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Abstract. The choice of function set can significantly affect the per-
formance of a GP run, possibly due to the difference in complexity of a
function when expressed in different function sets. If modules are used
in the representation, the complexity of a solution is independent of the
function set (up to a fixed constant). This result motivates a represen-
tation which can be searched independently of the function set.

We represent modules as look up tables, providing the definition of the
module. This avoids having to invent heuristics to identify modules. It
also delays the implementation details of a module until a decomposition
of the problem has been obtained. We present a hierarchical modular
search algorithm which decomposes a problem and reduces the impact
of the choice of function set.

1 Introduction

Genetic Programming (GP) is a potential method of avoiding the task of ex-
plicitly programming a computer, by specifying what we want but not how to
do it. A set of training examples are supplied, which define what we want the
program to do, and it is up to GP to search the space of computer programs in
order to find a program which meets the requirements of the training examples.

In GP the choice of function set is critical. (We will use the term primitive
set to mean the union of the function and terminal set). For a given problem it
is often easy to define a primitive set expressive enough to solve the problem,
but this choice can greatly affect the performance of a run. The authors are only
aware of one paper which addresses this issue [Wan04].

The Approach The originality of this algorithm comes from its represen-
tation, not the way it searches the space. A module representation is used, in
which the main tree is represented in terms of the primitive set, and the modules
are represented as look up tables (LUTs). An outline of the algorithm follows:

1. Firstly, evolve a solution with a module represented as LUT. The module is
then passed to the second stage.

2. Secondly, given the module represented as a LUT, evolve a solution (in the
specified primitive set) that meets this specification (i.e. the LUT is treated
as a set of test cases).

3. Finally, construct the entire solution by replacing the module in stage 1 (rep-
resented as a LUT) with the module in stage 2 (represented in the specified
primitive set).



Outline of Paper Modularity and modular techniques are reviewed. We
contrast two types of representation; look up tables and modules. The algorithm
is described. Two experiments are conducted, comparing tree based GP with
modular GP. The results are analyzed and finally discussed.

2 Modularity and Module Identification

An extension to standard GP is the use of modules. In these approaches, each
module is represented as a tree and this type of representation can therefore be
called a forest. The complexity of a function, which can be defined as the mini-
mum number of nodes in a tree or forest which can represent that function, may
be some indication of the difficulty of that problem (i.e. more complex problems
are harder to solve). If a modular representation is used, the complexity of a
function is independent of the primitive set used (up to a constant) [Woo03].
Thus, if a tree based representation is used, the choice of primitive set would
affect the difficulty. Whereas, if a forest representation is used, this dependence
would largely be removed. This argument it is used as an inspiration to find a
representation which can be searched effectively irrespective of the choice prim-
itive set.

One of the central difficulties with modular methods is how to identify mod-
ules. In GP, a score is assigned to the individual as a whole, without considering
its component parts. (There is nothing stopping us examining components in
isolation, but we will in general not know what components we are looking for
in advance). This is general problem is referred to as the Credit Assignment
problem. How can credit be given to individual components when it is unclear
how much each component contributes to the overall performance of the indi-
vidual? Heuristics are discussed in sect 3. It is also worth noting that this is
also the problem faced by standard GP; how can useful sub trees be identified?
(the only difference being that subtrees are called once where modules can be
called multiple times).

3 Related Work

All modular representations in GP use essentially the same forest representation.
A main tree is represented as a tree along with any modules which are also
represented as trees (fig 1). The modularization methods differ in the heuristics
they use to form modules and move through the search space.

Koza’s Automatically Defined Functions (ADFs) [Koz92] have a main re-
sult producing branch, and a function defining branch which defines the ADF's.
Crossover is done by selecting the corresponding ADFs in two individuals and
exchanging subtrees. The number of ADFs and their arguments are decided at
the start of the run. Architecture Altering Operations (AAO) [Ko0z95] remove
these extra parameters as they are allowed to evolve, rather than being pre-
defined by the user. Adaptive Representation [RB94] creates modules on-the-fly
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Fig. 1. A typical modular representation. A module (left) performs the XOR operation
on ARG1 and ARG2. The main tree (right) calls the module 3 times. The overall
function performed is even parity with 4 inputs.

during evolution according to population statistics and is similar to AAQO in that
the form of the representation is free to alter during the run.

In Module Acquisition (MA) [AP92], a subtree is selected from an individual
(down to a predefined depth) and is selected as a new function, which is made
available to other individuals in the population and does not undergo further
evolution. With encapsulation[Koz92], however an entire sub tree is chosen and
is made it into a new globally defined terminal. Howard [How03] maintains a
database of subtrees during an initial set of runs and the most commonly ob-
served subtrees are then used as terminals in later runs. However, if subtrees are
randomly selected from the database, there is an improvement in performance.

