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Abstract. We analyze two Boolean function networks with different
degrees of neutrality. The results show that the one with explicit neu-
trality is a small-world network where each pair of possible solutions has
a short distance and most of the possible solutions are highly clustered.
These network structural properties owe their existence to the “short
cuts” introduced by redundant genes in the genotypes. We explain some
important small-world network structures, such as clusters, hubs and
power law link distribution. These properties have potential to be useful
in designing efficient evolutionary algorithms to navigate search in the
network.

1 Introduction

“Six Degrees of Separation” is a play created by John Guare in 1990 to illustrate
the small-world phenomenon - most of us are linked by short chains of acquain-
tances. The name of the play, according to [2], came from a study by Stanley
Milgram in 1967. Milgram was interested in the structure of our social networks
and wanted to find out the “distance” between any two people in the United
States. For this purpose, he recruited individuals in Nebraska and Kansas to
try forwarding a letter to a designated target in Massachusetts through people
they knew on a “first-name” basis. The starting individuals were given basic
information about the target, such as the name, address, occupation, and a few
other personal details. They had to choose one of their acquaintances to send the
letter to, with the goal of reaching the target as quickly as possible; subsequent
recipients followed the same procedure, and the chain closed in on its destina-
tion. Of the chains that were completed, the median number of steps required
was six, hence “six degrees of separation” [5].

Many social and technological networks are small-world. For example, the
World-Wide-Web network is small-world with nineteen degrees of separation:
any web document is on average only nineteen clicks away from any other [2].
Hollywood film actors collaboration network is a small-world: each actor is 3
links from most actors [7]. Biological systems, such as food webs [9] and neural
networks of the nematode worm C. elegans are also small-world [8]. All these
networks are very large in size, yet have a small degree of separation. This is a
surprising phenomenon to most people.

Although small-world networks always have a very short path between two
vertices, there is not always an algorithm that can find this shortest path. In



Milgram’s experiments, local information about the acquaintances are used to
select the one that is most likely to know the target. Similarly, intermediate web-
search results are frequently used to select the web-link that is most likely to
lead to the desired document. In general, however, small-world networks are not
always rich in local-information for efficient navigation. Kleinberg has showed
that efficient navigation is a fundamental property of only some small-world
networks [4].

This research attempts to answer two questions that are related to neutral
evolution in Evolutionary Computation:

1. Are neutral Boolean function networks small-world ?
2. Can we utilize small-world network structural properties to design efficient
evolutionary algorithms to navigate search in these networks ?

This paper addresses the first question by analyzing structural properties
of two Boolean function networks with different degrees of neutrality. The de-
sign of efficient evolutionary navigation algorithms for these networks will be
investigated in a later work.

We organize the paper as follows. Section 2 explains small-world networks and
their associated properties. Section 3 describes neutrality in evolutionary search
networks. In Section 4, we study structural properties of two Boolean function
networks with different degrees of neutrality. The results are then analyzed and
discussed in Section 5. Finally, Section 6 concludes the paper and outlines the
direction of our future research.

2 Small-World Networks

The small-world network by Watts and Strogatz [8] has a large number of vertices
with sparse connections. In particular, for a network with n vertices and k edges
per vertex, it is required that n > k > In(n) > 1. With n > k, the network
is not fully connected; with k > In(n), the network is always connected [3].
They used two measurements to quantify the structural properties of small-
world networks: characteristic path length L and clustering coefficient C.

Characteristic path length L is the average shortest distance between vertices
pairs in a network.

Definition 1. Let d(i,j) be the length of the shortest path between the vertices i
and j, then the characteristic path length, L,is d(i,j) averaged over all (%)) pairs
of vertices.

Clustering coefficient C' is the average local clustering coefficient C, over all
vertices in a network.

Definition 2. The neighborhood of a vertex v, I, = {i : d(i,v) = 1}(v &, [)

Definition 3. The local clustering coefficient, C,,, is: C,, = ‘E((,f;)l where |E(L)]
2

gives the total number of edges among the m neighbors.



Definition 4. The clustering coefficient, C, is C, averaged over all vertices.

