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Abstract. When common Genetic Programming is used to solve a prob-
lem, the so-called closure property must be fulfilled. That is any solution
received by changing parse trees at any point has to be considered as a
candidate and must receive a fitness value. Sometimes maintaining this
property needs extra resources, since it may cause that several candidates
have to be corrected or replaced.
Sometimes it is possible to describe the correct solutions using a gram-
mar. This way the syntax of the accepted candidates can be given, and
during the evolution solely valid individuals, that is possible solution
candidates can be generated.
In this paper three methods for syntactically correct genetic program-
ming are examined. The first one is Strongly Typed Genetic Program-
ming, which extends Koza’s original GP by assigning signatures to func-
tion symbols. The second is Grammatical Evolution, which defines the
correct individuals by a context-free grammar. It is not exactly genetic
programming using a strict definition, but also works with complex indi-
viduals, though using a simple bitvector representation. The last one is
Derivation-Tree Based Genetic Programming that is similar to Gram-
matical Evolution but uses derivation trees to represent individuals.
Some extensions for the latter one are also given in this paper.

1 Introduction

Genetic Programming [1] is a widely-used tool for optimizing complex objects.
A great advantage is that it needs no exact knowledge of the problem, but
it works using a blackbox-principle. That is the algorithm itself only needs a
function – the so-called fitness function – that assigns a goodness value to each
possible solution. However, constructing candidate solutions without guidance
often means that incorrect or invalid individuals are produced. In some cases
they can be penalized by giving them very bad fitness values. In other cases
they cannot even be evaluated using the fitness function. Sometimes they can be
corrected, but in any cases they cause a loss of resources, since new individuals
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Fig. 1. Genetic Programming with the closure property

have to be generated to replace them, or because a correction procedure must be
applied. The outline of this method can be seen in Figure 1. The set of possible
solutions S is described by a set of representations R, usually via a many-to-
one mapping. The valid solutions are elements of set Sv, and described by the
elements of set Rv. When an operator creates an individual r′ from the valid
individual r, the new individual must be validated, and corrected or dropped if
necessary. Other possibility is to extend the set of the valid representations to
be closed under the evolutionary operators, but in case the set of valid solutions
is extended as well.

There are several possibilities to overcome this problem. In this paper three
of these possibilities are examined that use syntactical approaches to restrict the
generated individuals. The first method is Strongly Typed Genetic Programming

(STGP), that is defined by Montana [2], and mainly used to evolve expressions.
Using STGP the operators have exact types, and they accept a given number of
parameters of pre-defined types. That is each operator has an exact pre-defined
signature. The operators are designed to respect these signatures.

The other two methods use context-free grammars (cfgs) to describe a lan-

guage, that is the set of syntactically correct individuals. One of them is Gram-

matical Evolution (GE) developed by O’Neill, Ryan and others. [3] It uses bitvec-
tors to describe left-hand derivations leading to the correct individuals. The last
method is Derivation-Tree Based Genetic Programming (DTGP), which is sim-
ilar to GE, but the derivations are represented by derivation trees instead of
bitvectors. [4]

These methods are outlined in Figure 2. In contrast to common Genetic
Programming the valid solutions are represented by a language and not by a
simple set. These solutions are described syntactically, and the operators, if
necessary, are constructed to respect the syntax. Thus no invalid individuals are
created, and no extension of the solution space is necessary. In this paper the
details of these methods will be discussed.

We proceed as follows. In Section 2 the previously mentioned three possibili-
ties for syntactical restrictions are described. In Section 3 the differences of these
method are discussed. An improved version of DTGP is presented in Section 4.
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Fig. 2. Genetic Programming with syntactical restriction

In Section 5 some experimental results are shown. Finally conclusions are drawn
and future plans are outlined in Section 6.

2 Syntactical Restrictions

When Koza introduced Genetic Programming, the operators were designed to
work on parse trees representing Lisp S-expressions. To allow seamless evolu-
tionary operators, it was assumed that each node of the parse tree, that is each
operator in the expression accepts the same number of parameters and returns
the same type. This is, unfortunately, not always acceptable, thus several meth-
ods were designed to overcome this problem.

