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Abstract. Clustering is crucial to many applications in pattern recog-
nition, data mining, and machine learning. Evolutionary techniques have
been used with success in clustering. However, most existing evolutionary
clustering techniques still suffer from several drawbacks. After surveying
existing evolutionary clustering techniques, we show that (i) robustness
to noise can be achieved with a robust fitness measure, while (ii) scal-
ability of the search space with respect to the number of clusters and
to the size of the data can be achieved by encoding a single cluster pro-
totype in the chromosome, (iii) the resulting multimodal optimization
problem should be solved using a niching strategy, which will also allow
the determination of the number of clusters automatically, and finally
that (iv) a hybrid Piccard niche size estimation strategy is the key to
implement a sound mating restricion, and is the key to successful fitness
sharing.

1 Introduction and Motivations

Clustering [1] is an effective technique for data mining and exploratory data
analysis that aims at classifying the unlabeled points in a data set into different
groups or clusters, such that members of the same cluster are as similar as possi-
ble, while members of different clusters are as dissimilar as possible. The Simple
Genetic Algorithm (SGA) has been successfully used to search the solution space
in clustering problems with a fized number of clusters [2], and for robust clus-
tering [3]. However, in practice, the number of clusters is rarely known, and the
data sets can be contaminated with noise. In this paper, we survey some existing
evolutionary clustering techniques, showing that they suffer from one or more of
the following shortcomings: (i) they are not robust in the presence of noise, (ii)
the size of the search space explodes exponentially with the number of clusters,
or with the number of data points, and (iii) they assume a known number of
clusters. We then discuss the requirements to achieve the above objectives, and
illustrate our arguments with empirical simulations.

This paper is organized as follows. In Section 2, we survey some evolution-
ary clustering techniques. In Section 3, we discuss some basic requirements for
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evolutionary clustering. In Section 4, we describe a complete approach that sat-
isfies the choices of optimal chromosome encoding and robust fitness measure
discussed in the previous sections. In Section 5, we present our experimental
results. In Section 6 we study the effect of the selected niching strategy and
propose a Hybrid Niche Size Estimation, based on Piccard updates of the niche
sizes, that dramatically improves Fitness Sharing for clustering. In Section 7, we
study the role of the fitness measure, and compare the density-based fitness to
the Sum of Squared Errors fitness. Finally, we present our conclusions in Section
8.

