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Abstract. Memetic algorithms combine evolutionary, population-based
search and local, individual search, and the local search operator is some-
times stochastic hill-climbing. Stochastic hill-climbers alone can search
effectively, so here we build a memetic algorithm by applying infrequent
episodes of recombination to a population of them. Independent stochas-
tic hill-climbers with and without these episodes are compared on eleven
instances of the minimum linear arrangement problem, which seeks an
ordering of a graph’s vertices so as to minimize a sum over the graph’s
edges. Episodes of recombination consistently and significantly improve
the performance of the stochastic hill-climbers, and the resulting algo-
rithm can compete with recent, good heuristics for the problem, at least
on the small instances addressed here.

1 Introduction

Among the heuristics applied to computationally difficult optimization problems
are hill-climbers and memetic algorithms. A hill-climber subjects its one solution
to a sequence of changes, incorporating those that improve the solution. When
the changes are generated randomly, the hill-climber is said to be stochastic.
Hill-climbers often perform well on optimization problems, and a population of
n independent hill-climbers, as Section 2 describes, ascends up to n hills and will
in general find better solutions than can one hill-climber alone.

Memetic algorithms [1] are hybrid search heuristics that combine evolution-
ary, population-based search and local, individual search. The most common
form of memetic algorithm augments an evolutionary algorithm by applying lo-
cal search to each offspring (e.g., [2], [3], [4], [5], and many more). A memetic
algorithm’s local search operator may be heuristic, as in the references just cited,
but it may also be simple stochastic hill-climbing. Memetic algorithms of this
design appear early (e.g., [6]) and continue to be both popular and effective (e.g.,
[7]).

Just as local search often improves the performance of an evolutionary al-
gorithm, evolutionary operations such as recombination may improve the per-
formance of a population of independent hill-climbers. Section 3 describes a



memetic algorithm that, instead of applying local search to each offspring an
EA generates, augments a population of stochastic hill-climbers with infrequent
episodes of recombination.

Section 4 describes the minimum linear arrangement problem, in which, given
an undirected graph G = (V, E), we seek an arrangement f : V — {1,2,...,|V|}
that minimizes the sum }°, ¢ |f(u) — f(v)|. Implementations of independent
stochastic hill-climbers and of hill-climbers augmented with episodes of recom-
bination, as Section 5 describes, are compared on eleven small instances of the
minimum linear arrangement problem, in tests that Section 6 presents. On the
test instances and with the coding and operators the algorithms use, the in-
clusion of episodes of recombination consistently and significantly improves the
performance of the hill-climbers.

2 A Population of Stochastic Hill-Climbers

Hill-climbing is a heuristic optimization strategy that begins with an initial so-
lution to the target problem, then incrementally and monotonically improves it.
One iteration of a hill-climber generates one or several neighbors of the current
solution, then moves to the best of them if it improves on the current solution.

Hill-climbers are characterized by how they define neighboring solutions, how
many neighbors they examine at each iteration, and how they choose those
neighbors. An exhaustive hill-climber examines all the neighbors of the current
solution at each iteration and halts when there is no better neighbor. Because
the improvement at each step is always as large as possible, this technique is
also called steepest ascent.

A stochastic hill-climber repeatedly generates one random neighbor of the
current solution; whenever this neighbor is better, it replaces the current so-
lution. The algorithm halts after it has examined a predetermined number of
solutions or when the current solution has not improved for some number of
iterations. This strategy conserves information by exploiting every improvement
it finds, and it is in general far more efficient than exhaustive hill-climbing. On
many problems, it competes effectively with more complicated heuristics like
evolutionary algorithms (e.g., [8], [9], [10], [11]). Figure 1 summarizes stochastic
hill-climbing.