2.1 Strongly Typed Genetic Programming

Strongly Typed Genetic programming was directly designed to solve this prob-
lem. To do this it pre-defines the number and types of the parameters for each
operator or function, and the return type of the operator as well.

To represent the solutions STGP uses parse trees, which can be considered as
expressions written in a tree structure. Thus, the individuals can be considered as
the solutions themselves. This representation, however, allows only expressions
to be evolved.

The difference between the original GP and STGP is that the so-called sig-
nature for each function is given in advance. That is each function has a given
return type, a given arity, and the parameters also have a given type. Formally
it can be defined as follows. Let T be a set of types and F be a set of function
symbols. A signature σ is a triplet, that is an element of T ×F×T ∗. A signature
σ = (t, f, t1t2 . . . tn) can be written as t f(t1, t2, . . . , tn).

An example for a set of signatures can be seen in Figure 3. These signatures
describe a set of functions built from the usual arithmetical operators (+,−, ∗, /),
logical operators (¬, |, &) and the so called ternary operator if , which takes a
logical expression and two real expressions and depending on the value of the
logical expression returns the value of the first or the second expression.



real + (real,real)
real − (real,real)
real ∗ (real,real)
real / (real,real)

bool ¬ (bool)
bool | (bool,bool)
bool & (bool,bool)
real if (bool,real,real)

real 0 ()
real 1 ()
bool false ()
bool true ()

a) real functions b) boolean functions c) constants

Fig. 3. Example set of signatures

2.2 Grammatical Evolution

The first aim behind Grammatical Evolution was to allow evolutionary opti-
mization within arbitrary context-free languages. Thus the blackbox principle is
generalized further. The evolutionary algorithm does not need an exact represen-
tation of the solution, only a context-free grammar is needed that describes the
set of solutions. Of course, by describing the valid individuals with syntactical
rules means a syntactical restriction is given on the solutions.

A context-free grammar is simply a 4-tuple G = (N, Σ, P, S) with finite sets
of nonterminal and terminal symbols N and Σ respectively, a finite set of pro-
ductions P and a start symbol S. The rules describe how a certain nonterminal
symbol can be replaced, that is which words can replace it. Words can be pro-
duced by taking the start symbol and applying rules until no more nonterminals
exist in the word. If more rules can be applied then any of them can be taken,
that is the process is non-deterministic. An example grammar for generating the
set of the valid arithmetical expressions, can be Gex = (Nex, Σec, Pex, expr) with

Nex = {expr, fact, tag, val, bexpr, bfact, btag, bval}

Σex = {+,−, ∗, /,¬, |, &, if, 0, 1, true, false, (, )}

expr → tag + tag ; tag

tag → fact ∗ fact ; fact

fact → val ; (expr) ; if(bexpr, expr, expr)

val → 0 ; 1

bexpr → btag|btag ; btag

btag → bfact&bfact ; bfact

bfact → bval ; (bexpr) ; ¬(bexpr)

bval → false ; true ; ¬bval

An important property of GE that it works on the derivations leading to valid
solutions, instead of working on the solutions themselves. It is well known that if
a word can be derived using a context-free grammar, then it has a left-derivation,
that is a derivation where always the leftmost nonterminal is replaced. Gram-
matical Evolution represents these left-derivations with a sequence of integers,
which in turn are represented by bits. That is GE works with bitstrings and
applies operators similarly to Genetic Algorithms.



