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Abstract. The Differential Evolution (DE) algorithm is a floating-point
encoded evolutionary algorithm for global optimization. It has been demon-
strated to be an efficient, effective, and robust optimization method espe-
cially for problems containing continuous variables. This paper concerns
applying DE to training the radial basis function (RBF) networks. It is
demonstrated by training networks to approximate three nonlinear func-
tions. The Euclidean distance from the desired outputs to the actual
network outputs is applied as the objective function to be minimized.
The process converges effectively. The results show that DE is a poten-
tial way to train Gaussian RBF networks.
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1 INTRODUCTION

Radial Basis Functions (RBFs) emerged as a variant of artificial neural networks
(ANNS) in the late 80’s. RBFs are embedded in a three layer NN, where each hid-
den unit implements a radial activation function. The output units implement a
weighted sum of hidden unit outputs. Approximation capabilities of RBFs have
been studied in [1,2]. Due to their nonlinear approximation properties, RBF net-
works are able to model complex mappings, but perceptron NNs can only model
these complex mappings by means of multiple intermediary layers [3,4]. RBFs
have been used to build the class of nonlinear models, i.e. RBF models, for mul-
tivariate approximation, partially because the RBF models have the properties
of localization, boundedness, stability, good interpolation, smoothness.

The performance of a trained RBF network depends on the number and
locations of the RBFs, their shapes, and the method used for learning the input-
output mapping. Finding the RBF weights is called network training. With an
existing set of input-output pairs, called the training set, the network parameters
are optimized in order to fit the network outputs to the given inputs. The fit
is evaluated by means of a cost function. After training, the RBF network can
be used to respond to data whose underlying statistics is similar to that of



the training set. A variety of approaches for training RBF networks have been
developed, which can be divided into three categories: (i) learning the centres [5—
7] and widths in the hidden layer [5]; (i) learning the connection weights from the
hidden layer to the output layer [5-10]; (¢i4) learning the network structure [5-11].
RBF networks have been successfully applied to a large diversity of applications
including interpolation [12,13], signature recognition [9].

ANNs are widely recognized for their ability to approximate complicated
non-linear relationships and to estimate underlying trends, even when substan-
tial noise is present in the data. But it is often difficult to design appropriate NN
models since the basic principles governing the processing of information in NNs
are not well understood. Because the complex interactions among network units
usually make conventional design techniques inapplicable, more efficient methods
are required for the development of neural processing systems [11]. Evolutionary
techniques fit this purpose. Evolutionary algorithms (EAs) have been success-
fully applied to finding the global optima of various multidimensional functions
where local optima in the space of possible solutions are common and EAs are
able to handle the optimization of parameters for which no gradient information
exits or are needed. The Differential Evolution (DE) algorithm introduced by
Storn and Price [14], a floating-point encoded EA for global optimization, is used
in the paper to find the set of parameters of RBF's to provide the best possible
function approximation.

The paper is structured as follows: the formulation of optimization problem
is explained briefly in Section 2, the optimization system of RBF networks using
Differential Evolution is described in Section 3, and experimental results are
shown in Section 4. Conclusion is given in Section 5.

2 OPTIMIZATION PROBLEM FORMULATION

2.1 Radial Basis Functions Network

RBFs have their origin in the solution of the multivariate interpolation problem
[12]. They can approximate an arbitrary function g(v): ¢ — %R by mapping
using a RBF network with a single hidden layer of p units:
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where v € R¢; x is a vector including all variable factors wo, wj, 05, and ¢;; wo is
the bias; w = (w1, ws, ..., w,)T are the weights coefficients; p denotes the number
of the basis functions; c;, j = 1,2, ..., p, are the centres; o, j = 1,2, ..., p, are the
widths, which are called scaling factors for the radii ||v — c;||; 7;(-) represents
the activation function (radial basis function) from ¢ to R. In order to simplify
the notation we use coordinate axes-aligned Gaussian RBF functions. When a
2D Gaussian RBF is centred at the centroids c;, it follows from (1) that
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where x is the vector of all variable factors, can be written as
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The network can be trained to approximate an unknown function g(v) by finding

the optimal vector x given a (possibly noisy) training set V. = {(vp,yn)|n =
{1,2,...,N},v, € R}

2.2 Objective Function

Given the number of radial basis functions and a training set, the network pa-
rameters are found such that they minimize the Euclidean distance between the
desired and actual outputs, i.e. the objective function:
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2.3 Brief Description of the Differential Evolution Algorithm

The optimization target function is of the form
f(x): R - R (4)

The optimization objective is to minimize the value of the target function
by finding the optimal values of its parameters, x, a vector composed of D
objective function parameters. Usually the parameters of the target function
are also subject to the lower and upper boundary constraints x™ and x(V):
:IZ,(CL) <z < m,(gU),k: =1,..,D.