2 An Overview of Existing Evolutionary Clustering
Techniques

One of the earliest attempts at using a GA for clustering was made by Raghavan
and Birchand [4]. In their approach, the GA was used to optimize the square
error of clustering (similar to K Means’s criterion). Each chromosome repre-
sented a possible partition of the entire data set consisting of N objects. Hence
the chromosome consisted of N substrings, with each substring encoding one
of ¢ cluster labels. This encoding led to an explosion of the search space size
as the data set got larger, and assumed a known number of clusters. Also, the
n-point crossover frequently resulted in meaningless or lethal partitions; and the
square error based fitness function meant that the approach was sensitive to
noise. Bhuyan et al. [5] proposed an improved encoding that used a separator
symbol (%) to separate the clusters, consisting of a string of data object labels,
and Goldberg’s permutation crossover [6] to yield valid offspring. However, the
solution suffered from en explosion in permutation redundancy because of the
arbitrary order of data labels. Babu and Murty [7] used the GA only to find
good initial solutions, and then used K-Means for the final partition. This was
the first hybrid clustering approach that obviously outperformed the use of ei-
ther K-means or GA alone. However, it is not resistant to noise, and assumed a
known number of clusters. Fogel and Simpson [8] use Evolutionary Programming
to solve the fuzzy min-max cluster problem by directly encoding the centroids
(instead of the entire partition) in the chromosome string. This was undoubtedly
one of the first efficient encodings for the clustering problem, and it influenced
most subsequent evolutionary clustering methods. Hall et al. [9,2] proposed a
genetically guided approach (GGA) to optimizing the reformulated Hard and
Fuzzy C-Means (HCM and FCM) objective functions. The chromosome strings
encode the ¢ center vectors (of p individual features per vector) of the candi-
date solutions, and a standard GA evolves the population. However, GGA is not
robust in the face of noise, and it can not determine the number of clusters au-
tomatically. Also, because all ¢ cluster centers are encoded in each chromosome
string, the size of the search space ezplodes exponentially with the number of clus-
ters. In [3], a robust estimator was proposed, that is based on the LMedS that
can simultaneously partition a given data set into ¢ clusters, and estimate their
parameters. In addition to its limitation of estimating the parameters of a single
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structure, the LMedS suffers from a major drawback in that it has a nonlinear,
and nondifferentiable objective function that is not amenable to mathematical
or numerical optimization. For this reason, we proposed the integration of a ge-
netic algorithm to the partitioning and estimation process, in order to search the
solution space more efficiently. This resulted in a new approach to robust genetic
clustering based on LMedS. However, the technique still assumed that the num-
ber of clusters was known in advance, and that the noise contamination rate was
50%. Also, because all ¢ cluster centers are encoded in each chromosome string,
the size of the search space explodes exponentionally with the number of clusters
as in the case of GGA. Lee and Antonsson present an algorithm for unsupervised
clustering using Evolutionary Strategies (ES) in [10]. In their approach, all clus-
ter centroids are coded into a variable length chromosome, and only crossover is
used to vary the number of clusters. However this coding scheme suffers from an
exponential increase in the complexity of search with the number of clusters, and
is also not robust to noise and outliers because its fitness measure is based on a
classical sum of errors. Rousseeuw’s original robust K-Medoid criterion [11] was
optimized in [12] using a hybrid GA approach. Though more robust to noise,
this approach assumes a known number of clusters. Also, because the cluster
representatives are medians, it is most efficient when the rate of noise is exactly
50%, and cannot adapt to various noise contamination rates. It also does not
have any provision for clusters of different sizes since it has no notion of scale,
and the size of the search space explodes exponentionally with the number of
clusters. The Unsupervised Niche Clustering (UNC) [13] is a recent approach
to unsupervised robust clustering based on Genetic optimization. UNC uses a
chromosome representation encoding a single cluster prototype , and optimizes
a density based fitness function that reaches a maximum at every good cluster
center. Hence, UNC uses Deterministic Crowding (DC) [14] for niching. To fur-
ther alleviate the problem of crossover interaction between distinct niches, UNC
relies on an improved restricted mating scheme which relies on an accurate and
assumption-free estimate of the niche radii which are not restricted to be equal
for all peaks. Because UNC uses robust weights in its cluster fitness definition,
it is less sensitive to the presence of noise. Furthermore, the combination of the
single-cluster chromosome encoding with niching offers a simple and efficient
approach to automatically determine the optimal number of clusters.

Table 1 compares some evolutionary clustering techniques, showing that UNC
has all the desired features lacking in other approaches. Note that a partitional
approach relies on a sum of error type objective function that requires encoding
of ¢ cluster centers or a long c-ary partition string of length N. Partitional ap-
proaches also require the additional costly overhead of re-partitioning the data
points into ¢ clusters with each fitness computation. On the other hand, a density
based approach directly optimizes each cluster density independently of other
clusters, hence eliminating the need to partition data. Density is also a more
sensible measure of cluster validity, and is naturally resistant to noise. Complex-
ity is listed per generation. Also hybrid approaches tend to converge in fewer
generations compared to purely evolutionary search methods.
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Table 1. Comparison of UNC with Other Evolutionary Clustering Algorithms for data
of size N, population of size Np, and C clusters

Approach — UNC [13]| GGA [2] Lee [10] |G-C-LMedS [3]| k-d-Median [12]
Search Method GA GA ES GA GA
Robustness to yes no no yes yes

noise
Automatic Scale yes no no no no
Estimation
Complexity O(NNp)|O(CNNp)|O(CNNp)| O(CNNp) |O(NpCN log(N))
Hybrid yes no no no yes
Does not require yes no yes no no
No. of Clusters
Handles ellipsoidal yes no no no no
clusters

