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Abstract. Estimation of Distribution Algorithms (EDA) have been pro-
posed as an extension of genetic algorithms for optimization. In this
paper the major design issues are presented within a general interdisci-
plinary framework. It is shown that EDA algorithms compute mazimum
entropy or minimum relative entropy approximations. A special struc-
ture learning algorithm LFDA is analyzed in detail. It is based on a finite
minimum log-likelihood ratio principle. We investigate important param-
eters of the presented EDA algorithms by analyzing the performance on
synthetic benchmark functions.

1 Introduction

The Estimation of Distribution (EDA) family of population based search algo-
rithms was introduced in [12] as an extension of genetic algorithms.! The follow-
ing observations lead to this proposal. First, genetic algorithms have difficulties
to optimize deceptive and non-separable functions, and second, the search dis-
tributions implicitly generated by recombination and crossover can be extended
to include the correlation of the variables in samples of high fitness values.

EDA uses probability distributions derived from the function to be optimized
to generate search points instead of crossover and mutation as done by genetic
algorithms. The other parts of the algorithms are identical. In both cases a
population of points is generated and points with good fitness are selected either
to estimate a search distribution or to be used for crossover and mutation.

In [12] the distribution has been estimated by computationally intensive
Monte Carlo methods. The distribution was restricted to tree-like structures.
It has been shown in [11] that simpler and more effective methods exist which
use a general factorization of the distribution.

The family of EDA algorithms can be understood and further developed
without the background of genetic algorithms. The problem to estimate empir-
ical distributions has been investigated independently in several scientific disci-
plines. A discussion of the different approaches in statistics, belief networks, and
statistical physics can be found in [5].

! In [12] they have been named conditional distribution algorithms.



Today two major branches of EDA can be distinguished. In the first branch
the factorization of the distribution is computed from the structure of the func-
tion to be optimized, in the second one the structure is computed from the
correlations of the data. The second branch has been derived from the theory of
belief networks [2]. For large real life applications often a hybrid between these
two approaches is most successful [8].

The paper is intended as a short introduction to the theory of EDA. We will
only consider binary variables. It is not intended as a survey of ongoing research.
Here an excellent overview is already available [3].

The outline of the paper is as follows. In section 2 the basic steps to derive
the Factorized Distribution Algorithm are recapitulated. A factorization theo-
rem will be discussed which uses the structure of the function to be optimized to
factor the distribution. In section 3 the problem addressed by the factorization
theorem is generalized. We introduce the principles minimum relative entropy
and minimum log-likelihood ratio. In section 4 the learning of models from sam-
ples of high fitness values is described. Important parameters of the presented
EDA algorithms are investigated in section 5.

2 Factorization of the Search Distribution

EDA has been derived from a search distribution point of view. We just recapit-
ulate the major steps published in [11,7-9].
Let a function f : X = IR>¢ be given. We consider the optimization problem

Xopt = argmax f(x) (1)

A good candidate for optimization using a search distribution is the Boltz-
mann distribution.

Definition 1 For 8 > 0 define the Boltzmann distribution? of a function f(x)

as
B BI()

pﬁ(X) = Ey B = Zf(ﬂ) (2)

where Z¢() is the partition function. To simplify the notation B and/or f might
be omitted.

2.1 Factorization of the distribution

In this section an efficient numerical algorithm is derived if the fitness function
is additively decomposed.

E(x)
? The Boltzmann distribution is usually defined as e™ 7 /Z. The term E(z) is called
the energy and T' = 1/ the temperature. We use the inverse temperature 3 instead
of the temperature.



Definition 2 Let s1,...,8,, be index sets, s; C {1,...,n}. Let f; be functions
depending only on the variables x; with j € s;. Then

F&) =3 filoe) ®

is an additive decomposition of the fitness function f.

We need the following sets:

Definition 3 Given s1,...,8y, we define for i = 1,...,m the sets d;, b; and
C;!
i
d; == U Sjs b; := s; \ di—1, ci = s;Nd;_q (4)
j=1
We set dy = 0.

From the additive decomposition of the function we can construct a graph-
ical model by connecting those variables which are contained in the same sub-
function. In the theory of decomposable graphs, d; are called histories, b; resid-
uals and ¢; separators [4]. In [11] we have proven the following theorem.

Theorem 4 (Factorization Theorem). Let pg(x) be a Boltzmann distribu-
tion with

( ) eBf(x) (5)
ps(x) = =
T Z,(8)
and f(x) =31 fs,(x) be an additive decomposition. If
bi #0 Vi=1,....m; dyn={x1,...,2n}, (6)
Vi>23j <i such that ¢; Cs; (7
then
m [Ti~1 P (b s Xe:)
ppX) = _ pe(xbi|xe;) = 5w — (8)
209 = Ly oo = T 2GS

Definition 5 The constraint defined in (7) is called the running intersection
property (RIP). The factorization is polynomially bounded (PBF) if the size
of the sets {b;,c;} is bounded by a constant independent of n.

The algorithm F'DA uses a factorization and estimates the unknown marginals
from samples. For the class of PBFs fulfilling the RIP the algorithm will converge
to the optimum, but convergence to the optimum will depend on the size of the
sample. The necessary size of the sample is smaller if a number of steps with low
selection is used instead of just one step using strong selection.



