limited classes of fitness-functions. In addition, research on schemata as
described, e.g., in [24, p. 19 ff., p. 40 ff.] only delivers results in regard to one-
step improvements for EAs and no results in regard to finite but larger advance
in time or asymptotic behavior. This holds as well for approaches to analysis of
EAs based upon Price’s theorem [16]. Thus, lack of an EA-theory with direct
consequences for practitioners —comparable to the theory of NP-completeness—
is possibly the greatest challenge in the field of theory for EAs today.

Biology-inspired yet ordinary randomized algorithms. There are at
least two principle points of view regarding the use of EAs: some researchers see
them primarily as a means to model and study evolutionary principles in nature,
others such as the authors of this work see them primarily as a computational
optimization method which is biology-inspired.

The authors of this work believe that biology plays and should play an impor-
tant role in motivating EAs and finding new ideas for genetic operators or their
representation on data-structures. Nevertheless, we regard EAs as ordinary ran-
domized, heuristic optimization algorithms; and we think that, primarily, they
should be analyzed as such. Hence, the most important issues are general con-
vergence (Is the algorithm designed to find or converge to at least one optimal
solution similar to convergence of classical discrete or numerical algorithms?)
and specific runtime analysis (How many computation steps does the algorithm
need to find an optimum with regard to the problem dimension similar to clas-
sical runtime-analysis?). In trying to answer these questions, we can and should
use methods and techniques developed in established works of convergence anal-
ysis for efficient classical deterministic algorithms such as [30-32], the analysis
of efficient randomized algorithms such as [38]), and the analysis of finite-length
behavior of probabilistic algorithms such as [6-9].

Weaknesses and strengths of existing approaches. For most of the
discussion following below, we shall consider EAs as randomized algorithms
whose goal is to find globally optimal elements in a set C of candidate solutions
(creatures) in regard to a given fitness-function f: C — R. As already indicated
above, there are a number of general convergence results for EAs in the spirit
of convergence analysis for the simulated annealing algorithm (see [14, 15,45,
48-52,54-57] among others) and specific runtime analyses for EAs (see [17-19,
21,29, 23,46,65-67] among others). However, particular weaknesses of these re-



sults have so far prevented them from becoming easily applicable to real-world
problem settings:
e General convergence results for EAs as mentioned above, usually, do not make
any statement in regard to the runtime needed to find an optimum.
¢ Runtime analyses for EAs as mentioned above are usually limited to specific
classes of fitness-functions and specific EAs.
On the other hand, these directions of research have also particular strengths:
e General convergence results for EAs as mentioned above describe EAs that are
designed and can be implemented in any situation to find optima asymptotically
with probability one.
¢ Runtime analyses for EAs as mentioned above that are limited to specific
classes of fitness-functions and specific EAs gives the practitioner rather pricise
estimates for the computational costs one must bear on average in order to find
optima.
Hence, the weaknesses and strengths of these two approaches are somewhat
complementary which suggests that a merger of the two approaches, or the
attempt to close the “gap” between the two approaches holds some promise for
theoretical advance.
In addition, one should note that the two approaches discussed above have
some strengths in common:
e They do not rely on any hidden or particular assumptions which are dif-
ficult to validate, or experimental results whose error is not estimated in the
corresponding model.
e They are not limited to the one-step behavior of EAs.
e They yield procedural descriptions of EAs and, thus, have been successfully
applied leading to mathematically proven results about the convergence or the
runtime, i.e., they are not theories only for their own sake.
In view of the arguments put forward in the above discussion, we believe that
it is a promising research goal to find new ways of merging the two approaches
discussed above. In this paper, we shall present some ideas how to extend the col-
lection of methods already in use in order to possibly make general convergence
results more precise in regard to statement of runtime, and existing runtime
analyses possibly applicable to larger classes of fitness-functions and EAs.
Taking into account a lot of work that has been done in algorithm analysis
within the last decades (see almost any standard textbook on the subject such
as [12,59]), the authors of this work believe that it is unrealistic to attempt
to prove results which are very general in scope but also precise, optimal and
easy to apply in regard to runtime. Observe that for the simulated annealing
algorithm this point is quite well understood and yields the following, possibly
surprising answer: [25] lists explicitly the optimal cooling schedule for simulated
annealing in terms of “depth of local minima” of the fitness-landscape, i.e., this
determines the fastest possible runtime of the algorithm in general. However, it
is mentioned in [1] that determining the “depth of local minima” is as compu-
tationally complex as solving the original optimization problem and, thus, not
easy to apply. Thus in order to achieve our goal, we must obviously weaken the



