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Classical understanding of the mechanisms of biological evolution has inspired 
the creation of an entire order of heuristic optimization techniques, known in 
general as Evolutionary Computation (EC). Our approach is characterized by 
the use of operators that implement the reproduction and diversification of 
genetic material in a manner inspired by retroviral reproduction and a genetic-
engineering technique known as DNA shuffling. We will refer to our approach 
as Retroviral Genetic Algorithms or retroGA. RetroGA has many applications 
to problems of forced molecular evolution and has demonstrated impressive 
effectiveness on a series of benchmark tests. We selected these tests on the 
basis of their potential similarity to real-world problems of in vitro evolution 
and molecular-biological evolution. Some of the simplest fitness functions that 
demonstrate the properties of neutral subbasins linked by narrow pathways are 
the Royal Road and Royal Staircase fitness functions.  

1. Introduction 

Classical understanding of the mechanisms behind biological evolution served as 
the inspirational model for an entire order of heuristic optimization techniques, known 
in general as EC. In the past decade, research in molecular biology and genetics has 
conclusively shown that living organisms successfully utilize biomolecular 
implementations of EC for effective solving of problems in survival and adaptation. 
The most obvious examples of this type would be the mechanisms of antibody 
selection in a higher organism’s adaptive immune system [1], and their counterparts, 
the mechanisms of antigen variability in pathogenic organisms, such as viruses and 
bacteria [2;3]. The advantage of such systems is that they are based on principles and 
mechanisms that seem similar to biological evolution [4;5;6]. Unlike biological 
evolution, however, they are also conducive to observation and experimentation. The 
principles of their function may be then fully defined in terms of EC and implemented 
on a computer [10-13]. 

Recent studies have brought to light the means by which the natural world carries 
out evolutionary search. Natural GA acts as a somewhat flexible hybrid optimization 
technique, used both in higher and lower organisms, albeit in differing ways. 
Specifically, our approach to EC is characterized by the use of operators that 
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implement reproduction and diversification of genetic material in a manner inspired 
by the mechanisms of retroviral recombination [7;8] and the genetic-engineering 
technique known as DNA shuffling [9]. We will refer to our technique as Retroviral 
Genetic Algorithms or retroGA. Although related topics such as immune system 
modeling draw great attention from the field [10;11;12;13;14], there has to date been 
no work done on the algorithms of retroviral recombination or DNA shuffling.  

RetroGA has many applications to problems of forced molecular evolution and has 
demonstrated impressive effectiveness on a series of benchmark tests. We selected 
these tests on the basis of their potential similarity to real-world problems of in vitro 
evolution and molecular-biological evolution. We gave special attention to the fitness 
functions as formal models, closely resembling real-world problems of molecular 
evolution. Some of the simplest fitness functions that demonstrate the properties of 
neutral subbasins linked by narrow pathways are the Royal Road (RR) and Royal 
Staircase (RS) fitness functions.  

Recent publications of van Nimwegen with co-authors [15;16;17;18;19] 
emphasized the population dynamics of various RR and RS fitness functions. 
According to these authors, RR & RS problems often exhibit “evolutionary stasis", 
time periods when essentially no change takes place in population fitness. Stasis is 
one of the most interesting features of these functions because it is also frequently 
observed in both natural evolution and in evolutionary computation. In fact, van 
Nimwegen with co-authors draws attention to RR functions as a model of natural 
evolution.  

It is becoming clear that the dynamics of evolutionary processes on fitness 
landscapes with neutrality are qualitatively very different from evolutionary dynamics 
on rugged landscapes [15-18]. A major impetus for this work is the lack of suitable 
models and theory for such landscapes. Common perception of landscape structure 
(multi-modal or rugged) in the GA literature can be inapplicable for optimization of 
the class of evolutionary scenarios that we deal with in this communication. 

2. The Approach 

2.1. Natural GA 

The molecular machines that rearrange DNA often process molecules according to 
certain signal sequences. From a computational point of view, these are analogous to 
marks or tags on a string. Molecular machines read these tags and interpret them as 
instructions for further string operations. Of the genetic diversification mechanisms 
that utilize such signal sequences, one of the most simple and well-known is retroviral 
recombination.  