3 Some Basic Requirements for Evolutionary Clustering

3.1 The Need for a Robust Fitness Measure

Most existing evolutionary clustering techniques, such as [4], [7], [8], [9,2], and
[10], rely on a fitness that is based on a Sum of Squared Errors like most proto-
type based clustering methods, such as the K—Means and its fuzzy counterpart,
the Fuzzy C—Means (FCM) [15] algorithms. Let X = {x;|j = 1,...,N} be a
set of feature vectors in an n—dimensional feature space with coordinate axis
labels [z1, @2, ..., ], where x; = [zj1, Zj2, ..., Tjn]. Let B = (B1,...,0)
represent a C-tuple of prototypes each of which characterizes one of the C clus-
ters. Each f; consists of a set of parameters. The K —Means has the following
objective J = 3>, Yox,cx; 4y, where d; = d®(x;, B;) represents the distance
from a feature point x; to the prototype §;, and A}, the it? cluster, is given by
X; = {x; € X| &} = minf_, d?,}. It can be seen that K-Means minimizes the
sum of squared errors for each cluster (¢), and that its solution is essentially based
on a Least Squares (LS) approach, yielding as a solution the mean vector or cen-
troid of each cluster. Unfortunately, the ordinary Least Squares (LS) method to
estimate parameters is not robust because its objective function, Ejvzl d?, in-
creases indefinitely with the distance d;. Hence, extreme outliers with arbitrarily
large residuals can have an infinitely large influence on the resulting estimate.
For this reason, we conjecture that in order to decrease the influence of outliers,
the cluster fitness measure must be based on a robust estimator, such as an
M-estimator [16].

3.2 The Need for a Scalable Chromosome Encoding

Most existing evolutionary clustering techniques are based on one of the following
two chromosome encodings. In the first encoding, each chromosome represents
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a possible partition of the entire data set consisting of N objects. Hence the
chromosome consists of N substrings, with each substring encoding one of C
cluster labels. Obviously this encoding leads to an explosion of the search space
size as the data set gets larger. Moreover, the use of a limited alphabet size
to encode the cluster label assumes a known number of clusters. In the second
approach, the chromosome string encodes the C center prototypes (such as p
individual features per vector) of the candidate solutions. In addition to assuming
a known number of clusters, the size of the search space explodes exponentially
with the number of clusters. The only way to achieve an encoding that is scalable
(i.e., a search space size that grows linearly) with respect to both the number
of clusters and the size of the data, is to make it independent of these two
charateristics, and the only way to realize this objective is to encode a single
cluster prototype in each chromosome regardless of the size of the data or of the
number of clusters.

3.3 On the Need for Niching and Automatic Niche Size Estimation

The optimal single cluster chromosome encoding strategy will cause the land-
scape of any fitness function to reach several suboptimal peaks (multiple modes)
located at the centroids of these clusters, which makes their identification a
multi-modal optimization problem. Therefore, niching methods are required to
identify the multiple optima. As in nature, niches in our context correspond to
different subspaces of the environment (clusters) that can support different types
of life (data samples). Sharing methods [17,18] attempt to maintain a diverse
population by reducing the fitness of individuals that have highly similar mem-
bers within the population. This in turn discourages redundant solutions from
overtaking the entire population, while rewarding individuals that uniquely ex-
ploit specific areas of the domain. Crowding methods [19], try to form and main-
tain niches by replacing population members preferrably with the most similar
individuals. Mahfoud [14] proposed an improved crowding mechanism, called
“Deterministic Crowding” (DC), which is free of any parameter. However, with-
out a proper mating restriction, both sharing and DC risk losing niches due to
crossover interaction after many generations [14].

