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Abstract. This paper discusses several evolutionary computation al-
gorithms for improving the nonlinearity of Boolean functions, discrete
combinatorial objects with applications in coding theory and cryptol-
ogy. Firstly, we review the existing literature focusing on relevant prop-
erties and the heuristic design of single output Boolean functions. We
compare several local search algorithms with different problem represen-
tations and evolutionary operators. The effects of these choices on the
dynamics of EC algorithms is studied in light of some recently developed
theory. Finally a new hybrid EC search algorithm is proposed to fully
take advantage of these ideas.

1 Introduction and Background

Evolutionary Computation (EC) algorithms have been successful in a wide va-
riety of applications in science and engineering, where they are used to solve
complex optimisation problems. There are several reasons for this. For example
heuristic techniques are naturally attractive when the design space is too large
for exhaustive search and too complex for theoretical analysis. For practical ap-
plication, the use of EC relies on the existance of problem representations that
are suitable for mutation, crossover or other breeding mechanisms. To be con-
sidered effective, the EC system must converge to good solutions in a reasonable
time. Finally, to be considered usefull the EC system must be cost effective; it
must provide better quality solutions for less overall cost than other available
methods. In this paper we argue that the design of highly nonlinear Boolean
functions and S-boxes (a central optimisation problem in cryptography) is a
problem that is well suited to EC algorithms, by all of the abovestated criteria.

Some of the most complex problems under consideration by modern re-
searchers are those offered by Cryptology, the science of secrecy [2,24]. Both
the design and cryptanalysis of ciphers are problems that would benefit from
increased application of evolutionary heuristics [4]. There is an increasing body
of research focused on the design of cryptographic components (highly nonlin-
ear boolean functions and S-boxes), often under the constraints of other desired
properties. It is well-known that these criteria conflict (not all can be optimised
simultaneously), and that finding the best tradeoffs remains an open problem.



This goal is related to coding theory since the nonlinearity of n-variable Boolean
functions corresponds to the maximum covering radius of first order Reed-Muller
(RM) codes. In general (and for cases of direct interest in cryptology such as
n = 8, where the Boolean functions take n input bits) these are still open prob-
lems! In fact only a few extremal results are known. Similarly, bounds on the
approximation by low-order functions corresponds to the maximum covering ra-
dius of higher order RM-codes, and these more dificult problems remain open
for even smaller parameter values. These (and other related) open problems are
suitable targets for evolutionary computation.

Previous approaches to the EC design of Boolean functions and Substitution-
boxes (Boolean function with more than one output bit) include hill climbing [15,
13, 18], genetic algorithm [16, 17, 14] and simulated annealing [5, 7, 6] all applied
to the binary truth table representation. More recently, other representations
have been adapted for the purposes of EC. For example, the Walsh-Hadamard
Transform (WHT, a binary Discrete Fourier Transform) has been suggested
as the genotype for a new simulated annealing algorithm [8] with a modified
inverse WHT used as the final mapping to the truth table phenotype. Another
algorithm similar to Simulated Annealing was very effectively employed in [10]
to find maximally nonlinear bent functions, by iteratively changing the standard
algebraic normal form (ANF) representation of Boolean functions. The use of
equivalence classes (under affine transformation) to classify boolean functions
and reduce the size of the search space of algebraic constructions seems to have
been first openly suggested in [20] and their techniques were shown able to
generate some optimal functions with n = 6, but the idea has since been more
fully developed in [19] where all equivalence classes of functions with 6 inputs
have been identified and these results have been made available online [30].
However, despite these advances, the exhaustive search problem still remains
infeasibly large for n > 7, and many open problems remain with regard to the
existance of near-optimal Boolean functions for larger n.

In order to support and encourage research in this area, we compare the
qualitative dynamics of these EC algorithms. In particular, we argue that using
the knowledge made available from the graph of equivalence classes must improve
the effectiveness of many of these algorithms. Finally a new hybrid EC algorithm
is proposed, which takes advantage of the benefits offered by several of these
techniques.

2 Fundamental Theory

In this section we will present the basic theory and notation relating to Boolean
functions, linear approximation, the Walsh Hadamard Transfrom, the algebraic
normal form, and autocorrelation. Some important theorems are recalled from
the cryptographic literature.

A Boolean Function f : Z} — Z, is a mapping from n binary inputs to a
single binary output. The list of all the 2" possible outputs is the truth table.