Retroviral Recombination: Recombination is the process by which progeny receive 
an arrangement of genes that is different from that of either parent [1]. The life cycle 
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of retroviruses is characterized by the alternate use of DNA and RNA as genetic 
material [1;7;8]. Each viral particle entering a host cell contains two or more copies of 
the viral genome in RNA form. The next stage of the infection cycle that holds 
interest for us is the synthesis of a single DNA molecule from these two or more 
molecules of viral RNA.  

This task is carried out by an enzyme called retroviral reverse transcriptase [20], 
which is directed by a multitude of signal sequences in the original RNA. As the 
transcriptase synthesizes the replica from its template, it may pass over one of these 
signal sequences. When it does so, the transcriptase releases the current template 
strand and shifts to a different one. These jumps (or template switches or strand 
transfers) are the key event of retroviral recombination [7]. The signal sequences that 
trigger template switches may be either breaks in the RNA molecule or pause sites 
(regions of the RNA molecule with a certain sequence that slows down the synthesis 
of the replica) [7].  

It came to our attention that a generalization of this mechanism in genetic 
engineering could serve as the template for a powerful genetic diversification 
algorithm. 

Generalization of Retroviral Recombination: These techniques are DNA shuffling 
(Sex PCR in particular), and Random-Priming Recombination (RPR) [9;21]. They are 
based on Polymerase Chain Reaction (PCR) and may be described as homology-
based PCR. DNA shuffling involves the enzymatic cleavage of a collection of related 
genes to a pool of random DNA fragments [9;21]. These fragments can be 
reassembled into full-length chimerical genes by repeated cycles of self-priming PCR: 
the fragments prime each other based on local homology, and recombination occurs 
when fragments from one copy of a gene prime on another copy, causing a template 
switch.  

In Sex PCR, as in retroviral recombination, there are two types of signals that need 
to be present in nucleic acids. The first are the sites, or signals, of replication 

interruption. It is believed that a 
retrovirus uses breaks in the 
molecule for this task, as well as 
pause sites [7]. However, Sex PCR 
only uses breaks for this purpose. In 
order for the process of generating 
the replica to continue, the reverse 
transcriptase in complex with the 
incomplete replica must find the 
target site on the other molecule. In 
the case of retroviral 
recombination, this site certainly 
exists, as two or more homologous 

molecules take part in the process of replication. In the case of Sex PCR, the acceptor 
molecule need not be entirely homologous, but it must have at least a small region 
homologous to a corresponding region on the donor molecule. Consequentially, Sex 
PCR brings to light the other class of signal sites: sites of local homology.  

child
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Fig. 1. Template switching during the RC operator 
action. The regions of local homology are denoted 
on both string as ‘_=_’.  
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2.2. The retroGA technique 

 
Our technique is characterized by the use of operators that implement the 

reproduction and diversification of genetic material in a manner inspired by retroviral 
reproduction (RC operator) and a genetic-engineering technique known as DNA 
shuffling (GRC operator). These are our primary genetic operators as an alternative 
crossover and mutation operators. In everything else, our approach follows classical 
GA.   

The Reproduction/ Crossover operator: The RC operator generates a child string 
from a given parent pair, combining the function of reproduction and crossover (Fig. 
1). The pair of parents is selected, as in standard GA, by one of several predetermined 

strategies: truncation, 
roulette-wheel, etc. One 
string is selected as a donor, 
and another as an acceptor. 
Their sequences are then 
compared going from right 
to left for a short distance l + 

�  (where l < L, L is the 
length of the whole 
sequence, �  is a random 
integer, � ∈∈∈∈0,q; q<l). If the 
required zone of local 
homology is not found, 
another couple is selected. If, 
and only i f, a zone of 
complete homology 
(identity) of a size no less 
than S symbols (S<q) is, 
replica generation is 
initiated, and takes place in 
the first N symbols of the 
donor, from the first element 
to the last element of the 
found region of local 
homology (length of S 
symbols). The process then 
jumps onto the string of the 
acceptor. If next zone of 
local homology of a size no 
less then S is found, the 

replica generation is continued. The process then jumps onto the donor string. 
Afterwards, another search for complete local homology takes place between acceptor 
and donor. This process is iteratively repeated until the replica (child) is completed or 
no more homology region is found. The number of iterations is at most t. If replica is 
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Fig. 2. Principle of the GRC operator. The process of 
creating the child sequence by the GRC operator starts 
with the parent-donor. The process then jumps onto the 
string of the second parent (acceptor1) with the condition 
that it have at least a small region that is homologous 
(identical) with the donor in the region of the jump 
(denoted on both string as ‘_=_’ ). After a while, the 
process again jumps, this time from acceptor 1 onto 
acceptor 2, again with the condition that there exists a 
region of complete local homology between them. It is 
thus possible to describe acceptor2 as the third parent of 
the child sequence. The process of jumping from acceptor 
to acceptor continues until the creation of the child 
sequence from the sequences of its many parents is 
complete. 
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not completed and no more homologous region is found, the next candidate pair of 
parents is selected.  