strengths of the two approaches, i.e., convergence results will be less general
while runtime analyses will be not so precise anymore.

The analysis of randomized algorithms and processes requires an array of
quite sophisticated mathematical techniques. For a successful analysis, one has
to apply estimation and simplification techniques in order to master the proba-
bilistic behavior of the algorithm. See, e.g., estimates in regard to simplification
of Markov chain analysis in [18, Lemma 5], or the mutation-flow and steady-
state flow inequalities in [52, Prop. 3.1.1] and [51, Prop. 2.2.3, lines 45, 46, 47].
Usually, the difficulty is to find proper estimates and simplifications while still
being able to bound the error introduced through them. In this paper, we want
to point out some general methods for convergence resp. runtime analysis and
possible generalizations that close the “gap” between the two approaches mainly
discussed above.

Organization of the remainder of the paper. In the next section, we
shall give a short but more detailed overview of existing theoretical approaches
for analysis of EAs. In sections 1.2 and 3, we shall present a family of basic ideas
and methods for general convergence analysis of EAs resp. runtime analysis of
specific EAs. The final section lists conclusions from our previous discussion.

I.1. Overview of Existing Approaches

In this section, we shall outline in more detail some of the existing approaches to
theory for EAs from a somewhat historical perspective. Analysis of general con-
vergence results (from “outside-in”) can be seen as following the historic route of
analysis of the simulated annealing algorithm. Runtime analysis for specific EAs
(from “inside-out”) has been developed by continuously enlarging a repertoire of
mathematical techniques studied on simple problem instances which currently
yields applicable results for well-known real-world problem instances such as
finding a maximum matching in a graph [23]. In the course of the presenta-
tion, we emphasize some directions of inquiry that we find especially interesting
for future research. The discussion based in this section is an extension of the
discussion in [52, Sec. 4].

Theory for simulated annealing. The simulated annealing algorithm
was first described in [37]. Similar to the GA, the simulated annealing algorithm
was initially investigated in regard to its asymptotic behavior using a finite
state, inhomogeneous Markov chain as mathematical framework. See, e.g., [1]
for an excellent introduction and overview in regard to the simulated annealing
algorithm. Probably the most comprehensive analysis in regard to infinite-length
cooling schedules for simulated annealing can be found in [25].

Note at this point that in the case of the simulated annealing algorithm, the
steady-state distributions of the individual steps v;, t € N, of the algorithm can
be determined in a closed mathematical form, cf. [1]. This makes establishment of



strong ergodicity of the inhomogeneous Markov chain describing the algorithm?!
quite simple via coordinate-wise monotone behavior of the sequence v; and use
of [27, p. 160: Thm. V.4.3] or [52, Thm. 3.3.2].

Work in [6-9] took analysis of the simulated annealing algorithm to a higher
level. Here, it is emphasized to find the “best possible cooling schedule over a
finite time-interval’ for a given finite computational time limit. Incidentally (or
not?), this yields the same results as in the case of infinite-length analysis. This
work constitutes a major advance in regard to developing probabilistic estimates
for finite-length simulated annealing algorithms, i.e., stopping criteria for these
algorithms. Analysis for scaled GAs and for general EAs as well should take the
approach in [6-9] into account.