4 Unsupervised Robust Clustering using Genetic Niching

The clustering problem was reformulated in [13], by modifying the objective from
searching the solution space for C' clusters to searching this space for any one

cluster. The fitness value, f;, for the it candidate center location, c;, is defined

N .
as the density of a hypothetical cluster at that location, defined as f; = %@ﬂ,

d? . . . .
where w;; = exp —53% is a robust weight that measures how typical data point

x; is in the it" cluster, o2 is a robust measure of scale (dispersion) for the
i*" cluster, dZ; is the distance from data point x; to cluster center ¢;, and N

is the number of data points. The landscape of the density fitness function is
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expected to reach several suboptimal peaks (multiple modes) located at the
centroids of these clusters, and their identification is a multi-modal optimization
problem. Therefore, niching methods, which can identify multiple optima within
multimodal domains, are a necessity. For the clustering problem, “Deterministic
Crowding” (DC) [14] was found to work best. It can easily be seen that as
a variance measure, o7 is also related to the radius of the niche, since in this
problem, each cluster in the data set will generate a niche in the fitness landscape.
Note that the robust weights w;; will be small for outliers, hence offering a means
of distinguishing between good data and noise.

4.1 Crossover and Mutation

When mating between two individuals is allowed, one-point crossover is per-
formed independently on each of the string sections representing the individual
feature dimensions of the candidate cluster centers. This leads to n independent
crossovers per offspring, each with a crossover probability P,. After mutation,
each bit in an offspring individual’s chromosome string can be inverted with a
small mutation probability P,,.

4.2 Hybrid Piccard Niche Size Estimation and Mating Restriction

The scale parameter that maximizes the fitness value for the i** cluster can be
found by setting %‘:g = 0, and assuming that the weights, w;;, do not change
drastically from one generation to the next, to obtain the piccard update equa-
. N wijd? . . .
tions: o7 = % Therefore, o2 will be updated once per generation, using
j=1Wij
the previous (i.e. inherited from the closest parent) values of o7 to compute the
2
weights w;;, and the initial values 07 = Za=; where 02,,, is an estimate of the
maximal radius of the data set, and K, = 10 This hybrid genetic optimization
converges much faster than a purely genetic search. The above niche size esti-
mates delineate the contours of the niches. Hence, they can be used to implement
a simple mating restriction scheme based on preventing crossover between indi-
viduals from different niches. Individuals P; and P; are considered from different

niches if their phenotypical Euclidean distance exceeds Kmaz (o7, 7).

4.3 Extracting Cluster Centers From the Final Population

After convergence of the population, we extract the best individual from each
good niche to obtain the set of final cluster centers, C, as shown below:

Final Cluster Center Extraction
Sort individuals P; in descending order of their fitness values to obtain P(;), ¢ = 1, -+, Np, such that f(1y > f(g) >

2 f(Np)i
Initialize set of cluster centers C = 0;
FOR i =1 TO Np DO {
IF f(i) > fmin_extract AND P; and P, are from different niches VP(k) € C THEN
C < CU Pryy;
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4.4 Final Local Piccard Refinement of the Extracted Prototypes

It is recommended that a local search be performed in the neighborhood of each
solution provided by Genetic Optimization (GO) to increase accuracy, without
the excessive cost of a large population or of too many generations. To make the
local refinement of the parameters of each cluster independent of other clusters,
the data set is partitioned into ¢ clusters before performing the local search, such
that each feature vector is assigned to the closest prototype. Subsequently, the

ith cluster is given by X; = {x(k) eX|d < d?k Vi # i}, for 1 <i < e In [20],

we presented a new iterative robust estimator, called the Maximal Density Es-
timator (MDE) which can estimate the center and scale parameters accurately
and efficiently (with linear complexity). MDE uses fast alternating Piccard up-

WijXj

X EX; .
)= , and the scale parameters using

dates of the centers using c; = —
x(j) €% Wid
4
Zx(j)exi wijd;;
ag; = —d

2
. . Wij
Sy e Wil

4.5 Combining Fitness Sharing with Hybrid Piccard Niche Size
Estimation

Sharing methods [18] rely strongly on correct estimates of the niche counts, i. e.,
the number of individuals in each niche. The niche counts themselves depend on
a parameter, o, which ideally, should approximate the widths of the peaks. We
propose to use the Piccard scale update strategy in Section 4.2 to automatically
estimate individualized oy, for each individual.