As was discussed above, homology-based PCR techniques may be naturally 
interpreted as a generalization of retroviral recombination processes. This inspired us 
to develop a generalization of the RC operator - the Generalized 
Replication/Crossover operator (GRC operator), which simulates the basic properties 
of the Sex PCR technique. It works in the following manner: A first pair of parent 
candidates is selected according to a predetermined selection strategy – the donor and 
acceptor1 (Fig. 2). Their sequences are then compared going from right to left for a 
short distance l + �  (where l < L, L is the length of the whole sequence, �  is a random 
integer, � ∈∈∈∈0,q; q<l). If the required zone of local homology is not found, another 
candidate for acceptor1 is selected. The number of attempts to find a suitable acceptor 
is at most t. If, and only if, a zone of complete homology of a size no less than S 
symbols (S<q) is found during an attempt to scan two sequences, do these two 
sequences become the donor and acceptor1 pair. Replica generation is then initiated, 
and takes place in the first N symbols of the donor, from the first element to the last 
element of the region homologous between the two parents. Afterwards, the acceptor2 
candidates are selected, and a search for local homology takes place between 
acceptor1 and the putative acceptor2. If no such region is found, the next candidate is 
searched. This process is iteratively repeated until the replica (child) is completed, or 
until the t limit is exceeded. 

2.3. Fitness Functions to Study Hard Evolutionary Problems 

There is every reason to believe that both biological evolution and natural GA 
solve problems of considerable difficulty [4-6]. In current literature dealing with 
biological and artificial evolution, one can find various grades and classifications of 
difficult problems having to do with biology [22]. It is these benchmark problems that 
we will focus on below. 

In many combinatorial optimization problems as well as in biological molecular 
evolution, we can use the “building block”  (BB) hypothesis [23;24]. This hypothesis 
states that a solution can be decomposed into a number of BBs, which can be 
searched for independently and afterwards be combined to obtain a good or even 
optimal solution. The remaining part of this paper is substantially based on the BB 
hypothesis.  

2.3.1. Rugged Landscapes  
Wright’s [25] creation of the “adaptive landscape”  metaphor has had a strong 

effect on the theoretical analysis of evolutionary processes. The point of view that a 
typical combinatorial optimization and biological evolution fitness function may be 
modeled by rugged landscapes has gained considerable currency in recent years [26]. 
This fitness function is such that typically, even two points in the search space that are 
very close together have considerable differences in fitness. Correspondingly, it is 
accepted that such landscapes have a high number of local extremes, as well as 
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difficult elements such as plateaus and deep valleys. According to this outlook, 
evolving populations typically get stuck on one of the local peaks. The probability of 
going from the current local maximum to a neighboring local maximum is low, since 
peaks are typically separated by deep valleys. It is even less enthusing to consider the 
probability of having the population find the global maximum. This model clearly 
illustrates the problems of evolutionary search in the living world. 

2.3.2. Subbasin-portal Architecture 
At the same time as the idea of rugged landscapes was gaining momentum, an 

alternative concept was also being developed. This idea was based on the hypothesis 
of substantial degeneracy in the genotype-to-phenotype and the phenotype-to-fitness 
mappings. The history of this idea dates back to Kimura [27], who argued that on the 
genotypic level, most genetic variation occurring in evolution is adaptively neutral 
with respect to phenotype. During neutral evolution, different genotypes in a 
population fall into a relatively small number of distinct fitness classes, each 
consisting of a set of genotypes with approximately equal fi tness. In other words, the 
genotype space decomposes into a set of subbasins of isofit genotypes that are 
entangled with each other in a complicated fashion (Fig. 3). This means that although 
the fitness landscape might be rugged, there are always neutral ridges along which the 
genotype can move without affecting fitness. In some cases local optima might 
disappear completely from the fitness landscape, as in the RR fitness functions [19]. 
Through neutral mutations, genotypes walk randomly in a given subbasin, until one of 
them discovers a connection to a subbasin of higher fitness. The internal structure of a 
subbasin may be described as a neutral network, wherein states of identical fitness are 
interconnected in a complex fashion.  