Using social friendship networks as an example, these two measurements
have intuitive meanings: L is the average number of friendships that connects
two people in the network; C, tells how many friends of v are also friends of each
other. Thus C gives the cliquishness of a friendship circle. A large C' indicates
that everybody knows almost everybody else in the friendship network. If C' is
1, everybody in the network knows everybody else.

The computation of L is straight forward. Equation (1) gives the mathemat-
ical formula, which can be easily implemented in any programming language.
Calculating C, however, involves more steps. Using Figure 1 as an example net-
work, we show step by step how to find C for vertex 0000 following Definition 2
and 3. The vertex 0000 has 8 neighbors. Among them, there are 4 edges. Cy000
is therefore 0.14285. Once C, for all vertices in the network are obtained, C' is
the average of all C,.

TI'bo00 = {0001, 0002, 0010, 0020, 0100, 0200, 1000, 2000} .

koooo = 8.
|E(F0000 | =4.
Caooo = % = (.14285.
2
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Fig. 1. A network example for calculating clustering coefficient C.

Watts and Strogatz used three small-size networks to study small-world net-
work properties. In Figure 2, network (a) is a highly clustered (C' = 0.5) large
world (L = 6.63) where L grows linearly with the number of vertices n. In con-
trast, network (c) is a poorly clustered (C = 0.09) small world (L = 2.87) where
L grows only logarithmically with n. By adding a few long-range edges (short
cuts) to connect vertices that are farther apart in network (a), they obtained
network(b), which is a highly clustered (C' = 0.45) small world (L = 3.99). This
network inherits the high clustering property from network (a) and also have
the small distance similar to network (c). L in this small-world network grows
only logarithmically with n.

With such understanding of small-world networks properties, they evaluated
L and C of 3 large and sparse networks: the collaboration network of film ac-
tors, the electrical power grid network of the Western United States and the
neural network of the nematode worm C. elegans. Their studies show that all
these three networks have the small-world properties: small L and large C. They



therefore suggest that small-world phenomenon is common in most large and
sparse networks.

Fig. 2. Three different networks (a)(b)(c) with different L and C.

3 Neutrality in Evolutionary Search Network

Evolutionary algorithms perform searches within a space of possible solutions.
The search space can be defined as a network where each vertex is a possible
solution while each edge connects two solutions that can be transformed from one
to the other in one operation step. The commonly used transformation operators
are selection and mutation (in various forms). These operators navigate the
search step by step to find the target solution.

Multiple solutions in a search network may have the same fitness. The sub-
network that connects solutions with the same fitness is called neutral network.
Within a neutral network, evolutionary search walks randomly without the guid-
ance of fitness. In other words, the only kind of transformation operation is mu-
tation (called neutral mutation), since selection pressure has no effect under the
condition of equal fitness. For the reason of simplicity, one-point mutation is the
only transformation mechanism considered in this study.

A solution can have a dual-representation of genotypes and phenotypes. With
this representation, mutations take place in genotypes while fitness evaluation
and selection are based on corresponding phenotypes. Also, the mapping from
genotypes to phenotypes and from phenotypes to fitness can be many-to-one.
This means many genotypes may have the same phenotype and many phenotypes
may have the same fitness. This dual-representation provides two ways to define
the search networks: genotype networks and phenotype networks. Since we are
interested in the characteristics of search networks with neutrality, phenotype
network is a better model for this study.

4 Structural Properties of Boolean Function Networks
with Neutrality

This section analyzes two Boolean function networks with neutrality. The first
phenotype network is based on a one-to-one genotype-phenotype mapping rep-



resentation. Neutrality in this case is implicit: many phenotypes may have the
same fitness. The second phenotype network is based on a many-to-one genotype-
phenotype mapping representation. Neutrality in this instance is both implicit
and explicit, through redundant genes in the genotypes. (see [10] for more dis-
cussions on implicit and explicit neutrality). Both networks have a small number
of vertices to make the analysis of small-world properties easier. We will study
larger and sparse Boolean function networks in a later work.

4.1 A One-to-One Genotype-Phenotype Mapping Representation

The Boolean function studied is odd-3-parity. This function takes three Boolean
inputs and returns True if an odd number of inputs are True. We use only zor to
construct this function. As analyzed in [11,12], the fitness landscape is needle-
in-haystack: a phenotype either gets every test case correct (a needle) or half of
the test cases correct (a hay). With 8 test cases, a phenotype has either a fitness
of 4 or a fitness of 8.