5 Simulation Results

5.1 Detailed Phases of Cluster Evolution

Fig. 1 shows the evolution of the population (denoted by square symbols) us-
ing UNC for a noisy data set with 5 clusters. The initial population is chosen
randomly from the set of feature vectors. This explains the higher concentration
of solutions in the densest areas, which converge toward the correct centers in
subsequent generations. The leveled contours correspond to boundaries includ-
ing increasing quantiles (o = 0.25,0.5,0.75,0.99) as derived from the normalized
distance values %f?v = X3 - Hence, they indicate the accuracy and robustness of

UNC'’s cluster scale estimates 01.2.

5.2 Sensitivity to GA Parameters, Noise, and Effect of Final
Refinement

Our simulation results using various population sizes showed similar results as
long as the population size exceeded 50 individuals. Convergence of the popu-
lation occured relatively fast, after about 30 generations. Hence, we show the
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(b) (d)
Fig. 1. Evolution of the population using UNC: (a) Initial population, (b) population

after 30 generations, (c) extracted centers and scales, (d) final centers and scales after
refinement
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Fig. 2. Data Sets with 3 and 5 clusters: (a,b) Clean data sets (c,d) Noisy data sets
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Fig. 3. Results of UNC for 3 clusters with noise (1°* row) and 5 clusters with noise (2"¢
row), averaged over 100 runs: (a,d) Average number of cluster for different crossover
and mutation probabilities; (b,e) Center Error; (c,f) Center Error before and after
refinement



On Fitness, Niching Strategies, and Hybrid Niche Size Estimation 9

effect of the only GA parameters that seemed to affect the results: crossover
probability (P.), and mutation probability (P,,). We performed 100 runs and
show the averages of the following clustering quality measures: (i) Number of
final extracted clusters, and (ii) Average normalized centroid error. The GA
parameters throughout all the experiments in this paper were: population size
= 80, number of generations = 30. We start by studying the effect of crossover
and mutation as well as refinement on the clean and noisy data sets depicted in
Fig. 2. Figs. 3(a) and (d) show that for a wide range of crossover and mutation
rates, UNC can discover the correct number of clusters in the vast majority of
the experiments. Figs. 3(b) and (e) show that the accuracy of the center esti-
mates, even without any final local refinement, is within 1.5% of the range of
the images, and that this accuracy improves with an increased crossover rate,
while being stable for a wide range of mutation rates. The former is due to the
fact that crossover encourages local exploration and recombination of good so-
lutions to improve converged solutions. While the latter is due to Deterministic
Crowding’s replacement strategy which prevents lethal children resulting from
mutation, from replacing their parents. The top two curves in each of Figs. 3(c)
and (f) show that UNC is quite robust to noise, yielding comparable unrefined
center estimate accuracies for both clean and noisy versions of the data sets,
while the bottom two curves confirm that final local refinement dramatically
improves this accuracy, as expected.