So ¢ initial solution;
while ( not done )
s1 < a random neighbor of s,;
if ( s1 is better than s, )
So 4 S1;
report So;

Fig. 1. Stochastic hill-climbing. The algorithm repeatedly generates a random neigh-
boring solution and moves to it if it is better



Regardless of the number of neighbors chosen in each iteration or how they
are selected, a hill-climber can only climb the hill on which its initial solution
falls, and this hill is in general not likely to contain a global optimum. This
suggests maintaining a population of independent hill-climbers, each of which
climbs its own hill. Among them, some will find themselves on higher hills, which
they will climb to better solutions.

3 With Recombination

On a sufficiently complex problem, even a large collection of independent hill-
climbers is likely to miss the hill (or hills) that contain globally optimal solu-
tion(s). Perhaps their performance can be improved by allowing them occasion-
ally to exchange information.

In evolutionary algorithms, genotypes exchange genetic information via re-
combination operators, which generate offspring containing material from two
parent genotypes. Here, we build a memetic algorithm by augmenting the process
of independent hill-climbing with occasional episodes of recombination. In these
episodes, each solution recombines with some or all of the other solutions, and the
best of its offspring, if better, replaces the original solution. Then hill-climbing
resumes. Figure 2 sketches the resulting algorithm. It is similar to Marchiori and
Steenbeek’s genetic local search algorithm [12] [13]; however, they apply genetic
operators to a population of local optima generated by local search.

P + initial solutions;
while ( not done )
for every solution P[i] in P
perform k iterations of hill-climbing;
for every solution P[i] in P
perform recombination with other solutions;
PJi] « the best solution among P[i] and its offspring;
report the best solution in P;

Fig. 2. Independent hill-climbing with episodes of recombination. P is the popula-
tion of solutions and k is the number of hill-climbing iterations between episodes of
recombination

To maintain the spirit of independent hill-climbing, the episodes of recombi-
nation should occur only infrequently.

4 The Minimum Linear Arrangement Problem

Let G = (V, E) be an undirected graph. A linear arrangement f(-) of G’s ver-
tices is a bijection f : V' — {1,2,...,|V|}, which imposes an ordering on the



vertices, and a minimum linear arrangement (MinLA) is a linear arrangement
that minimizes the following sum over G’s edges:

LAG,f() = > |f(w) - f@)l.
(u,v)EE

Figure 3 shows a small graph, an arrangement of its vertices, and the computa-
tion of this sum for that arrangement.
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Fig. 3. A graph with |V| = 6 vertices and |E| = 9 edges, an arrangement f(-) of the
graph’s vertices, and the evaluation of the arrangement’s sum

The MinLA problem is sometimes called the optimum linear ordering prob-
lem or the minimum linear ordering problem. It finds applications in a range of
fields, including VLSI layout [14], computational biology [15], single-machine job
scheduling [16] [17], graph drawing [18], and others. The problem is NP-hard for
general graphs [19] and for bipartite graphs [20], though polynomial-time exact
algorithms have been described for other special cases such as trees [21] [22],
rooted trees [14], hypercubes [23], meshes [24], and outerplanar graphs [25]. Pe-
tit [26] [27] described an effective simulated annealing algorithm for the MinLA
problem. Bar-Yehuda et al. [28] described a polynomial-time heuristic for it based
on balanced decomposition trees.

5 Two Algorithms

A population of independent stochastic hill-climbers (HC) and hill-climbers with
episodes of recombination (HC+X) pursue good solutions to instances of the
minimum linear arrangement problem. They number the vertices of the target
graph from 1 to |V, and they represent candidate arrangements as permuta-
tions of the vertices’ arrangement values: s[i] = m represents f(i) = m. Both
algorithms begin with a collection of random permutations.

The objective function, which the algorithms seek to minimize, is the sum
LA(G, f(-)) of the absolute differences of arrangement values over the target
graph’s edges, as defined in Section 4. To find the sum associated with an ar-
rangement, evaluation scans the edges (7, j) of the target graph and accumulates
the values |f(7) — f(5)| = [s[i] — s[j]|- Note that evaluation’s time is O(|E|).