References [35,36,33] discuss hybrid simulated annealing algorithms with
GA-mutation/GA-crossover as mixing/generating procedures. In particular, an
asymptotic convergence result for such algorithms to global optima is obtained
in [33].

We should point out to the reader that the (1 + 1) EA is the limit of the
single steps of a regular simulated annealing algorithm. Consequently in view
of [27, p. 160: Thm. V.4.3] or [52, Thm. 3.3.2], some of the analysis developed
in [17-19,21,66] may have applications to the runtime analysis of the simulated
annealing algorithm on certain function classes.

Theory for genetic algorithms. Genetic Algorithms (GAs) constitute a
widely used subclass of EAs which have probably been applied and investigated
among EAs for the longest period of time. Theoretical description of GAs can
be roughly classified in two categories: The first category is characterized by
schema-theory following [26] including the variant of building block hypothesis,
cf. [24, p. 41-45]. The second category is characterized by Markov-chain analysis.

Schema-theory has overall failed to produce general convergence results to
global optima for GAs. This is mainly due to the fact that it is limited in its
basic form to one-step behavior. This does not say that schema-theory may not
be useful in explaining few-step behavior of a GA in an environment where the
fitness function is changing over time. An example where a fitness landscape is
considered that changes over time depending upon the behavior of the creatures
in a population can be found in [34].

Markov chain analysis was initiated notably through work in [63, 39, 13-15].
However, even though it is fairly simple (as demonstrated in [52, Sec. 4] and out-
lined below) to set up a mathematical model for genetic algorithms based upon
Markov chains, it has taken quite some time that non-elementary convergence
results with correct proofs appeared in the literature. See, e.g., 10,11, 50,51].

If one accepts that the results in [10,11,50, 51] at least to some degree settle
the question of infinite-length asymptotics for GAs in regard to finding global
optima, then the next step is to analyze finite-length GAs in regard to a “best
possible cooling/scaling schedule over a finite time-interval’ following the ideas
and the mathematical framework of [6-9]. Combining this with the point of

! See [51, Lemma 3.3.1, p. 213: proof of Thm. 3.3.2] for a quite general analogous
framework in the context of GAs.



view put forward in work in [17-19,21,29,23,65-67] as well as [52, Sec. 4], let
it be stated that future theoretical research on EAs —and GAs in particular—
should primarily deal with finite-length algorithms on finite-state machines and
estimates in regard to approaching infinite-length asymptotics and global optima
using a probabilistic framework. If one looks at theory of EAs this way, then
theory of EAs is certainly at its beginning.

Analysis from outside-in and inside-out.  There are, in principle, two ma-
jor ways to analyze EAs: from inside-out and outside-in. Following the outside-in
view, the EA is understood as an all-purpose tool which is used in a black-box
scenario, i.e., on a fitness function of largely unknown behavior and charac-
teristics. Thus, this analysis could be characterized as “finding a most general
scenario” or an “upper bound envelope” in which convergence results still hold.
As depicted in Section 1.2 the EAs are seen primarily as an ergodic “cooling
procedure” similar to the simulated annealing algorithm setting. The analy-
sis of the simulated annealing algorithm serves as example and inspiration for
corresponding analysis of (scaled) EAs within a probabilistic framework that
involves analysis of inhomogeneous Markov chains for infinite-length algorithm
asymptotics and, likely, estimates for large deviations for finite-length optimal
annealing schedules.

The opposite way to analyze genetic algorithms is from inside-out, i.e., to
systematically analyze the behavior of possibly different, specially designed EAs
for specific classes of problem instances. Such a way of analysis is even more in the
spirit of [30-32]. It could be characterized as “finding the precisest asymptotic
bounds” for specific classes of problem instances and corresponding EAs. In
section 3 of [3], this approach to theoretical analysis of genetic or evolutionary
algorithms is advocated and illustrated in detail. It is pointed out that this
direction of research leads to a unknown territory waiting for exploration. While
many of the results developed earlier analyze simple EAs and problems (see, e.g.,
[21]), the methods used for their analysis lay the foundation for the analysis of
more complicated EAs with crossover [29], or for more complicated problems
from combinatorial optimization [23], or noisy resp. dynamic variants of simple
problems [18,19].

