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This paper, which describes the optimization of a novel, constrained feed
network for a space-based antenna array, is a joint effort between the Air Force
Research Laboratory (AFRL) Antenna Technology Branch at Hanscom AFB
and the Illinois Genetic Algorithms Laboratory (IlliGAL) at the University of
Illinois at Urbana-Champaign. Recently, under the guidance and direction of
the Air Force Office of Scientific Research (AFOSR), the two laboratories have
formed a collaboration, the common goal of which is to apply simple, competent,
and hybrid GA techniques to challenging antenna problems. As shown below,
this particular optimization problem demonstrates the utility of using advanced
GA techniques to obtain acceptable/enhanced solution quality.

Figure 1 shows a single section of the antenna system, which consists of
a front-end array and a constrained feed network1. An incoming plane wave
impinges the N -element linear array, and the resulting element excitations are
propagated through an N by M Rotman lens, the outputs of which are weighted
and fed into an M by M Butler Matrix. The center M/2 Butler outputs from
each of P sections are time-delayed, weighted (e.g., fixed weights, like a Taylor
distribution, etc.), and combined to compute the final radiation pattern of the
system. The overall goal is to produce a far-field pattern having at least -30-
dB sidelobes over a 20% bandwidth by optimizing weights, wi (as shown in the
figure), for P sections of the system.

We applied both a simple genetic algorithm (SGA)2 and the hierarchical
Bayesian optimization algorithm (hBOA)3 to a simulated model of the system
in which the Rotman lens transfer functions (one for each of P sections) were
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constructed using experimental data. For this model, N = 64, M = 8, and
P = 3; thus, this problem involves the optimization of 24 complex weights (i.e.,
M × P ).

We compared the performance of the SGA and hBOA using three different
objective functions. Figure 2(a) shows the objective function for Case 1. The
pink curve is a typical far-field radiation pattern produced by the system. The
x-axis represents u-space (i.e., sin θ), and the y-axis measures the normalized
amplitude of the pattern in decibels. The black “mask” represents the objective
function. For this case, we perform a point-by-point subtraction of the mask from
the pattern. For a given frequency and set of complex weights, an error value is
computed by calculating the sum of the squared differences between the pattern
and mask (i.e., error(w, f) = Σi[patterni−maski]); no penalty is administered,
however, when the pattern lies below the mask in the sidelobe region (i.e., if
the difference between the pattern and mask is negative, it is not used in the
computation). In essence, we are trying to force the pattern to conform to the
mask in the main-beam region while forcing the pattern to lie below the mask in
the sidelobe regions. The overall fitness value for a given set of complex weights
is the average of the error across the entire frequency band.

Figure 2(b) shows the general objective function for both Cases 2 and 3.
Here, for a given frequency and set of complex weights, the error is computed
by calculating the squared difference between the peak of the pattern (in the
mainlobe region) and the highest sidelobe (in the sidelobe regions). Thus, Case
2 involves a single subtraction, rather than a point-by-point comparison of the
pattern to the mask. Similar to Case 1, however, the overall fitness value for a
given set of complex weights is the average of the error across the entire frequency
band. Case 3 is identical to Case 2, except the overall fitness value is equal to
the maximum error across frequency. In other words, Cases 1 and 2 are aimed
at minimizing the mean error across frequency, whereas Case 3 minimizes the
maximum error across frequency. Of the three objective functions, Case 3 is
the most relevant to this particular problem, since we are ultimately trying to
minimize the maximum sidelobe level across frequency.

Each case was run three times for both the SGA and hBOA. When we com-
pare the fitness values of the best runs for each case, we see that the two al-
gorithms performed equally well for Case 1, hBOA outperformed the SGA by
20% for Case 2, and hBOA completely annihilated the SGA for Case 3, as il-
lustrated in Figure 3. The blue and orange curves represent solutions obtained
using hBOA and the SGA, respectively (at a single frequency). Note that the
highest sidelobe of the hBOA solution is only 3 dB away from the target -30
dB, whereas the SGA solution is off by 18 dB. It should also be noted that the
standard deviation of the fitness across runs is lower for hBOA than the SGA
for all three cases.

These results are not surprising and agree with our fundamental knowledge
of genetic algorithms. For a simple problem like Case 1, which involves fitting a
function to a mask, linkage identification (i.e., the correlation between different
building blocks in the chromosome) is not important; therefore, the SGA and



hBOA perform comparably. Cases 2 and 3, on the other hand, involve more com-
plicated objective functions (i.e., maximizing the minimum value of a parameter
and/or minimizing the maximum value of a parameter). For these more difficult
problems where linkage is important, hBOA should outperform the SGA, since
hBOA spends much of its computational time identifying the linkage of the
problem.

In summary, we have applied both a SGA and hBOA to an antenna opti-
mization problem. From our results, it is clear that the need for competent GA
techniques becomes more essential as problem difficulty increases.

Fig. 1. Single section of antenna sys-
tem, including front-end array, Rot-
man lens, and Butler matrix.

Fig. 3. SGA vs. hBOA results for a
single frequency (Case 3).

Fig. 2. Objective function illustrations for (a) Case 1, and (b) Case 2.
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