Often we consider the polarity truth table f defined by
f@) = (1)@ =1-2+ f(2),

If a function can be expressed as an XOR sum of input variables, then it is
said to be linear. Let the n-bit binary vector w select the variables from input
z = (x1,22, -+, Tyn), then the linear function defined by w is denoted by L, (z) =
wW1T1 D wala B -+ B wnpTy- The set of affine functions is the set of all linear
functions and their complements: A, .(z) = L,(z) ® ¢, where ¢ € {0,1}. A
function is balanced when all its output symbols are equally likely. It is clear
that >, f(x) = 0 occurs if and only if the function f is balanced. It should be
noted that XOR in the binary domain is equivalent to multiplication over the
set {1,—1}: h = f @ g implies that h = f g. Two functions are uncorrelated
when their XOR sum is balanced.

The correlation between a function f and the set of linear functions is pro-
portional to the values F(w) in the Walsh-Hadamard Transform (WHT) de-
fined by F(w) = >ow f(x)L,(x). WHT values are always divisible by 2. A zero
in the WHT at position w (F(w) = 0) indicates that f is uncorrelated with
L,(z). In particular every balanced function (which is uncorrelated with the
all-zero function) has F'(0) = 0. In general the correlation between f and L, is

given by ¢(f, L,) = % The nonlinearity of a Boolean function is given by

NL; = £(2" — WHmaz(f)), where W Hmaz(f) = maz{|F(w)|} over all val-
ues of w, and it shows the minimum number of truth table positions that must
be altered to change f into an affine function. Cryptology seeks higher values
of nonlinearity (lower values of W Hmaz) as this reduces the value of the best
affine approximation. Ciphers using highly nonlinear functions are more difficult
to attack.

Another important property in stream cipher design is resilience [25,26],
which can be seen as a kind of higher order balance. A t-resilient Boolean func-
tion is both balanced and has F(w) = 0 for all w with weight ¢ or less [28].
This is equivalent to saying that any subfunction of f, induced by setting ¢ or
fewer inputs constant to any value, is exactly balanced. The structure of resilient
functions is always recursive: given any t-resilient function, any subfunction of
it selected by fixing m bits is a (¢ — m)-resilient function.

It is possible to represent any Boolean function as an Algebraic Normal Form
(ANF) which is the XOR sum of a subset of all the 2" possible ANDed product
terms of the n input variables. The algebraic degree, d, is maximum number of
variables in any term of the ANF. Linear functions are limited to ANFs with
only single variables, so they have d = 1. For security reasons, cryptology seeks
to use functions with high algebraic degree (and in fact the vast majority of
functions have d > n — 1), however it is known that high degree conflicts with
other desirable properties like resilience and nonlinearity and autocorrelation.

The autocorrelation function (AC) is a vector r;(s) of 2™ integers similar to
the WHT. The autocorrelation values are proportional to the correlation that
f(z) has with the ”shifted version” f(z @ s). The autocorrelation function is
defined by 7¢(s) =", f(z)- f(z ® s). The values in the AC should be small for



security [1], and they are always divisible by 4. We let ACmaz = maz{|7;(s)|}
where the maximum is taken over the range 1 < s < 2" — 1 and note that
77(0) = 2™ for all Boolean functions since any function is identical to itself.

We now review some important results in Boolean functions, both well-known
and recent.

— Parseval’s Theorem [12]. 3 (F(w))? = 2>". The sum of the squares
of the WHT values is always the same constant for all n-input Boolean
functions. This means that every function has some correlation to affine
functions, and the best that can be done (to generate high nonlinearity) is
to minimise the maximum value in the WHT.

— Bent Functions [22] For even n, the set of maximaly nonlinear functions
are called bent. They have all WHT values with magnitude 2%, thus max-
imising nonlinearity at N Lpen; = 271 — 251 The algebriac degree of bent
functions is limited in range: 2 < dpepnt < 5. It is known that ACmaz = 0
only for bent functions (#pent(s) = 0fors > 0), so they also optimise this
property. Note that bent functions are never balanced or resilient.

— Siegenthaler Tradeoff [25] There is a direct conflict between algebric
degree, d, and the order of resiliency, ¢, given by d +t < n — 1. This result
also holds for balanced functions (which can be considered as having ¢ = 0)
and indeed any function (for which we may let t = —1).