Extensions of EA-analysis to a theory for evolution strategies. Many
applications of EAs, in particular, in engineering are numerical and rather non-
discrete optimization problems where R-valued parameters are optimized in a
bounded or unbounded domain. Historically, R-valued EAs are called evolution
strategies (cf. [58]). In this scenario, asymptotic convergence results are even
more interesting, since the optimum is usually approximated with increasing
degree of accuracy without being attained.

There exists a considerable amount of research for evolution strategies as
outlined in [3, Sec. 2]. Most of these results deal with local measures, like quality
gain or local progress in one step, making it hard to generalize them to global
measures. Only recently, work in [28] has presented a successful analysis of the
number of steps necessary to halve the distance to the optimum (with special



consideration of the 1/5-rule [44]). Although using different techniques this work
is in the same spirit than much of the runtime analyses performed for discrete
EAs mentioned above. In the field of real-valued optimization, this approach
besides an extension of the convergence methods presented later in the present
paper seem to be worthwhile and promising areas for future research.

I.2. General Convergence Analysis for Scaled GAs

In this section, we shall discuss in detail an approach towards general asymptotic
convergence analysis for a certain class of EAs, namely scaled GAs. This is
based upon results in [48,50-52] which develop a convergence analysis for a
scaled version of the regular GA with standard operations, and results in [54—
57] which develop a convergence analysis for several scaled versions of a GA in
a coevolutionary setting. There are three major aspects that contribute to the
proof of a convergence result for scaled GAs: (1) ergodicity which yields a unique
limit probability distribution for the asymptotic behavior of the scaled GA that
is independent of any initial population, (2) the mutation flow inequality which
essentially yields convergence to uniform population through its interplay with
a contraction property of the selection operator, and (3) the steady-state flow
inequality which shows convergence to global optima by discussing the action of
the stochastic matrices Gy, t € N, associated with the individual steps ¢ of the
algorithm on their steady-state probability distributions vy = Gyvy.

Modeling genetic algorithms similar to simulated annealing. The
main direction of research carried out in [48-52,54-57] tries to achieve conver-
gence results for genetic algorithms by scaling of the GA-operators mutation,
crossover and proportional fitness selection in accordance with predetermined
scaling-schedules for the mutation-rate yu = u(t), the crossover-rate x = x(t),
and the exponentiation of the originally-given fitness function f. See, e.g., [51,
line (32), Thm. 3.3.2] in regard to the latter and (e) below. The fitness function
f is thereby allowed to be population-dependent. Convergence is understood as
asymptotic convergence of the probability distributions wy = G¢-Gi—1 -+ Giw,,
t € N, describing the state of the algorithm after a finite number ¢ of steps to-
wards a limit-probability-distribution lim w; = lim vy = v that is non-zero only
over populations containing globally optimal creatures (candidate solutions).

This approach follows and actually implements a course of action proposed
in [15, p. 270] which was also pursued in [60,61]. However, the main results in
[60,61] are contradicted by the examples in [50, Sec. 8.3].