Let us consider what these methods have in common. These methods do not
attempt to solve the problem in stages by problem decomposition (as described
in sec. 5). They attempt to solve the problem in one go, presenting the solution
as a whole. Also, they attempt to discover useful modules by only observing the
behavior of the whole individual.

4 Look Up Tables and Modules

Look Up Tables A look up table (LUT) is an ordered list of input values and
corresponding output values (see left hand side of fig 2). If the input values to
the LUT are 0 and 1 (2nd row), 1 is returned. A set of test cases is effectively
a LUT,; it is a list of inputs with corresponding outputs. A LUT and a set of
test cases are equivalent and a LUT can be considered as the specification of a
module.

A LUT has two properties which make it useful. Firstly, as the inputs are
ordered, there is only one way to represent a given function. This is unlike other
representations (e.g. tree based representations) where there are many ways of
representing the same function. The genotype-phenotype mapping between a
LUT and the function it represents is one to one.



Secondly, one can directly manipulate the functionality of a LUT. If we simply
want to change the output for a given input we can directly alter the row in the
LUT. There is a smooth mapping between phenotype and genotype of a LUT.
With a tree based representation, slightly altering the genotype will in general
cause a large change in the phenotype. Unfortunately this property is smeared
out in this paper as the LUT is embedded in a function which manipulates the
output of the LUT.

The downside of LUTs is that we are not able to make predictions about
the output of the function on inputs not listed. A LUT may not have entries
for some inputs and is therefore undefined for certain values. A LUT which
does not list all possible inputs is incomplete and therefore represents a partial
function. For example, in the LUT in fig 2, the input 1 and 0 (3rd row) does
not have a output value listed (indicated by’?’). In contrast, modules represent
total functions (assuming the primitives they are expressed in are total ).

Modules We can consider modules from two different perspectives, building
them or using them. If we are concerned with construction, then modules can be
constructed directly from these primitives or in terms of other previously defined
modules, to build more complex modules. This is how all previous modularization
methods view modules.

In contrast, if we are using a module we do not care about its internal work-
ings, we treat it as a black box. In fact we could consider a module, in this
respect, as a LUT as we are not concerned with its implementation. This is how
our algorithm will view modules.

5 The Algorithm

The representation used in this algorithm is motivated by the fact that it is
easier to specify what we want a program to do (i.e. simply list the inputs and
outputs) rather than how to do it (i.e. produce the program - which is the aim
of GP). Therefore it is proposed that we represent a module as a LUT, rather
than implementing it immediately in terms of the primitive set, and when a
satisfactory LUT is found we can then begin to search for an implementation of
the LUT in the primitive set.

Problem Decomposition

Problem decomposition is a 3 stage process,

— Firstly, the problem is decomposed into smaller problems.

— Secondly, these simpler isolated sub problems are solved independently.

— Finally, a complete solution to the original problem is constructed by recom-
posing the sub solutions, mirroring the first stage.

This process can be done recursively, i.e. sub problems may still be too large
to solve and need to be decomposed further before becoming solvable ([Koz94]
chapter 1). Koza illustrates this idea with differentiation, where a large expres-
sion (which cannot be differentiated in one go) is broken down into smaller
expressions (which can be differentiated in one go) ([Koz94] chapter 3).
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Fig. 2. The main tree (right), makes 3 calls to the module (left) represented as a look
up table. Given two inputs (labeled argl and arg2), the corresponding entry is found
in the table and relevant output value is returned. The overall function computed is
even parity with 4 inputs, but is undefined for some inputs as the LUT has a missing
output value, indicated by a ’7’.
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Description of the Algorithm

A complete individual is represented as a main tree and a LUT (fig 2).
(in this paper one LUT is used). The search process is a three part process,
mirroring the 3 stages of problem decomposition described above.

The first stage consists of two parts, concerned with generating the tree part
then the LUT part. First, a tree is generated (by a mutation operator described
below), which is composed of primitives and calls to the LUT. Second, a LUT is
generated. The inputs for the LUT are generated by presenting the test cases to
the whole individual and recording the input values the LUT is exposed to. Then
outputs for the LUT are generated at random, a certain number of times. This
process of generating a tree, then generating LUTs is repeated until either an
individual is found which satisfies the test cases, in which case the second stage
can begin, or a termination condition is met. This completes the first stage, which
corresponds to the first stage of problem decomposition. If the LUT is complete,
we can stop here (as we have a total function), if the LUT is incomplete, we
must continue to state two, to find an implementation (which will be a total
function).