The genotype is a string of integers that are inputs to a program parse tree.
Each genotype has 2 nodes, which is the minimum number of nodes required
to construct a correct odd-3-parity. In each node, there are two input values to
an zor function. The gene values range from 0 to 2, denotes inputs to the odd-
3-parity (zo, 1, z2). Figure 3 gives an example genotype and its corresponding
phenotype. With 4 genes in each genotype, each has 3 possible values, the total
number of genotypes is 3* = 81, which is also the number of vertieces in the
phenotype network.

Xo X1 X, X,
(b)

Fig. 3. A genotype (a) and its phenotype (b) under a one-to-one mapping representa-
tion.

Since the mapping between genotypes and phenotypes is one-to-one, the two
are identical: each vertex in the phenotype network is a 4-integers string. Two
vertices are connected if they can be transformed by an one-point mutation. The
distance between each pair of vertices in the network is simply their Hamming
distance.

Figure 1 gives a sub-network of the phenotype network. As shown, each
vertex has 8 neighbors. Each pair of vertices has a distance between 1 and 4.
The characteristic path length, L, of the network is:
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where d(i,j) is the Hamming distance between two vertices v; and v;; T
is the total number of vertices in the network, which is 81 in this case. The
characteristic path length L for this network is 2.7.

Each vertex in the network has 8 neighbors (see Figure 1). The number of

edges among the 8 neighbors is 4 (|E(I,)| = 4). The local clustering coefficient
Cy is therefore:

L=

(1)

C, = % = 0.14285.
2

Since the overall network is regular in that every vertex has the same num-
ber of edges and the same connectivity pattern, the clustering coefficient of all
vertices are the same. The clustering coefficient C' of the network, which is the
averaged C), over all vertices, is therefore 0.14285.

Figure 4 gives the phenotype network. It is a poorly clustered small world,
similar to network (c) in Figure 2. As the number of phenotypes n increases
(through the increase of genotype length), we expect L to grow logarithmically.
This will be verified in our future work.

Fig. 4. The Boolean function network with a one-to-one genotype-phenotype mapping
representation (L = 2.7,C = (0.14285).

4.2 A Many-to-One Genotype-Phenotype Mapping Representation

The many-to-one genotype-phenotype mapping representation in loosely based
on the Cartesian Genetic Programming (CGP) system[6]. The genotype is a
string of integers that encode an indexed graph. Each node in the genotype
contains many genes; some of them are link values and some are function values.



Not all nodes in the genotype are expressed in the phenotype only those that
are active. A node is active if its link value is referred by another active node.
Since many genotypes may have the same active nodes, hence are mapped into
the same phenotype, this representation gives a many-to-one mapping between
genotypes and phenotypes.

Figure 5 gives an example genotype and its phenotype for the odd-3-parity
function. Similar to the one-to-one mapping representation, the genotype has 2
nodes; each has 2 genes. Unlike the previous representation, the gene values can
be either an input to the odd-3-parity function, denoted by labels 0 to 2 in the
genotype, or a node output link, which has a label 3. The last node (with label
4) is the final output node.

Node output link 3 4

Fig. 5. A genotype (a) and its phenotype (b) under a many-to-one mapping represen-
tation.

The mapping of a genotype to its phenotype starts from the last node on the
right. This is the final output node (with genes 0 2), which is active by default.
This XOR node has its two inputs connected to the odd-3-parity input z¢ and
2. The node with output link 3 is not expressed in the phenotype because it
is not referenced by the only active node 4. This inactive node is grayed in the
genotype.

With 2 nodes in each genotype, each can be linked to the output of a lower-
number node or the inputs to the odd-3-parity, the total number of possible
genotypes is 32 x 42 = 144. In general, for odd-N-parity with I nodes in each
genotype, the total number of genotypes in the search space is:

-1

IV +i)

i=0

A genotype may have one or two active nodes. Since only active nodes are
mapped to the phenotype, a phenotype can be either 1-node or 2-nodes. In the
example given in Figure 5, the 2-node genotype 0102 is mapped to a l-node
phenotype 02. Figure 6 shows the phenotype sub-network where each vertex is
either 1-node (2-integers) or 2-nodes (4-integers).