One can argue that in an implementation of a real-world GA, one would
always save the best element found so far in the GA-run, and, consequently, the
GA need not be directed as a process itself towards globally optimal creatures.
The authors think that this is, however, not an appropriate point of view for
the following reasons: (1) Classical algorithms are directed towards finding a
solution of a problem instance. (2) The simulated annealing algorithm which has
been used in many real-world applications is directed towards finding optimal
solutions in the same sense as convergence is understood in [50-52,54-57] and



here. (3) Evolutionary algorithms such as the (1+1) EA are directed towards the
optimum by an a-priory built-in memory mechanism. (4) Finding the maximum
in regard to the occurring fitness-values in the population consumes computation
time. (5) In view of the advances in DNA-computing, cf. [40], it is imaginable that
genetic algorithms shall be implemented in the future using such techniques. In
such a scenario, implementing a procedure for finding maxima in the population
(i.e., chemical solution) seems impractical. A much more practical goal would be
to let the algorithm “freeze” in optimal state where “freezing” could be achieved
by removing certain reactants from the chemical solution in which the DNA-
computing operations take place.

The necessity of annealing. (cf. [53, p. 116]) Let G be the stochastic
matrix associated with one cycle of a simple genetic algorithm. Study of the
simple genetic algorithm with regular operators shows that a finite number of
iterates yields an associated stochastic matrix G¢, ¢t € N, which is fully positive.
Thus, the associated invariant probability distribution v = Gv = G'v (cf. [52,
Prop. 1.3.2] or [47, p. 7: Prop. 2.3]) is fully positive, and the algorithm does not
asymptotically converge to optima, cf. [50, Thms. 8.1-2].

The preceding observation makes it necessary to vary at least some of the ge-
netic operators over time in order to obtain an algorithm that converges asymp-
totically towards global maxima. The main result of [14] shows that annealing
the mutation rate to 0 alone and consequently having the mutation operator
approaching the identity operator 1 does not yields success. Thms. 8.2-3 of
[50] show that increasing the selection pressure alone fails to achieve the goal
of asymptotic global optimization. Varying the crossover operator alone is also
of limited interest since crossover does not completely control mixing nor does
it control the selection pressure towards optimal solutions in any way. Conse-
quently, one has to satisfy the following conditions:

(M) one has to anneal the mutation rate to 0 in order to avoid asymptotically
a positive probability for suboptimal solutions;

(S) one has to increasing the selection pressure in an unbounded fashion (see de-
tails below) in order to stir the algorithm towards a limit probability distribution
which is positive only over populations containing optimal creatures; and

(C) possibly, one has to anneal the crossover rate to 0 such that the crossover
operator approaches asymptotically the identity operator 1 as well.

In what follows, we shall discuss how one can satisfy the above conditions in
order to obtain a scaled genetic algorithm that asymptoticly converges to global
optima. We note that [50, Thm. 8.6] shows that under quite reasonable but not
absolutely general circumstances condition (C) need not be satisfied.

Ergodicity. If the mutation-rate p = u(t), the crossover-rate x = x(t),
and the exponentiation of the originally-given fitness function f change over
the course of the algorithm, then one has to describe every cycle t € N of the
scaled GA by a separate stochastic matrix G;. The family (G;)ien constitutes



an inhomogeneous Markov chain. There are two major issues to be settled in
regard to (Gt)ien: weak ergodicity and strong ergodicity.

Essentially, weak ergodicity means that starting the scaled GA from two
distinct populations py and p;, the probabilistic trajectories w§°) and w,gl) with

wgu) =Gt -Gi_1---Gip,, v=0,1, teN,

which describe the state of the algorithm after ¢ steps will become arbitrarily
close. Weak ergodicity is obtained by using the combined contraction properties
of the fully positive mutation matrices M, i.e., every stochastic matrix M;
describing mutation in step ¢ of the scaled GA satisfies ||[Mi(v — w)||1 < €& -
|lv —wl||; for arbitrary probability distributions v, w over the set of populations,
€ > 0. The combined product Htrzl €, then converges to 0, if the mutation
rate satisfies p(t) = t~'/* where L is the length of the combined genome in the
population, ¢f. [51, Thm. 3.2.1].