2.3 Derivation-Tree Based Genetic Programming

Derivation-Tree Based Genetic Programming (DTGP) was designed to evolve
solely syntactically correct individuals, and to solve some shortcomings of Gram-
matical Evolution. The two methods are similar in a sense that they work on
derivations. However, while GE works on bitstrings representing left-derivations,
DTGP uses derivation trees. Derivation trees are often-used to represent deriva-
tions, an example can be seen in Figure 4. Note that a derivation tree usually
represents more derivations.

bca

bS

bSa

S ⇒a acb
︸︷︷︸

bb⇒a Sb
︸︷︷︸

bS ⇒ aSb
︸︷︷︸

Fig. 4. Example for derivation tree

The advantage of DTGP over GE is that derivation trees contain the com-
plete derivation and the derived word as well. This way it is ensured that the
derivation is always finite and no derivation has to be done to receive the repre-
sented word. Disadvantage is the increased space-consumption and the complex-
ity of the operators. On the other hand derivation trees can be extended onto
attribute or context-free hyperedge grammars to describe words of a higher level
language as well.

3 Main differences of the methods

For a detailed description of the introduced three methods the interested reader
is kindly referred to the listed literature, however, the most important differences
are described in this section.

3.1 Individual representation

Concerning the representation of the solutions the STGP is exactly the same as
common GP. That is the individuals are parse trees, although using STGP the
number of branches for a node having a given label is unambiguously determined.

Grammatical Evolution uses the simplest representation that is possible,
namely it uses bitvectors. Certain number of bits are grouped together and
considered as integer numbers like bytes or words. These integers are then used



to select a rule from an ordered set of the applicable rewriting rules during the
derivation procedure. Thus, each sequence of bits describes a derivation, and
aside from the rare cases of infinite derivations, it determines exactly one valid
solution. This simple representation form enables easy and fast operators.

The most complex data structure is used by Derivation-Tree Based Genetic
Programming. As the name says, the individuals are represented by derivation
trees. By definition a string is an element of a language if it can be derived. If a
string can be derived then a derivation tree exists as well, which is even unique
in case of many practically used grammars. Unfortunately the derivation tree is
rather large, since not only the “useful” symbols, but the nonterminal symbols
are also present, in spite of that the latter symbols appear in a derivation only
temporarily. Fortunately tree operators can be carried out easily, although there
are some important drawbacks of this representation form, which will be detailed
in the next section. An example for representing the expression a + b ∗ 2 by a
parse tree used for STGP and by a derivation tree used for DTGP can be seen
in Figure 5.
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Fig. 5. Different representations of an expression

3.2 Evolutionary operators

The important difference between common GP and STGP lies in the operators.
To keep the syntactical correctness of the evolved individuals, the operators must
ensure that the nodes representing functions have the prescribed signatures.
That is subtrees can only be replaced by subtrees with the same return type.
For random tree, or random subtree generation it means that when the tree is
build at a given position only a subset of the operators may be used. In the
case of subtree exchange for example for crossover, the inserted subtree can
only be selected among subtrees having the given return type. These restrictions
unfortunately can make the operators more difficult, and also slower.

Grammatical Evolution is really simple, not only regarding the representation
form, but with respect to the operators as well. One can use the bit-operators
well-known from the field of genetic algorithms. Furthermore other operators can
also be defined. [5] However, the parts of the bitstring have different influence on



the derived word, thus changing even one bit may result in a completely different
solution. Because of these “hidden” representation, these operators cannot be
parameterized in the way as the tree operators.

Derivation-Tree Based Genetic Programming uses almost the same operators
as the original Genetic Programming. To ensure that the resulting trees are valid
derivation trees, the nodes of the inserted subtrees must have the same label in
the root as the deleted subtree.

3.3 Evaluation

In each evolutionary step each individual has to be evaluated, to get the rep-
resented solution, and then this solution must be qualified using the fitness
function. In case of parse trees, the evaluation is very easy, since the solution,
that is the expression is the tree itself.

In the case of the other two methods the individuals represent derivations.
This means that if Grammatical Evolution is used, a complete derivation has
to be done, selecting the appropriate rules of the grammar with the help of the
individual. In case of DTGP the represented solution can be found in the frontier
of the tree, thus only the leaves have to be read from left to right. Notice, that
this might be a non-trivial task as well.