If the phenotype is 2-integers, its genotype is **[0..2] [0..2], where * de-
notes “don’t care”. Hence, the number of 2-integers phenotypes is 32 = 9. If the
phenotype is 4-integers, the genotype is [0..2]1[0..2]13[0..2] or



Fig. 6. The phenotype sub-network where some vertices are 2-integers and some are
4-integers.

[0..2][0..2]1[0..213 or [0..2][0..2]33. The number of 4-integers pheno-
types is therefore 3% + 3% + 32 = 63. The total number of phenotypes is 72.

A 2-integers phenotype has its associated genotype with two “don’t care”
genes, each can be any of the 3 inputs to the odd-3-parity. The mapping be-
tween genotypes and phenotypes is therefore 9-to-1. In contrast, every 4-integers
phenotype corresponds to one 4-integers genotype, i.e. the mapping is 1-to-1.

Since some phenotypes are 2-integers and some are 4-integers, the distance
between every pair of phenotypes in the network is no longer the straight-forward
Hamming distance. The following gives the algorithm that calculates d(i, j) in
this network:

if both v; and v; are 2-integers
d(i,j) = Hamming(v;,v;);

else if both v; and v; are 4-integers
d(i,j) = Hamming(v;,v;) ;

else if v;(non-3-gene) == v;(non-3-gene)
d(7'7.7) = 1;

else
d(i,j) = 2;

When both phenotypes have the same length, their Hamming distance is their
distance. When one of the phenotypes has 2 integers and the other has 4 integers,
their distance can be either 1 or 2, depending on their integer values. A phenotype
with 4 integers means both nodes in the associated genotype are active and are
linked by a gene value 3. When this link gene is mutated to a different value,
the two nodes are no longer linked; only one of them remains active while the
other becomes inactive. As a result, the original 4-integers phenotype becomes
a 2-integers. For example, changing gene value “3” in the genotype 0031 to “2”
leads to genotype 0021, which is mapped to a 2-integers phenotype 21. If this
link is the only different gene in the active node, their distance is 1. Additionally,
if the other link gene in the active node is also different, their distance is 2. For
example, d(0231,20) = 2 and d(0031,21) = 1.

Using this distance function d(, ) and a T value of 72, we apply Equation
(1) to compute the characteristic path length for this network. The resulting L
is 2.387324.



The network clustering coefficient is calculated as follows. Each 2-integers
phenotype has 22 neighbors; 4 of them have length 2 and 18 have length 4 (see
Figure 6). The number of neighbors with length 2 is easy to count: each of the
two integers may be mutated to one of the 2 other inputs to odd-3-parity. So,
the number of neighbors is (3 — 1)? = 4. Counting the number of neighbors with
length 4 has two parts: 1) the first integer value is mutated into 3; this leads to
32 possible phenotypes. 2) the second integer value is mutated into 3; this leads
to another 32 possible phenotypes. So, the total number of neighbors with length
4 is 18. With 22 neighbors and 74 edges among them, the clustering coefficient
for this type of phenotype is:

Clength2 = % = 0.32034
(%)

Each 4-integers phenotype has 10 neighbors. There are 64 such kind of
phenotypes and 54 of them have neighbors with length 2 while 9 don’t. In
the first group of 54, each phenotype has 3 (N) neighbors of length 2 and 7
(N=1)+ (N —1)4+ 9N + 1 — 1)) neighbors of length 4 (see Figure 7). The
number of edges among these neighbors is 10. In the second group of 9, each
phenotype has 10 neighbors; all of them are of length 4 (see Figure 8). The
number of edges among these neighbors is 8 (N —1) + (N — 1) + N + N). The
clustering coefficient for these two phenotype groups (a and b) are:

20
Clengthlla = m = 0.44444

2

Clengthllb = i =0.17777

()

Fig. 7. A 4-integers phenotype (group a) has 10 neighbors.

The clustering coefficient of the Boolean function network is the average over
the clustering coefficient of the 72 phenotypes: C' = 0.3955.