Essentially, strong ergodicity means that every probabilistic trajectory w§°)
as above has the same limit probability distribution v.,. Strong ergodicity follows
from weak ergodicity somewhat automatically by applying [27, p. 160: Thm.
V.4.3] or [52, Thm. 3.3.2]. What one has to verify is that Y ;2 ||ver1 —ve[1 < 00
where v; = Gyv; are the steady-state probability distributions of the G;. The vy
are uniquely determined for small p(¢) using [51, Lemma 1.4.2]. This allows the
vt to be computed via Cramer’s rule from a fixed set of entries of the G, ¢f. [51,
p. 213: proof of Thm. 3.3.2]. The summability condition shown above is then
verified by establishing that the coordinates of the v; show monotone behavior
as t — o0o. Observe that the summability condition shown above implies that
Voo = lim v; exists.

The mutation-flow inequality. The mutation flow inequality shows how
the mutation operation controls the balance between uniform and non-uniform
populations in a genetic algorithm. If the mutation flow inequality is combined
in a proper way with the contraction property of the selection operator towards
uniform populations, then this ensures that the combined probability over non-
uniform populations in the steady-state distribution v; of G+ becomes small for
small mutation rate u(t), ¢f. [52, Sec. 3.1].

A population p is called uniform, if it contains only copies of one single
creature or candidate solution. Let Py be the projection (i.e., diagonal matrix
with entries in {0,1}) onto the subspace generated by uniform populations in
the free vector space over all populations. In order to establish the mutation flow
inequality, one determines

B(t) = min{||PyM;p||1 :p a uniform population} € (0,1).

Here, ||PyM;p||: is the combined probability over uniform populations in the
probability distribution M;p (i.e., the p-column of M;). One has 3(t) — 1 as
t — 00, and

(1 = R Myw|y <1 B(t) + BT = Pu)w|lx



for any probability distribution w over populations [52, Prop. 3.1.1].
One can now show for the steady-state distributions v; as above that

(X = Py < 61 = B(8))/(1 - 68(¢))

where 6 € (0,1) is a fixed constant depending upon the selection operator [51,
Thm. 3.1.1]. This shows that the limit probability distribution ve, = limw;
which determines the asymptotic behavior of the scaled GA is non-zero only
over uniform populations.

The steady-state flow inequality. The final major ingredient in the
proof of asymptotic convergence to global optima for scaled GA is the steady-
state flow inequality. In order to establish this inequality, denote by (2 the set
of populations that contain only globally optimal creatures. Elements in (2 need
not be uniform. Let Py be the projection onto the subspace generated by (2. By
discussing the separate actions of the genetic operators mutation, crossover and
selection on the steady-state probability distributions v; = Gyv;, one obtains for
w(t) = ||Pove||1 the following inequality:

1= w(t) < Ka(u)? + p(t) eI w(t) + (1= Kop')(1 = w(t)

where K, K> > 0 are fixed constants, and p»(f) > 1 is a fixed constant that
depends upon the fitness-function and measures strength of second-to-best crea-
tures in populations containing globally optimal creatures. p2(f) is easy to deter-
mine, if the fitness-function is given by rank. See, e.g., [51, Thm. 3.3.2] and [52,
Thm. 3.4.1]. In addition, £ denotes the length of creatures (candidate solutions)
as strings in their encoding, s denotes the population size, and L = £ - s. The
particular simple form of the steady-state flow inequality shown above supposes
that x(t) = u(t), and the fitness function f is exponentiated in accordance with
the following schedule

fo = fEl8HD e N, (o)

where B > 0 is a constant the user is free to chose. It is easy to see that
lim; oo w(t) = ||Povoo|lr =1, if £ < /2 and £ < LBlog(p2(f)) + 1.

Applications to runtime analysis. The steady-state flow inequality and
similarly the mutation-flow inequality provide explicit bounds for probability
over populations containing globally optimal elements (resp. uniform popula-
tions) that can be applied also in a homogeneous Markov chain setting. It seems
an interesting challenge to study analogues of the above inequalities for EAs
other than GAs with proportional fitness selection, and possible applications to
runtime estimates.
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