4 Improving DTGP

As it was mentioned previously, the operators for DTGP can be really prob-
lematic, since not only complex structures must be modified, but the operators
must also consider several constraints. This may cause that the DTGP operators
consume a huge amount of processing resources, and because they are frequently
applied, they make the evolutionary step use significantly more time.

4.1 Attributed DTGP

The most important tree operators may be enhanced by storing several attributes
in the nodes. For example it was shown that a random node selection can be
done in a logarithmic number of steps with respect to the size of the tree. [6]
Using this method the selection weights, which are proportional to the selection
probability, but fall not necessarily between 0 and 1, must be stored at the nodes.
Furthermore the accumulated weights for each subtree must be stored as well.
Fortunately when the tree is changed, the accumulated weights can be updated
in a logarithmic number of steps. In the simplest case the selection weight is 0
for leafs and 1 for every other node, but it can involve many parameters like
depth or breadth of the subtree without significant extra costs.

The random node selection starts at the root node, and uses the accumulated
weights to randomly decide in which subtree to continue the search. With this
method the random node selection, subtree deletion and subtree insertion can
be significantly faster, since for example in case of a balanced binary tree with



1024 leaves they need not more than 10 steps, which is much smaller than 1024
(or 2047). Although it is still greater than 1. The attributes may also be used
to store parts of the result, or parts of the fitness value, thus the evaluation
may be aided by checking the root node of the tree and reading the appropriate
attribute values.

An example for an attributed tree can be seen in Figure 6. Under the labels,
which are used here for demonstration purposes only, the selection weight and
the accumulated selection weight can be seen. Under them the breadth and the
depth of the subtree is also given. Selection weights are 0 for the leafs, the depth
is 0 as well, and the breadth is 1. Thus these parameters are not shown for leafs.
When the algorithm starts at the root and steps down to the node labelled by U,
a decision is made according to the accumulated weights. From 80 cases on the
average subtree X is selected 15 times, J is selected 15 times and C is selected
50 times. U itself will not be selected, since its selection weight is 0.

V
0/8

b=29 d=4

U
0/8

b=28 d=3
J

X
0.5/1.5

b=4 d=2

J
0.5/1.5

b=7 d=2
K

C
0/5

b=16 d=2

I
1/1

b=4 d=1

H O M Q

Y
1/1

b=5 d=1
G U

Q S D P A

F
1/1

b=3 d=1

Q
1/1

b=3 d=1

U
1/1

b=3 d=1

H
1/1

b=2 d=1

B
1/1

b=5 d=1

V P H M Z H U K X V X N C E R X

Fig. 6. Attributed tree

There is, however, one operator that cannot easily be improved by using
attributes. It is the crossover operator, because it needs a special node selec-
tion, since the labels of the subtree roots must be the same. Thus the crossover
operator must be modified.

4.2 Modified crossover

One possibility would be to store information in the nodes about the distribution
of the labels. This would, however, mean an increased storage consumption, since
in each node this information should be stored for each possible label. Further-
more, this information cannot be combined with other attributes. But storing
weights for each possible combination of attributes is practically impossible.



Another possibility is to redesign the operator. The importance of crossover
is that good candidates may contribute their parts into the next generation.
Thus in the first step subtrees are selected, removed from the parents and in-
serted into a contribution pool. This means only random node selection, which,
as seen previously, can be done in logarithmic time. When nodes, that is subtrees
are selected, the label, or any attribute of the root node can be checked, and
according to this information the selected subtrees can be categorized. In the
second step these subtrees are inserted back into the parents but in a random
order. Insertion means logarithmic time again, because of the updates. Selecting
subtrees from the appropriate categories ensures the correctness of the operator.
This modified crossover has the same effect as the original crossover, but it works
globally and not locally. The outline of this operator can be seen in Figure 7.
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a) original b) contribution c) new
population pool population

Fig. 7. Global tree-crossover

As it can be seen in the figure, this operator is similar to crossover, but
subtrees are swapped among more trees (A). It may happen, that from a certain
type of subtree only one can be found in the contribution pool (B). In this case
this subtree is automatically inserted back to the tree where it comes from. In



several cases the effect of the global crossover is the same as the effect of the
usual crossover (C).