DE is a parallel direct search method that utilizes D-dimensional parameter
vectors, X; ¢,% = 1,2, ..., Npop, as a population for the generation GG, where Np,p,
the number of population members, does not change during the optimization
process, to minimize the target function.

3 OPTIMIZATION OF RADIAL BASIS FUNCTION
NETWORKS BY DIFFERENTIAL EVOLUTION

3.1 Representation of Parameters of the Objective Function

When a single-input and single-output function is computed using a set of 1-
dimensional Gaussian RBF functions, the optimization process will minimize the
objective function in (3), by finding an optimal parameter vector:

T
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The dimensionality of the parameter vector, D, is 3p + 1. Especially when p = 1
_ (v—0.5)2
and x* = (0 1 0.5 0.1)Y, (2) becomes g(v,x) = e~ 2x017 as shown in

Fig. 1a.



3.2 Control Parameters’ Setting

Parameters of the objective function usually correspond to the network archi-
tecture. The evolutionary process starts with a population of these parameters
randomly generated based on the defined region and the boundaries of the dis-
cussed function, i.e. ¢; € [-0.25 +v™,0.25 + v7], o; € (0, (v —v™)/2], and
wj € [-2%|9|maz, +2%|9|maz), where v™ and vV are the lower and upper limits
of v, and |g|maz 1s the maximum of the absolute values of the function g(v). The
control parameters’ setting affects the performance of DE, and its values were
chosen based on discussions in [15], and are given in Table 1.

Table 1. Control parameters’ setting

Variable Value
Strategy DE/rand/1/bin
Number of individuals: Npop p-3-10
Crossover operator: C, 0.9
Mutation amplification: F' 0.9

4 EXPERIMENTAL RESULTS AND ANALYSIS

The proposed system was applied to three test functions without any distur-
bance: (i) a Hermite polynomial, given by g;(v) = 1.1(1 — v — 2’[}2)6(_§),’U €
[—4, +4], as shown in Fig. 1b; (¥) a 1D sine wave function, given by g2(v) =
sin(12v),v € [0, 1], as shown in Fig. 1c; (#ii) the third function, given by g3(v) =
sin(20v?),v € [0,1], as shown in Fig. 1d. The data set, V, contains N uniformly
spaced noiseless points in the defined region. The DE algorithm ran with the
control parameters’ setting in Table 1. The experiments were repeated 10 times.
Key experimental results are illustrated in the following:

1. Fig. 1b—d show optimization examples: the three functions, the approxima-
tion results, the composing RBF functions, and the centres of RBFs.

2. Table 2 reveals: (i) after 4 x 10* generations, the objective function value,
f(x), decreases from 10.0053 to 0.0384 for ¢; (v) and from 8.2830 to 0.0969 for
g2(v), and the approximation error is under 1.5x 1072 (g; (v)) and 4.5 x 1073
(g2(v)) while the standard deviations of approximation are 3.3666 x 10~* and
7.5326 x 10~ for g; (v) and g2(v) individually; (i) after 1 x 10° generations
f(x)decreases from 6.4621 to 3.9234 for gs(v) with the approximation error
in the range of [0.0026,0.8825] and the standard deviation 0.2016; (éii) the
proposed system worked more efficiently in the first two functions than in
the last one which has a changeable frequency and turns more sharper.
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Fig. 1. (a) A 1D Gaussian RBF centred at 0.5 with width 0.1 and weight 1; (b) A Her-
mite polynomial, its approximation and decomposition of a RBF network (5 centroids).
(c) A 1D sine wave function, its approximation and decomposition (5 centroids) (d)
The third function, its approximation and decomposition (12 centroids) (figure legend:

“¥7 _ centres; “” — Gaussian functions and bias; “” — approximations; “— -7 —
original functions)
Table 2. Experimental results
Function| N | p |Initial f(x)|Final f(x)|Generations||g;(v) — gi(v, x)| std

g1(v) [201]5| 10.0053 | 0.0384 | 4x10* | [0,1.5x 107%] [3.3666 x 10~*
g2(v) [201]5| 82830 | 0.0969 | 4x10* | [0,4.5x 107%] |7.5326 x 10™*

gs(v) |[101|12| 6.4621 3.9234 1x 10° [0.0026, 0.8825] 0.2016
Note: “std” stands for standard deviation; the approximation error and standard
deviation are based on 201 evenly distributed points in the defined region.




5 CONCLUSION

The Differential Evolution algorithm was applied to training Radial Basis Func-
tion networks for approximating three nonlinear functions. The choice of the
optimal network parameters corresponds to the minimum Euclidean distance
between the desired network outputs and actual network outputs. The obtained
results suggest that the Differential Evolution algorithm is effective in optimizing
the random parameters of Gaussian-type RBF networks.

The future research should include tests with higher data dimensionalities
and with less smooth data as well as discover possibilities towards improving
the efficiency of the Differential Evolution based training process.
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