 

Fig. 3. General idea of a subbasin and portal architecture (left) and the dimensional hierarchy of 
subbasin and portals for the Royal Road / Royal Staircase fitness functions (right). (After [16]). 
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The aforementioned class of fitness functions with subbasin-portal architecture has 
already found a practical application in analyzing the evolution of the secondary 
structure of RNA [28;29;30;31;32].  

Royal Road Fitness Functions: It was van Nimwegen with co-authors, who draw 
attention to RR as a model of natural evolution [15-19]. It is notable that some of the 
simplest fitness functions that demonstrate the properties of neutral subbasins linked 
by narrow pathways are the RR fitness functions. These functions were specifically 
proposed for testing the BB hypothesis, and whether recombination actually 
manipulated such BBs in the way that traditional GA theory assumed [33;34;35;36]. 
As a consequence of their formal simplicity, theoretical analysis can be carried out on 
the effectiveness of the simplest versions of GA and non-GA techniques for these 
functions. Despite the fact that they were intended as Royal Roads for GA, they in 
reality brought to light the substantial weaknesses of GA, caused first and foremost by 
the crossover operator. During the search for fitness functions that were simple for 
GA and difficult for other, non-evolutionary methods, a whole family of RR fitness 
functions were proposed, namely R1, R2, R3, and R4 [33]. Recently, elaborations 
such as the RS and Terraced Labyrinth Fitness Functions were introduced [15-18]. All 
of these functions demonstrate the neutral subbasin architecture. The difficulty of the 
RR functions increases from R1 to R4. Not one current optimization technique is 
capable of effectively dealing with the R4 fitness function.  

The function R1 is computed very simply: a bit string x gets 8 points added to its 
fitness for each of the given order-8 schemas of which it is an instance: 

s1 = 11111111* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ;  c1 = 8  
s2 = * * * * * * * * 11111111* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ;  c2 = 8 
…………………………………………………………………………………………………………………………………………………………………………………………………………… 
s7 = * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 11111111* * * * * * * * ;  c7 = 8  
s8 = * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 11111111;  c8 = 8  
sopt = 1111111111111111111111111111111111111111111111111111111111111111;  copt = 64.  

The value R1(x) is the sum of the coefficients cs corresponding to each given 
schema of which x is an instance. Here, cs is equal to order(s). The fitness 
contribution from an intermediate stepping stone (such as the combination of s1 and 
s8) is thus a linear combination of the fitness contribution of the lower level 
components. This fitness function is an example of the class of functions with the 
subbasin and portal architecture (Fig. 3). The genotype space consists of all bit-strings 
of length 64 and contains 9 neutral subbasins of fitness 0, 8, 16, 24, 32, 40, 48, 56 and 
64. There is only one sequence with fitness 64, 255 strings with fitness 56, 65534 
strings with fitness 48, etc.  

In the case of the second function R2, the fitness contributions of certain 
intermediate stepping stones are much higher. R2(x) is computed in the same way as 
R1, by summing the coefficients cs corresponding to each of the given schemas of 
which x is an instance.  

The R3 function differs from R2 by the addition of spacers between BBs. In this 
case, the optimal string has the form of: 

sopt=11111111********11111111********11111111*******11111111********11111111********11111111********11111111********11111111, 
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where an *  indicates a random bit and spacer sequences have no impact on the score. 
The R2 and R3 functions have the same subbasin-portal architecture as the R1.  

The highest and most difficult RR function is R4. The great difficulty of this 
problem lies in the fact that the presence of one, two, or even four non-neighboring 
elementary (in our case 8-bit) BBs in the string gives the same exact score (Level 1). 
The score will not increase until a BB of a higher order is found - such as a pair of 
elementary BBs (i.e., a 16-bit BB (Level 2), two 8-bit BBs neighboring each other). A 
level 3 BB consists of 4 neighboring 8-bit BBs (32 bits in total). Level 4 BBs are 64-
bit, composed of eight 8-bit elementary BBs. Level 5 BBs cannot be achieved by any 
technique in practice, but would in theory consist of 128 bits. The genotype space 
consists of all bit-strings of length 128 and contains 5 neutral subbasins (Levels 0, 1, 
2, 3 and 4).  