6 Effect of the Selected Niching Strategy and Hybrid
Niche Size Estimation: The Case of Fitness Sharing

To illustrate the difficulty in using fitness sharing [17,18] when chosen as the
niching mechanism, we replaced the DC replacement with fitness sharing com-
bined with mating restriction based on line breeding. Fig. 4 compares the evolu-
tion of the population of cluster centroids (bold circles) using DC (column (a))
versus using fitness sharing, with two oy, values in the (columns (b) and (c),
respectively). Note that being of unequal sizes and densities, the clusters will
generate peaks of different widths and heights, ruling out any existing method
to pre-estimate the value of o4,. In fact, for such a problem, it is clear that
there is no single value of oy, that would be optimal, but rather a different
value is needed for each niche. Nevertheless, we assume that this parameter is
known, and show experiments with a Proximity factor PF' = 1 and o4, = 0.01
corresponding to the niche size for the smallest cluster, and o4, = 0.4 roughly
corresponding to the niche size for the largest cluster. DC, with the automatic
Piccard scale updating and restricted mating, shows a very good within peak
convergence for each cluster in Fig. 4 (a). Fig. 4 (b) shows that fitness sharing
with og;, = 0.01 evolves a good solution only for the smallest clusters, but cannot
keep it beyond 30 generations. Each of the remaining big clusters is broken into
several small peaks. Fig. 4 (c) shows that fitness sharing with o4, = 0.4 shows
an improvement of within peak convergence, but only two out of the five peaks
survive beyond 30 generations. Finally, we show the results of combining fitness
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sharing with our Piccard scale updating strategy for estimating distinct o4y val-
ues for each individual in the population, in Fig. 4 (d) using line breeding; and in
Fig. 4 (e) using UNC’s mating restriction. It is clear that the results are better
than those of standard sharing (with a fixed o) in terms of within peak con-
vergence and survival of a diverse set of solutions. Furthermore, we notice that
sharing combined with UNC’s mating restriction (Fig. 4 (e)) is able to maintain
all the niches, while sharing with line breeding (Fig. 4 (d)) is unable to maintain
all niches beyond 30 generations.

(a) (b) © @

Fig. 4. Evolution of the population after 30 generations (1°¢ row) and after 800 gener-
ations (2"¢ row), using (a) Deterministic Crowding versus (b) Sharing with o, = 0.01,
(c) Sharing with osp, = 0.4, (d) Sharing with UNC’s Hybrid Piccard scale updating
strategy for estimating distinct osp, values for each individual and line breeding, and
(e) Sharing with UNC’s Hybrid Piccard scale updating strategy for estimating distinct
osn, values for each individual and UNC’s mating restriction

7 Importance of a Robust Fitness Measure

To illustrate the inadequacies of a non-density based fitness such as one that is
based on a sum of squared errors, we replaced our density based fitness measure
in UNC by the Sum of Squared Errors in the candidate cluster. This is the
kind of fitness that guides the evolutionary search in most existing evolutionary
clustering approaches [7-9,2,10], as well as the classical K-Means clustering
algorithm. The results in Fig. 5 (2nd row) show that this non-robust fitness,
regardless of the niching strategy, is simply inadequate for noisy data sets, since
its global optimum is the center of gravity of the data set. On the other hand, the
robust density based fitness (Fig. 5 (1st row)) succeeds in detecting the correct
cluster locations even in the midst of noise.
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5 :
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Fig. 5. Evolution of the population using unrefined UNC and density based fitness (1st
row) versus Sum of Squared Errors fitness (2nd row): (a) Initial population for clean
data set (b) population after 200 generations for clean data set; (c) Initial population
for noisy data set (d) population after 200 generations for noisy data set

8 Conclusion

Most existing clustering techniques necessitate the derivation of the optimal pro-
totypes by differentiation to guarantee convergence to a local optimum, which
can be impossible for most subjective and non-metric dissimilarity measures. For
this reason, Evolutionary clustering methods are preferrable in many real world
problems. Unfortunately most evolutionary clustering techniques are sensitive to
noise, and assume a known numer of clusters. We explained how (i) robustness
to noise can be achieved with a robust fitness measure, while (ii) scalability of
the search space with respect to the number of clusters and to the size of the
data can be achieved by encoding a single cluster prototype in the chromosome,
how (iii) the resulting multimodal optimization problem should be solved using
a niching strategy, which offers the additional advantage of allowing the deter-
mination of the number of clusters automatically, and finally that (iv) a hybrid
Piccard niche size estimation strategy is the key to implement a sound mating
restricion, and is the key to successful fitness sharing. Our survey of most ex-
isting evolutionary clustering techniques concluded that the only Evolutionary
clustering technique that satisfies these requirements is the Unsupervised Niche
Clustering (UNC) algorithm. Finally we presented an automatic hybrid Piccard
niche size updating strategy which allows fitness sharing to be used within UNC
instead of Deterministic Crowding with almost equal success.
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