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Extended Abstract 

Unmanned aerial vehicles (UAVs) [1] may be classified based on their application 
domain – civilian or defense. In most civilian-usage scenarios, external threat to the 
UAV is negligible. Fuel minimization, collision avoidance, indoor motion planning, 
and meeting timing constraints are some critical issues that fall under the umbrella of 
waypoint planning activities for civilian UAVs. However it is obvious that UAVs 
used for defense can come under inclement fire. Waypoint planning for such UAVs 
must additionally account for minimization of external risks. These risks may be 
lowered by minimizing revisitations, coordinating the timing of operation of the UAV 
with other friendly units or flying along approach and departure vectors that minimize 
the duration or the intensity of the electromagnetic signature of the UAV visible to 
hostile units.  

In general, the validity of a risk-model or an objective and even the utility of the 
very goal of lowering the risk-exposure of the vehicle depends on the class of the 
UAV, its operational environment and mission. UAVs at one end of the endurance 
spectrum – battery powered or hand-launched over-the-hill UAVs are expendable or 
even designed for one-time use. On the other extreme, high altitude long endurance 
UAVs generally operate beyond the risk-envelope of most ground-based threats.  

We focus on lowering the risks from static ground-based threats. Our threat-model 
is a minimal risk density target visitation (MRDTV) sparse graph G(V, E) whose 
vertices are sites of interest, S, and the airbase, A, and whose edges represent minimal 
risk density paths obtained from a bounded Voronoi Graph of threats, T, that are not 
collocated with any site, si ∈ S. Whenever possible, the vehicle flies along the edges 
E’ ⊆ E(G). The problem of uncovering site visitation sequencing plans that are 
embeddable in the MRDTV graph arises in reference to the goal of minimizing or 
eliminating revisitations. Our use of genetic algorithms for obtaining such plans finds 
greater justification when the number of sites to be visited in a single sortie is large.  

Our threat-model and solution approach are more suited to low to medium altitude 
medium endurance unmanned reconnaissance aerial vehicles (URAVs).  Here, we 
briefly mention several objectives that are consistent with the goal of lowering risks  
for URAVs and discuss how the expressive power of our model can be enhanced and 
our solution methodology (GAs) be tweaked to provide a broader set of solutions.  



Generic Case: No Revisitations. In general, revisitations to a site will result in lower 
fuel-efficiency and invite mission-risks that are redundant to the mission-objectives. 
In our case, avoiding revisitations translates into the following requirement – 

Given an airbase, A, and a set of nonoverlapping useful vicinities of reconnaissance 
sites, S, find a set of orderings ∏S

* such that a URAV can take-off from A, fly to the 
useful vicinities of each site, si ∈ S, along a subset of the edges of an MRDTV graph 
exactly once in the order defined by ∏S

*
i
 ∈ ∏S

* and, fly back safely to A.  

This is the Hamiltonian (HAM) cycle problem. We used GAs [2, 3] to obtain several 
HAM cycles in the MRDTV graph. In case the GA was unable to uncover sufficiently 
many HAM cycles, it reported several maximally long paths; all beginning at A. The 
gene encoding was a bijective map from the set V to the set of all genes in a 
chromosome. Crossover was implemented with the PMX [4] operator in order to 
generate feasible offsprings. The use of gene migration local search operator greatly 
enhanced the solution quality. G(V, E) was presented to the GA in adjacency matrix 
representation. Additional improvements to this basic scheme are reported in [2, 3].  

Ordered Back-to-Back Visitations. Visiting a subset of sites in an ordered 
consecutive manner can be helpful in situations involving timing-window or 
precedence constraints. We deal with this problem at the model-level as follows. GA 
implementation remains similar.   

Consider an acyclic set of sites ni ∈ N ⊂ V that must be visited consecutively. It is 
clear that beginning (or ending) a tour of sites in N at a site other than n1 or nN will 
lead to violation of the ordered back-to-back constraints. Therefore we can remove 
from the MRDTV graph the vertices {ni: 2 ≤ i ≤ N} and their incident edges and let 
the vertex n1 denote set N. Edges incident with vertex nN are added to the adjacency 
list of n1. The resulting graph is encoded as genes. In the solution obtained using GA, 
a visit to n1 is decoded as a visit to all sites associated with vertices in N. The 
additional bookkeeping needed for coding and decoding is minor and straightforward.  
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Fig.1 Depiction of graph-modification for Ordered Back-to-Back Visitations  

Incrementally Growing Rings: No Revisitations. In our application, MRDTV 
graphs can have up to 40 vertices and, due to sparseness, discovering several HAM 
cycles can get challenging. One way out is to forgo the search for HAM cycles and 
instead search in steps for incremental cycles – a new vertex is added to the current 
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cycle at each step without disturbing the topology of the solution until a maximal 
length cycle is found. This process may be repeated several times using probabilistic 
variation of the algorithms described in [5] or a variation of an ant-based heuristic [6]. 
The chief advantage of this approach over the last is that a return path to the airbase 
along minimal risk density edges is guaranteed. 

Minimize Risk on Return Route. In critical situations, a planner might consider 
additional risks due to revisitations once the mission goal has been met, i.e., all or a 
maximal number of useful vicinities have been visited by the URAV. However, 
minimizing the summation of the integrals of the risk function between adjacent 
vertices on the return route will obviously help.  
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A greater reward may be assigned to strings in which the nodes in the vicinity of the 
airbase and the airbase are sufficiently separated to bias the GA to provide maximally 
long paths that end in the ‘vicinity’ of the airbase. Following this, Dijkstra’s algorithm 
[7] may be applied in |)|log||||log|(| VEVVO +  time to obtain the shortest 
path to the airbase. And, solutions obtained with GA can be accordingly ranked.  

Minimizing the Number of Revisitations on Return Route. This is a variant of the 
aforementioned case. However, since our model does not account for threats 
collocated with the sites of interest, minimizing the number of revisitations on the 
return route has its own advantages. GA procedure remains the same as before. 
Dijkstra’s algorithm is applied to an unweighted graph instead.  
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