Royal Staircase Fitness Functions: These are a generalization of the RR functions 
for which the subbasin-portal architecture is expressed in a more explicit form [15-
18]. For any genotype there is a certain subset of bits that are fitness-constrained. 
Mutations in any of the constrained bits lower an individual’s fitness. All the other 
bits are considered free bits, in the sense that they may be changed without affecting 
fitness. Of all possible configurations of free bits, there is a small subset of portal 
configurations that lead to increased fitness. A portal consists of a subset of free bits, 
called a constellation, which is set to a particular “correct”  configuration. When a 
constellation is set to a partial configuration, the fitness is increased and the 
constellation’s bits become constrained. 

A RS fitness function corresponds to a Terraced Labyrinth whose tree is a simple 
linear chain (See Fig. 3). The RS function that we used in this paper was defined in a 
manner similar to RR functions (same length of string, and same size of BB as R1 and 
R2). Specifically: 

s1 = 11111111* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ;  c1 = 2  
s2 = 1111111111111111* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ;  c2 = 3  
…………………………………………………………………………………………………………………………………………………………………………………………………………… 
s6 = 111111111111111111111111111111111111111111111111* * * * * * * * * * * * * * * * ;  c6 = 7  
s7 = 11111111111111111111111111111111111111111111111111111111* * * * * * * * ;  c7 = 8  
sopt = 1111111111111111111111111111111111111111111111111111111111111111;  copt  = 9 

This version of the RS was used in the work of van Nimwegen and Crutchfield [18]. 
We used it so as to be able to compare our results to theirs. The genotype space 
contains 9 neutral subbasins of fitness 1, 2, 3, 4, 5, 6, 7, 8 and 9, and it reminiscent the 
R1-R3 functions architecture. 

3. The Results 

As was noted above, it is believed that such simple fitness functions as RR and RS 
reflect to a great degree the significant properties of biological evolutionary search. 
These functions are well-studied and are sufficiently simple to permit statistical 
analysis, and the comparison of their theoretical results with the results of 
experimental runs. Both RR and RS function tests used the same suite of programs. 
This package utilizes either the RC operator, or the GRC operator.   
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 The following parameters were fixed in all test runs: The size of population 
(2,000) and the percentage of the population permitted to reproduce (15%). The initial 
population generated at random. The truncation strategy of reproduction was used 
when copies of chromosomes with scores exceeding the average value replaced all 
chromosomes having a score less then the average. For RC tests, the RC operator 
action probability was 0.1 per pair of parents. The operator’s parameters are l=8, 
q=56, � ∈∈∈∈0,q, S=5, N∈∈∈∈8,q, and t=3 (See Section 2.2). For GRC tests, the GRC 
operator action probability was 0.15 per pair of parents and the operator’s parameters 
are l=8, q=56, � ∈∈∈∈0,q, S=5, N∈∈∈∈8,q, and t=128.  

 Royal Road Fitness Functions: We had four functions, R1-R4, that differed in 

regards to the effectiveness of various evolutionary and non-evolutionary techniques 
(Table 1).  

Experiments with the RC operator showed that this version of our approach does 
not exceed the efficiency of standard GA in the case of RR functions. 

Surprisingly, it was the GRC operator that ended up being the most effective of all 
the strategies tested. On every benchmark test (Table 1), it outperformed all others by 
a significant margin. Notably, its performance in the case of R1 approached the non-
evolutionary Random-Mutation Hill-Climbing (RHMC, [34-35]) algorithm. Mitchell 
et al. characterizes this algorithm as the simplest version of Simulated Annealing [33]. 
It was only three times less effective than RHMC (or even two times, depending on 
operator parameters), while RHMC outperformed standard GA by a factor of 10.  

The GRC operator achieved the fourth level of the R4 test in 98% of the runs, and 
the fi fth level in 67%. Through the use of the GRC operator, we were able to find an 
evolutionary technique that was sufficiently effective on these classical problems that 
it was capable of outperforming standard GA by a factor of 3 to 4 on all RR functions. 

Table 1. Performance of our technique versus standard GA. Values indicate number of 
function evaluations needed to reach optimum, averaged over 1000 runs. 