Let two permutations be neighbors if one can be turned into the other by
exchanging two of its values. Neighbors are generated, then, by swapping two
values in the current solution.



For HC+X, an appropriate recombination operator is Goldberg and Lingle’s
partially mapped crossover (PMX) [29]. This operation copies one of its two
parent permutations into the offspring permutation, chooses a random segment
within the permutations, and makes that segment in the offspring identical to
those positions in the second parent by swapping values within the offspring.
Note that this operator does not heuristically seek arrangements of lower evalu-
ation. At long intervals, each hill-climbing solution P[k] recombines with every
other solution a small number m of times, and the best of these many offspring,
if better that P[k], replaces it when the recombination episode ends and inde-
pendent hill-climbing resumes.

6 Tests

The independent hill-climbers (HC) and the hill-climbers with episodes of re-
combination (HC+X) were compared on eleven instances of the minimum linear
arrangement problem. In the two smallest instances, the graphs consisted of 62
vertices with 144 edges and 65 vertices with 130 edges, respectively; the graph of
the largest instance contained 250 vertices and 800 edges. Four of the instances
are found in Petit’s MinLA Repository!'. They derive from problems in graph
drawing, and their names begin with “gd”. The remaining seven instances were
generated for this study. Their edges were chosen randomly and they too are
listed online?; their names begin with the letter ‘j’. The first three columns of
Table 1 below list all the instances and their numbers of vertices and edges. All
of them are sparse, containing only a small proportion of all possible edges.

On an instance of the MinLA problem with n vertices, the number of in-
dependent hill-climbers (the population size) in both algorithms was 2n. In
HC+X, episodes of recombination occurred after every 20n iterations for each
hill-climber, and there were n/10 such episodes, so the number of evaluations
associated with hill-climbing in HC+X was 2n x 20n x n/10 = 4n3. In the re-
combination episodes, the number m of repeated recombinations was two, so
each episode performed 2 x 2n x (2n — 1) & 8n? recombinations and evaluations
and all the episodes together required 8n? x (n/10) evaluations. Thus the total
number of evaluations in a trial of HC+X was 4n® + 0.8n3 = 4.8n3.

HC was allotted the same number of evaluations as HC+X, so each of its 2n
simple hill-climbers performed 4.8n/(2n) = 2.4n? iterations.

For example, on the MinLA instance j100 with |V| = 100 vertices, the num-
ber of hill-climbers was 200. HC+X carried out 2000 iterations between recom-
bination episodes, of which there were ten. In HC, each hill-climber climbed for
24000 iterations.

HC and HC+X were each run 50 independent times on each MinLLA problem
instance. Table 1 lists the results of these trials. In addition to the names and
parameters of the instances, the table lists, for each algorithm applied to each
instance, the value of the best arrangement found in the set of 50 trials and the

! tracer.lsi.upc.es/minla/repository.php
% www.stcloudstate.edu/~ julstrom/minla.html



mean and standard deviation of the trials’ results. We are interested in whether,
on average, episodes of recombination improve the hill-climbers’ performance, so
the table also lists, for each instance, a t statistic derived from the two standard
deviations and the difference of the two means as well as the number of degrees
of freedom associated with that statistic.

Table 1. Results of trials of the independent stochastic hill-climbers, without and with
episodes of recombination, on the eleven instances of the minimum linear arrangement
problem.

Instance Hill-Climbers With Recombination t-test
Name |V| |E| | Best X s Best X s t DF
gd95c 62 144 512 545.6  18.2 506 509.6 3.8 | 13.71 53
gd9c 65 130 525 534.8 6.2 521 530.9 4.7 3.58 91
j75 75 157 1520 1558.7 17.5 | 1500 1540.0 17.4 5.36 98
j100 100 250 3464 3526.3 29.8 | 3452 3502.2 25.6 4.37 96
gd96b 111 193 1422  1451.2 19.5 | 1416 14434 18.7 2.04 98
j125 125 230 2883 2959.9 33.4 | 2815 28904 36.2 9.98 97
j150 150 332 5820 5969.9 74.0 | 5701 5863.0 72.8 7.26 98
j175 175 363 6882 70744 84.5 | 6744 6899.6 754 || 1091 97
gd96d 180 228 2639 2938.5 89.1 | 2477 26204 70.4 || 19.81 93
j200 200 558 || 15137 15473.0 107.7 | 15075 15294.0 107.8 8.31 98
j250 250 800 || 29510 29875.0 163.0 | 28969 29429.0 211.3 || 11.81 92