— Fast Autocorrelation Calculation [21] The autocorrelation vector can
be calculated as the inverse WHT of the vector formed by squaring all the
values in F'. A direct approach uses 2" - 2" = 22" gperations compared with
n - 2" operation in a WHT or its inverse! Autocorrelation for moderate n is
not feasible unless this method is used.

— Balance and Nonlinearity [9] There is a construction for balanced, highly
nonlinear functions (BHNL) that is the currently best known and it is con-
jectured to attain the maximum possible nonlinearity for balanced functions.
Given that NLB(n) is the maximum possible nonlinearity for balanced func-
tions with n inputs, one may construct a balanced function on 2n inputs with
nonlinearity NLB(2n) = 22"~! — 2% 4 NLB(n).

— Transform Value Divisibility [27,29, 3] The simplest expression of the
several recent results relating the divisibility properties of values in the WHT
to other criteria is as follows. Let f be a t-resilient boolean function, then
2t+2 divides evenly into F'(w), for all w. It follows that the nonlinearity of
a t-resilient function must be divisible by 2t*'. As above, these results also
hold for the extended definition of t = 0 and ¢ = —1 functions.

The main task/opportunity of evolutionary research is to find examples of
functions with better combinations of all these properties. The next subsection
discusses the currently known bounds and open problems.

2.1 Review of known bounds

The primary cryptographic property is nonlinearity and we frequently want func-
tions that are also balanced or have some order of resiliency. There has been an



increasing body of research devoted to exploring these possibilities and Table 1
shows the currently best known values of Nonlinearity for various n and order
of resilience. The entries in bold are known to be the best possible. Italicised
entries indicate the highest value found so far and that this is not yet proven
to be the best possible: the lowest theoretical upper bound is higher still. These
are therefore the entries which indicate opportunities for EC research. We limit
the table to at most third order resilience, since more than that is generally not
required in practice (considering the tradeoff with degree).

n t — Resiliency
All |Bal.
BF| 0 | 1
6 | 4 n/a
12| 12|12 0

28 (26|24 (24|16
56 | 56 | 56 | 56 | 48
120|116|116|112|112
91240(240(240|240| 22/
10(496|492|488|480|480
Table 1. Best Known Nonlinearity among All, Balanced and ¢-Resilient Functions.
bold: is the best possible, italics: conjectured bound, n/a: not applicable.
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Beyond n = 10, not much research has been done, but this is increasing.
Generally heuristics do perform less well on the larger functions, but this is
only to be expected as each object has twice as many bits in its definition. The
Dobbertin Construction of BHNL [9] remains the best known, and the conjecture
regarding maximal nonlinearity for balanced functions is both unproven and
there are no counter examples.

The most significant open problem is the issue for maximum nonlinearity
of balanced functions with n = 8. There are many ways to generate balanced
NL = 116 with d = 7 and also 1-resilient with d = 6, but no balanced NL = 118
has been seen, and we recall that NL = 120 is reserved for bent functions
alone. Resolving this issue will have consequences for the bounds of balanced
and resilient functions at higher n due to generalised recursive constructions
such as [9] and many others. See [23] for a more comprehensive literature review
and details of some modern algebraic constructions for resilient functions.

Recent advances have been made for larger functions in general and in
the quest for low autocorrelation for balanced functions in particular. It is al-
ready known that ACBmaxz(3) = ACBmax(4) = ACBmaz(5) = 8 and that
ACBmaz(6) = 16, where ACBmax(n) is the maximum AC value for n input
balanced functions. However, as there is not yet well developed theory regarding
bounds on autocorrelation of balanced functions for larger functins, we will just
state the best combinations of properties so far reported. Let (n,d, t, x,y) denote
a balanced function with n inputs, algebraic degree d, t-resiliency, nonlinearity x



and y is the ACmax. Then these interesting functions have been found recently,
and beating these results is an open problem:

- (9,2,6,240,152) and (10,3,5,480,192) appear in [8]
- (9,7,7,7,32), (11,7,10,984,80) and (12,7,11,1988,120) are reported in [6]

2.2 Equivalence Classes

Two Boolean functions f,g are said to be affine equivalent if and only if they
can be related by:
g(z) = f(A-28b) & Ly(z) & ¢

where A is a non-singular binary n * n matrix, b,w € Z3 and ¢ € Z,. Altering
a boolean function truth table in one place creates a new function that is not
affine equivalent to the first.