TECHNIQUES  

Func-
tion 

  Std. GA 
[34-36] 

RHMC 
[35,36] 

MGE 
technique 
[37-39] 

RC operator GRC operator 

R1 61,334±2,304 6,179±186 32,920±14,450 81,795±35,836 18,210±5,418 

R2  73,563±1,794 6,551±212 32,209±10,312 101,986±32,671 15,449±18,163 

R3 75,599±2,697 No data 34,436±6,239 136,566±77,241 16,720±29,977 

R4, 4th l. 86,078±17,242 95,027±17,948 155,465±45,003 - 20,949±17,480 

R4, 5th l. - - 265,359±55,165 - 151,653±218,335 

RS ~500,000 No data 269,871±63,288 122,855±66,459 152,630±129,750 

‘ -‘  means that neither run reached this level within the maximum of 106 function evaluation. 
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We received similar results when using an earlier version of this technique called the 
MGE (Mobile Genetic Elements) approach [37;38;39].  

Royal Staircase Fitness Functions: To our surprise it is the RC operator that found 
the answer to the RS test four times as fast on average than standard GA, while the 
GRC operator could do it more than three times as fast (Table 1).  

4. Discussion and Conclusions 

The mechanisms of diversification in natural GA are not analogous to mutation and 
crossover operators in computational GA. In computational GA, these mechanisms 
are global, act statistically upon the entire population, and use predetermined 
parameter values. In natural GA, however, the character of the mutation depends on 
the sequence of the given gene.  It may be said that a gene contains not only 
information that is used to determine its fitness, but also instructions on how to mutate 
itself afterwards. As such, mutation operators in natural GA are local, and their action 
depends on the sequence of the particular gene in question. 

Our conclusion was that there is a fundamental difference in the quality of the 
methods of artificial recombination implemented by the RC and GRC operators and 
standard GA’s crossover operator. The positions of the sites of crossover and 
exchange between two strings in computational GA are chosen randomly. However, 
in biology, crossover occurs at sites of high homology between two molecules of 
nucleic acid. These regions of high homology may be naturally interpreted as BBs. As 
such, crossover operations in natural world do not destroy BBs, but instead conserve 
them wholly, while the material between the BBs undergoes crossover exchanges and 
point mutations (See Fig. 2). It is well-known that the destruction of already-
discovered BBs by GA’s crossover operator is one of the major problems of GA, and 
was originally brought to light by experiments with the RR fitness functions. Because 
of this, the capability of homology-based PCR techniques to conserve already located 
BBs is of tremendous interest to us.  

It is hard to overestimate the significance of understanding and simulating 
biological evolutionary search mechanisms. We believe that methods of discrete 
optimization developed by the living world have significant meaning for 
interdisciplinary research. The new algorithms for evolutionary computation that we 
borrow from the living world are to a significant degree domain-independent. 
Because of this, they may be easily implemented in various EC techniques. Firstly, 
this has an impact on GA and GP: our approach’s basic algorithms may be easily 
added to already-developed libraries. In particular, we refer here to the use of the RC 
and GRC operators.  

In the past several decades, computational GA has become an effective 
mathematical instrument for modeling and analyzing the processes and mechanisms 
of biological evolution [9;40]. RetroGA has the potential to have the same effect on in 
vitro molecular evolution. Thus, further study and development of retroGA would 
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serve to lay the foundation of a mathematical theory describing the processes and 
mechanisms behind the evolution of biological macromolecules in vitro.  

It is perfectly reasonable to consider current techniques for selecting biological 
macromolecules with desired properties [41;42] as in vitro implementations of 
specialized variants of EC. This similarity consists of, firstly, the use of genetic 
engineering versions of the point mutation and crossover operators (Cf. [9;21]). 
Second, and more important to us, is the fact that these problems exhibit fitness 
functions that belong to the same class as the well-studied RR fitness functions. It is 
well-known that standard GA, utilizing only the point mutation and crossover 
operators, are insufficient for solving these types of problems. Quantitative 
mathematical analysis and numerical simulations have to this point only been carried 
out for a single problem in this type of directed evolution: the selection of RNA [43]. 
Despite noteworthy conclusions regarding the properties of that problem’s fitness 
functions [29-32], no discussion has taken place regarding the adequacy of the 
methods used to diversify molecules before selection. In general, this field currently 
suffers from the lack of a theoretical basis for judging the effectiveness of various 
methods for diversifying nucleic acids. This becomes particularly evident in problems 
involving the selection of macromolecules with new properties that do not already 
exist in various precursors in natural world, i.e. from scratch [42;44;45].  
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