Figure 9 gives the phenotype network. The network has similar properties
as network (b) in Figure 2: small L and large C. Thus, this is a small-world
network. When the number of phenotype n increases (through the increase of
genotype length), we expect L to grow logarithmically. This will be verified in
our future work.



Fig. 8. A 4-integers phenotype (group b) has 10 neighbors.

NN \

Fig. 9. The Boolean function network with a many-to-one genotype-phenotype map-
ping representation (L = 2.38734, C' = 0.395599).

5 Analysis and Discussions

Table 5 summarizes structural properties of the two studied Boolean function
networks. The many-one mapping representation has a higher connectivity (k)
because a mutation on the link value of an active node can make inactive nodes
active and vice versa. As a result, more phenotypes become accessible in one mu-
tation step. Also, the Boolean function network based on the one-to-one mapping
representation does not have the small-world structure while the Boolean func-
tion network based on the many-to-one mapping representation does. We believe
one reason for such a difference is the “short cuts” introduced by redundant genes
in the genotypes.

Table 1. Structural properties of the two studied Boolean function networks.

one-one mapping many-one mapping

n 81 72

k 8 10 or 22
In(n) 4.394 4.2766
L 2.7 2.38734

C 0.14285 0.395599




As demonstrated, this many-to-one mapping representation allows some genes
in a genotype not expressed in the phenotype, hence become redundant. How-
ever, these redundant genes can be activated and become a part of a phenotype
which is very different from the original phenotype. For example, the genotype
1021 is mapped to phenotype 21; the first two genes 10 are redundant. However,
when the gene value “2” is mutated to a “3”, its phenotype becomes 1031, a very
different phenotype from the original 21. Without these redundant genes, their
distance would be farther in the network. In general, short cuts exist between
every pair of short (2-integer) and long (4-integers) phenotypes. Such short cuts
increase the network clustering coefficient C' and reduce (slightly) the character-
istic path length L.

Shorter phenotypes have twice more links than the longer phenotypes have.
In other words, shorter phenotypes are hubs in the network and are visited more
frequently during the evolutionary search. As shown on the left top corner of
Figure 9, these hubs (9 of them) have a higher connectivity. Although small in
number, hubs play an important role in small-world networks. In addition to
providing short cuts, they also make the whole network connected. Removing
some of the hubs, according to [2], a small-world network is no longer connected.

Although 2 data points are statistically meaningless, the link distribution in
the Boolean function network suggests that it might follow power law. Recall that
power law distribution does not have a peak as that of a Gaussian distribution.
Instead, the distribution has a continuously decreasing curve. With this link
distribution, there are a few hubs and many vertices having a small number of
edges. Every power law is characterized by a unique exponent telling how many
hubs are there in the network relative to the non-hub vertices. This exponent
gives the search bias in the network.

The purpose of placing evolutionary search space in a small-world network
framework is to help us design efficient evolutionary algorithms to navigate
search. We have made the first step of identifying a small-size Boolean function
network to be small-world. We have also explained some important small-world
structures, such as hubs and power law link distribution. Our next goal is to
investigate if we can use these properties to design evolutionary algorithms that
finds the shortest path in the small-world networks.

At the meantime, we have to address questions on how our findings can be
applied to networks with a larger number of vertices. For example:

— Would the network still have small-world properties ?

— Would the characteristic path length L grow logarithmically?

— Would the link distribution follow the power law as that observed in some
small-world networks, such as World-Wide-Web [1]?

— What is the search bias under such link distribution ?

6 Concluding Remarks

Modeling search space based on the small-world network structure is a new ap-
proach to study evolutionary search in fitness landscapes with neutrality. We



have demonstrated that a Boolean function network based on a many-to-one
genotype-phenotype mapping representation is small-world. This opens the pos-
sibility of applying small-world networks research to the general field of Evolu-
tionary Computation.

Small-world networks are very rich in structures. We have discussed some of
them such as clusters, hubs and power law link distribution. Such properties are
valuable assets to the design of effective evolutionary algorithms in navigating
the search of solutions.

The investigated networks, however, are very small. There remains many
questions on how our findings can be applied to typical evolutionary search
networks which are much larger in size. We acknowledge the gap and continue
our efforts to address those open issues.
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