It is known that the values in the WHT and AC vectors are moved around
(permuted) by the action of an affine transfrom on the truth table, and that some
values may be complemented (depending on the specifics of the transform), and
that no other changes take place. Hence, the WHT and AC (value,frequency)
distributions are unchanged by affine transformation and this has been used to
develop approaches to the problem of distinguishing between equivalence classes
for general boolean functions [19] and bent functions [10].

The ability to distinguish the equivalence classes enables the construction of
the graph of equivalence classes, and this classification approach greatly reduces
the search space. For example, there exist 232 functions with n = 5 inputs,
yet they can be classified into only 48 equivalence classes, and these can all be
distinguished using the WHT and AC distributions. With n = 6 inputs, there
are over 150,000 equivalence classes, which is much easier to sort through than
the 254 individual functions of that size. Note that for n = 6 the distributions
are not effective in distinguishing the classes: there are just over 2000 different
WHT distributions.

Evolutionary search heuristics which use this equivalence class information
can enjoy greatly improved effectiveness, however the number of classes increases
very rapidly with increasing n. Local search algorithms alone cannot hope to
properly traverse the huge class graphs for n > 7, so we seek alternative EC
algorithms. In the next section we review the currently known techniques for
EC design of BF and propose a hybrid EC algorithm that is automatically able
to search diverse regions of the class graph.

3 EC heuristics for BF design

In this section we compare the representations, breeding and mutation operators
used by the various EC heuristics that are in use today for the design of highly
nonlinear Boolean functions.

The previous approaches to the EC design of Boolean functions are mostly
local searches like Hill Climbing and Simulated Annealing. The Genetic Algo-
rithm seems to be less efficient than these methods in the reported tests. These



methods all use the truth table as the genotype: breeding and mutation all occur
here and the fitness function is usually derived from observable properties such
as the nonlinearity, or more elaborate functions whose relation to theory is less
obvious [5, 6].

The recent suggestion [8] that simulated annealing be applied to the posi-
tions of values in F' has resulted in the discovery of some previoiusly unknown
functions (see Section 2.1). However, this success comes despite some theoretical
limtations in the technique. There are two main drawbacks to this approach: how
to best choose the starting distribution is not clear (and it has a big effect) and
the evolution of the process is limited to the set of equivalence classes with the
same WHT distribution. There is no obvious set of good choices for the starting
WHT distribution (the results of [8] were obtained by humans choosing distribu-
tions that are already known, and this is itself limiting especially for automation
which should be the strength of any EC algorithm). Once the process of [8], it
is restricted to functions with the same distribution of WHT values. We have
seen that this greatly restricts the search, as there are far fewer distributions
than equivalence classes for n = 6 and this effect is exacerbated at higher n.
The approach (on its own) is difficult to automate well and has no prospects for
fuylly exploring the class graph.

Following from these ideas, we now propose a novel 2-level simulated an-
nealing algorithm to better explore the class graph restricted to only the highly
nonlinear functions. This process will likely find the locally best functions while
also exploring diverse regions of the search space. The proposal has two layers.
The outer loop of this algorithm performs SA on the set of different WHT distri-
butions: over time the probability to accept moves to less nonlinear distributions
is reduced. The inner loop performs SA within the current WHT distribution,
similar to the method from [8] a modified/relaxed inverse WHT operation is
used to always arrive at a truely Boolean function.

New 2-layer Algorithm for Evolving Nonlinear Boolean Functions

1. Decide the Target Properties.

2. Select an Initial function, find WHT distribution.

3. Anneal within the WHT distribution to obtain a set of new functions

4. Analyse the annealing results..do we have what we want?

5. while(not done yet) do
(a) make a small change to truth table to obtain a new WHT distribution
(b) Anneal within the WHT distribution to obtain a set of new functions
(c) Analyse the annealing results..do we have what we want?

6. end(while)

7. output overall best results.

4 Conclusion

In this paper we discuss the idea that nonlinear Boolean functions have high
evolvability and hence are an excellent target for EC algorithms. The theoretical



background of cryptographic functions and the advantages of using equivalence
class classification have been discussed. An improved meta-heuristic using a com-
bination of simulated annealing and equivalence classes has been proposed.
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