4.3 Simulating STGP with DTGP

If one examines both Strongly Typed Genetic Programming and Derivation-
Tree Based Genetic Programming, it is easy to find a similarity between how
the trees are built in both of these methods. The difference is only in the rules
that determine the structure. In case of parse trees the rules are the signatures,
in case of derivation trees, the rules are the rewriting rules of the grammar. Let
us consider an arbitrary function with the appropriate signature

t f(t1, t2, . . . , tn).

This signature creates the subtree depicted in Figure 8a) where dots represent
attachment points of a given type. These attachment points can be however
replaced by real nodes as it can be seen in Figure 8b). These nodes in turn stand

•

t
��

f
t1

����
��

�
t2

��

tn

��
>>

>>
>

• • •

t

��

f

����
��

�

�� ��
@@

@@
@

t1 t2 tn

a) in a parse tree b) in a derivation tree

Fig. 8. Signatures as subtrees

for nonterminal symbols in case of a derivation tree. Thus the given signature
can be represented by the rewriting rules

T → F , and F → T1T2 . . . Tn.

An example for a complete grammar for the previously mentioned expression
example is Gstgp = (Nstgp, Σstgp, Pstgp, REAL) with

Nstgp = {REAL, +,−, ∗, /,¬, |, &, if}

Σstgp = {0, 1, true, false}

REAL → + ; − ; ∗ ; / ; 0 ; 1 BOOL → ¬ ; | ; & ; if

+ → REAL REAL
− → REAL REAL
∗ → REAL REAL
/ → REAL REAL

¬ → BOOL
| → BOOL BOOL
& → BOOL BOOL
if → BOOL REAL REAL

To make the nodes that represent functions keep the given signature, the
evolutionary operators must not change a tree at such nodes. Thus, evolutionary
change can only happen at nodes representing types. This modification, however,



can easily be implemented by setting the selection weight to 0 in case the node
is representing a function.

It is easy to see that when the rewriting rules are given in the described
way and the selection weight is set to 0 for function nodes, the DTGP will have
practically the same behavior as the original STGP. This approach use larger
individuals, though only twice as large, thus the memory consumption is scaled
up only by a factor.

5 Experimental Results

To see the importance of the modified selection operator the comparison of the
running times using the linear and the logarithmic random node selections can
be seen in Figure 9. Three running times are plotted against the breadth of
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Fig. 9. Running times for linear and logarithmic random node selections

the tree using a logarithmic scale. The first method is the described random
path traversal, the next one is random path traversal and attribute update to-
gether. The third one is the original selection method, where each node had to
be checked, and the candidate nodes had to be put into a vector. [6]

It is obvious that even though the random node selection can be done quickly,
the time needed to carry out the original crossover operator has the same order
as the time needed for a tree vectorizing. Thus without the modified crossover
operator the new random node selection could not save much time. Fortunately
the newly-designed global crossover needs a similar amount of time as the node
selection. This was tested on 1000 trees having depths between 5 and 25. The
time needed for 10000 node selections and the time needed to create a new
individual 10000 times using global crossover were plotted against the breadth
of the trees in Figure 10.
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6 Conclusion

In this paper three methods for evolving syntactically correct objects were com-
pared, the main ideas, representations and the operators were examined. The
Derivation-Tree Based Genetic Programming was described in more detail, and
it was shown, how this method can be improved by using a newly-designed
crossover operator. Furthermore, it was presented how Strongly-Typed Genetic
Programming can be simulated by DTGP which shows that DTGP can be used
as a drop-in replacement for STGP.

The most important future work is to experimentally compare DTGP and
GE, which was previously not possible, since with the original crossover operator
the DTGP method was for larger problems practically unusable. It would be also
interesting to see whether the evolutionary runs of STGP and DTGP differ, and
to test DTGP for many real-world problems to prove its usability.
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