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1 Introduction

Genetic and evolutionary algorithms (GEAs) [1-4] evolve a population of can-
didate solutions to a given optimization problem using two basic operators: (1)
selection and (2) variation. Selection introduces a pressure toward high-quality
solutions, whereas variation ensures exploration of the space of all potential solu-
tions. Two variation operators are common in current genetic and evolutionary
computation (GEC): (1) crossover, and (2) mutation. Crossover creates new can-
didate solutions by combining bits and pieces of promising solutions, whereas
mutation introduces slight perturbations to promising solutions to explore their
immediate neighborhood. However, fixed, problem independent variation oper-
ators often fail to effectively exploit important features of high-quality solutions
obtained by selection. One way to make variation operators more powerful and
flexible is to replace traditional variation of GEAs by the following two steps:

1. Build a probabilistic model of the selected promising solutions, and
2. sample the built model to generate a new population of candidate solutions.

Algorithms based on this principle are called probabilistic model-building ge-
netic algorithms (PMBGAS) [5], estimation of distribution algorithms (EDAs) [6],
or iterated density estimation algorithms (IDEAs) [7]. PMBGAs successfully
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solve problems that were intractable using previous generation of genetic and
evolutionary algorithms.
The purpose of this workshop is to present and discuss

— recent advances in PMBGAs,

— new theoretical and empirical results,

— applications of PMBGASs, and
promising directions for future PMBGA research.

Contributions to this workshop include different avenues of cutting edge PM-
BGA research. Miihlenbein and Hons investigate theoretical and empirical as-
pects of EDAs in general, and a special structure learning algorithm used in
LFDA [8] in particular. Bosman and de Jong present an interesting work on de-
signing EDAs for evolving computer programs using grammar transformations.
Ocenasek and Pelikan analyze scalability of the mixed Bayesian optimization
algorithm and show that PMBGAs can be effectively parallelized yielding speed-
ups proportional to the problem size. Sastry, Goldberg, and Pelikan present two
efficiency enhancement techniques for PMBGAs—a competent mutation oper-
ator, and an evaluation-relaxation technique based on an internal probabilistic
fitness model-—and show that significant speed-up can be obtained using the
proposed techniques. Finally, Pelikan discusses existing theory and efficiency en-
hancement techniques for the Bayesian optimization algorithm (BOA) and its
hierarchical extension, the hierarchical BOA (hBOA). The combination of pa-
pers presented at this workshop not only captures many important facets of
PMBGA research, but also brings forth a number of interesting and challenging
topics for future research.
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