Secondly, the LUT representation of the module is used as a set of test cases
in order to find an implementation of the module using standard tree based GP.
The LUT may not be defined for all inputs and only the inputs with defined
outputs are used as test cases. In fig 2 only 3 of the rows in the LUT could be
used as test cases.

Finally, the LUT in the initial stage is replaced by the implementation of the
module found in the second stage. As the LUT (which may not be defined for
all values) is replaced by an implementation of the LUT (which is defined for all
input values), the overall individual is defined for all values.

The above description applies to the generation of a single individual. We
evolve a population of such individuals using replacement selection and a muta-
tion operator. The replacement operator selects a pair of individuals at random,
and a mutated copy of the better one replaces the worse of the pair. The muta-



tion operator is used which selects a node in the tree with decreasing probability
with depth (i.e. there is a 1/2 chance of selecting a node at depth one, and a
1/4 chance of selecting a node at depth two, and so on). The subtree below the
selected node is then replaced with a randomly generated subtree.

To speed up the runs, an incremental approach is used for testing. When a
solution is found to the current set of test cases, a new test case is added to
the testing set. Initially only one test case is used and this is increased until a
predefined upper limit is reached.

6 Experiments

Table 1. Parameter settings for experiment 1

Population size 10
Number of generations 1000
Number of runs 1000
Initial number of test cases 1
Final number of test cases 20
Problem even parity 6
PO XOR
P1 OR AND NAND NOR
Number of times random output generated for LUT 100
Number of arguments for LUT 3

The hypothesis that drives this work is that, if a modular representation is
used, the choice of primitive set will make less of a difference to the performance
of a GP run, whereas if a tree based representation is used there will be a greater
difference in performance. Hence 4 types of run were conducted; the two types
of representation (tree and modular) with two different primitive sets (PO and
P1) which we will refer to as tree PO, tree P1, modular P0 and modular P1. The
same mutation operator is used to manipulate the tree structure of both tree
and modular representations. The primitives and parameter settings are listed
in table 1.

With this set up, the modular search is potentially 100 times more expensive,
because each time a tree is generated, a maximum of 100 randomly generated
LUTs are tested with that tree. This is taken into account in the analysis by
dividing the number of evaluations by the number of successes to get an esti-
mate of the number of evaluations required to obtain a success. These ratios are
presented in table 3, and the lower the number, the more efficient it is. This is
the set up in experiment 1 ( table 1).

An alternative would be to put a maximum limit on the number of evaluations
per run. This experiment was done with the parameter setting in table 2 and



is called experiment 2. Thus we list the maximum number of evaluations rather
than the number of generations.

Table 2. Parameter settings for experiment 2

Population size 100
Maximum number of evaluations 1000000
Number of runs 100
Initial number of test cases 1
Final number of test cases 16
Problem even parity 4
PO XOR NAND
P1 OR AND NAND NOR
Number of times random output generated for LUT 4
Number of arguments for LUT 2

Note that the parameters were not optimized in either experiment. In the
first experiment PO is not logically complete but is expressive enough to solve
the problem. In the second experiment P0 is XOR and NAND. Each of these set
ups was repeated 5 times to produce a set of results for statistical analysis.

7 Results

Table 3. Number of evaluations per success for expt 1 for 4 different types of run.

Tree PO | 183418 | 188737 | 190370 | 184033 | 180592
Tree P1 NA NA NA NA NA
Modular P0| 315212 | 323165 | 306667 | 288055 | 296379
Modular P1|6651595|8242125(6432609|6692874|6408986

Each row in tables 3 and 4 show the the number of evaluations required
to reach a solution (averaged over the respective number of runs) for tree GP
with primitive sets PO and P1 and modular GP with primitive sets PO and P1
respectively. Figures are rounded down to the nearest integer. NA implies that
no solutions were obtained on any of the runs (this is commented on in sec. 8).

Statistical Analysis We use the Mann Whitney test to determine if the
results were drawn from distributions with the same central tendency.



Table 4. Number of evaluations per success for expt 2 for 4 different types of run.

Tree PO | 31054 | 17919 | 21048 | 32811 | 26114
Tree P1 NA NA NA NA NA
Modular P0| 31037 | 37799 | 43168 | 35026 | 41381
Modular P1|482593|437163|434827|430037|553851

For experiment 1, the results from the 4 types of run show clear separation
with no overlap. We can be confident at the 0.005 level (rank sum of 15) that
each of the 4 types of run have a different central tendency.

For experiment 2, the results from the 4 types of run also show clear separa-
tion. Only one of the modular PO set of runs beats tree PO. We can be confident
at the 0.010 level (rank sum of 16) that modular P0 runs and tree PO runs and
have different central tendency. We can be confident at the 0.005 level (rank sum
of 15) that the other pairs of set ups have different central tendency.