One observation stands out: The episodes of recombination do improve the
performance of the independent hill-climbers. The best result returned by HC+X
is always better than HC’s best. More importantly, the mean of HC+X’s results
is always smaller than the mean of HC’s results, and this difference, while not
in general large, is always significant. Even the smallest ¢ statistic—2.04 on
gd96b—is significant at the 5% level in a one-sided ¢-test. We conclude that
occasional episodes of recombination can improve the performance of a collection
of otherwise independent hill-climbers.

Our goal was only to compare hill-climbers with and without episodes of
recombination, but HC+X can compete with other heuristics for the minimum
linear arrangement problem. Table 2 compares HC+X’s results with those of
Petit’s simulated annealing [26] [27] and the algorithm of Bar-Yehuda et al. [28]
on the four instances derived from graph drawing. The augmented hill-climbers’
best results are as good as the other heuristics’ on two of the instances and close
on a third, though they do not compete effectively on the largest instance.

7 Conclusion

Memetic algorithms combine evolutionary and local search; the most common
form of memetic algorithm supplements an evolutionary algorithm by applying



Table 2. Comparison of HC+X with the heuristics of Petit [26] [27] and Bar-Yehuda
et al. [28] on the four graph-drawing-derived MinL A instances

Instance Bar-Yehuda HC+X
Name |V| |E]| || Petit et al. Best X
gd95¢c 62 144 509 506 506 509.6
gd9%6c 65 130 519 519 521  530.9
gd96b 111 193 1416 1422 1416 1443.4
gd96d 180 228 || 2393 2409 2477 2620.4

local search to each new solution, and the local search is sometimes carried out by
stochastic hill-climbing. Here, conversely, a collection of independent stochastic
hill-climbers has been augmented with occasional episodes of recombination to
produce a different kind of memetic algorithm. Independent hill-climbers with
and without episodes of recombination have been compared on the minimum
linear arrangement problem.

A collection of stochastic hill-climbers represents candidate arrangements as
permutations; neighbors differ by the exchange of two elements. In tests on eleven
small instances of the MinLA problem, augmenting the hill-climbers with occa-
sional episodes of partially mapped crossover yielded a consistently significant
improvement in their performence. The augmented algorithm approaches the
performance of other heuristics for the MinLA problem, at least on the small
instances used here.

The independent hill-climbers might be improved in a variety of ways: hav-
ing more of them, generating the initial solutions heuristically, using a heuristic
neighbor operator. A new neighbor could be kept only when it is better than
some number or all of the current solutions. Solutions could compete for sur-
vival, as in the “go with the winners” strategy of Aldous and Vazirani [30],
where periodically the poorer solutions are moved to the positions of the better
solutions.

The recombination-augmented hill-climbers can be similarly modified. Their
performance might be improved by a different recombination operator, rear-
ranging the application of recombination, or generating more solutions when
recombining each pair. In a similar algorithm applied to graph coloring, Galin-
ier and Hao [2] found that the number of hill-climbing steps between episodes
of recombination strongly influenced the algorithm’s performance; perhaps here
those intervals should be shorter or longer.

Larger questions include how we might reduce the number of evaluations in
HC+X so as to address larger problem instances, how effective recombination-
augmented hill-climbers might be on other problems—that is, other triples of
coding, objective function, and operators—and how we might identify problems
on which such an algorithm will perform well.
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