We have shown that different representations, tree PO, modular PQ, modular
P1, tree P1, perform in this order, to an overall confidence level of 0.010. As
the results from the two modular representations are sandwiched between the
results from the two tree representations, we can say that this set of experiments
supports our hypothesis; modularity reduces the inpact of function set.

8 Discussion

It is perhaps not surprising that the 4 different representations perform in the
order they do, as this is the ordering of complexity of the solutions. The tree
representation with PO outperforms the forest representation with PO. We con-
jecture that this is because the module with PO, not only has to find a decom-
position but then find a suitable module. With tree with PO, we already have
an ideal representation, and we just need GP to string together a solution with
all of the variables.

The aim of this paper is to show that if this modular method is used, there
is less dependence on the primitive set. We use a basic method to search the
space (mutation for the trees and random search for the LUT). This algorithm
could be improved by perhaps using a more sophisticated method of determining
the output of a LUT. For example, using exhaustive search rather than random
search to avoid potentially generating the same LUT. However with random
search we still get results which support out hypothesis.

In all of the solutions obtained the LUT was complete (i.e. defined for all
values) so we did not continue into stages 2 and 3 of the algorithm. As the LUT
was completely defined, no additional predictions could be made even if the LUT
was implemented in the primitive set.

It is worthwhile examining the LUTs produced in the evolution. When P1 is
used, all of the LUTSs (sizes 3 and 2 in experiments 1 and 2 respectively) consist



of even parity or odd parity solutions for the respective sizes. GP has discovered
that parity functions make a good modules; no other modules were observed. If
a human was faced with the task of solving the even parity problem with P1,
one would probably construct a module which performs a parity function and
then use this to construct a solution.

Every modular solution using P1 contained calls to the LUT. However, some
modular solutions using PO did not contain any calls to the LUT (and so no
output values were generated as the LUT was not exposed to any input values).
This reflects the fact that it is easier for PO to simply use the primitive XOR
directly than it is to reinvent the wheel by evolving a LUT to do the same job.
It also indicates that the problem does not need to be further subdivided as it
is using primitives rather than LUTs.

There are extra parameters associated with this search algorithm, e.g.the
number of LUTs (set to one in this paper). These are the same parameters
associated with ADFs. The main difference between this algorithm and ADFs
is the representation. To avoid setting these parameters, we could adopt the
approach like AAO [Ko0z95].

The motivation for this work is to find a primitive independent represen-
tation and search mechanism. One may have been tempted to propose using
different function sets, and then deciding with the benefit of hindsight which
function sets are the best. This approach was proposed recently [Wan04], and
also demonstrates the interesting phenomena of function groups. Their work dif-
fers in that it does not use a modular approach and the are looking for the best
function set. Their work could be extended, to implement the best function set
in terms of the primitive set of your choice, and this would also achieve our aim
(i-e. we can directly translate between primitive sets). However this proposal
would miss out on the use of LUTs which have a unique representation for a
function and allow us to breakdown a problem.

The frequency distribution of subtrees in Howard’s [How03] database is
exponential in nature. He conjectures that runs containing subtrees randomly
selected from the database (rather than selecting the most frequently observed)
perform better due to higher diversity. Wang [Wan04] states that the most
appropriate function set is optimally diverse. If we represent modules as LUTs,
this naturally maintains diversity as each LUT represents a unique function. The
frequency distribution of functionality of LUTs generated at random is uniform
due to the one to one mapping, indicating a more effective sampling of functions.

No solutions were found with the tree P1 representation. This maybe because
the mutation operator is more likely to mutate a subtree at the top of the tree,
preventing trees of sufficient size to evolve. However, using the same mutation
operator we can produce solution using the modular P1 representation.

9 Further Work

The representation proposed here achieves our aim on this problem. However,
we have not investigated the size of the final solutions produced in the different



primitive sets. Given a solution in one primitive set, a solution exists in another
primitive set, where the size of the solutions differ by less than a known fixed
constant [Woo003]. It would be interesting to see if these solutions could be found.

In this search algorithm, the top’ level of the program is represented as a
tree, and the module is represented as a LUT. Perhaps a better approach would
be to also represent the top level as a LUT too, and when a suitable solution
is found using this representation, the next stage if implementing both the top
level LUT and module could begin. Thus the first stage of the algorithm would
not involve any primitives at all. We suggest this would further reduces the
dependence on the primitive set.

Boolean functions can be represented by finite sized LUTs. Extending the
LUT idea to integer and continuous valued functions could prove problematic as
they may require infinite sized LUTs. We intend to investigate this by incremen-
tally increasing the number of test cases until we can be confident we have a LUT
from which we can induce a module which will capture the underlying function.
This was partially why the incremental approach to testing was incorporated.
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