Algorithm 1: FDA — Factorized Distribution Algorithm

1 Calculate b; and ¢; from the decomposition of the function.

t <= 1. Generate an initial population with N individuals from the
uniform distribution.

3 do{
4 Select M < N individuals
5 Estimate the conditional probabilities p(xs,|Xc;,t) from the se-

lected points.

6 Generate new points according to p(x,t+1) = [T~ p(xs; [%c;, ).
7 t<t+ 1
8 } until (stopping criterion reached)

FDA has experimentally proven to be very successful on a number of func-
tions where standard genetic algorithms fail to find the global optimum. In [6] the
scaling behavior for various test functions has been studied. For recent surveys
the reader is referred to [8,10].

Optimization problems which have a polynomially bounded factorization ful-
filling RIP can provably be solved in polynomial time. This is a sufficient con-
dition, not a necessary condition. Many problems do not admit a PBF fulfilling
RIP, but an approximate factorization might still lead to the optimum.

Conjecture: In the class of non-polynomially bounded problems there exist in-
stances which can only be solved in exponential time. But the number of instances
which can be solved polynomially seems to be very large.

3 Minimizing the Kullback-Leibler divergence

The factorization theorem provides the marginals needed for an exact factor-
ization. Thus the given distribution will be exactly reproduced. The estimation
problem can be generalized to any given set of marginals.

Problem
Given a set of marginal distributions p(xs,) from an unknown Boltzmann distri-
bution, compute a distribution which satisfies the marginals.

Among the possible solutions of this problem, a common choice is the distribution
which maximizes the entropy. Let us recall

Definition 6 The entropy [1] of a distribution is defined by

H(p) = =) p(x) In(p(x)) (9)

Maximum entropy principle (MaxEnt): Find the mazimum entropy distri-
bution for p(x) which satisfies the given marginals.

The MaxEnt solution is unique if the given marginal distributions fulfill the
requirements of probability theory [5]. If there exists some information about the



target distribution, then we might want to approximate the target distribution.
This can be achieved as follows.

Definition 7 The Kullback-Leibler divergence (KLD) between two distributions
is defined by
q(x)

KLD(qllp) = ) _ q(x) e (10)

Note that KLD is not symmetric! Thus we have two choices for minimization.

X

Minimum relative entropy principle (MinRel) Given a set of consistent
marginal distributions, find the distribution q which minimizes K LD(q||p) to the
target distribution p(x).

In [1] (p. 18) KLD(p||q) is called the expected logarithm of the likelihood
ratio. It is a measure of the inefficiency of assuming ¢ when the true distribution
is p. It is connected to the description length. If we knew p we could construct
a code with average description length H (p). If, instead, we used the code for
distribution ¢, we would need H (p) + K LD(p||q) bits on the average to describe
the random variable. Thus the following principle is also justified:

Minimum expected log-likelihood ratio principle (MinLike) Given a
set of consistent marginal distributions, find the distribution q which minimizes
KLD(pl||q) to the target distribution p(x).

If p is the uniform random distribution, then MinLike minimizes ) In g(x).
This is not the entropy of ¢(x). The MinLike principle will be used for structure
learning of Bayesian networks.

4 Learning a Bayesian network from data

This section will be very brief, compared to the difficulty of the subject. An
excellent in-depth discussion can be found in [3]. We will just motivate some of
the major design decisions.

First we simplify the notation. Capital letters denote variables, lower case
letters instances of the variables. Using simple rules of probability one can show
that any factorization can be written as a Bayesian network

n

q(x) = [ p(wilms) (11)

i=1

II; are called the parents of X;. If the running intersection property is fulfilled,
the Bayesian network is singly connected. If the number of the parents |II;]| is
bounded by a constant independent from n, we say the Bayesian network is
polynomially bounded (PBB).

Both the MaxEnt and the MinRel principle assume that a fixed set of marginal
distributions is given. But if the data is provided by a numerical sample, we can
choose which marginal distributions should be used in order to obtain a Bayesian
network which reproduces the data accurately.



Thus we have to deal now with the problem how to choose the appropriate
marginal distributions. This problem can be solved in the following way. Let @
be the set of all distributions g(x) for the Bayesian networks considered. We
introduce the average of In g over the true distribution p

E(lng) = Zp )Ing(x (12)

We have
E(lng) = —H(p) — KLD(p||q) (13)

Remark: The minimization of KLD(p||q) in @ is equivalent to maximization
of E(lng).

Theorem 8. For the distribution q(z) = [, q(zi|m;) we have

E(lng) = Z Z (i, m;) In q(z;|m;) (14)

=1 z;,m;

Proof.

Z Y1ng(x Zp Zlnq x;|m;)
X i=1

X
n

= Z Z p(zs, ;) In gz |m;)

=1 z;,m;

Equation (14) can be approximated using a finite sample. We introduce the
following notation. Let N denote the size of the sample X'. Let N(z;, ;) denote
the number of instances with X; = z; and II; = m;, where the states of II; are
numbered 1 < m; < 21l Let N(m;) =3, N(z;,m;). We can now approximate

Bing) ~ L) = ). 3 My Neon) (15)

=1 z;,m;
Thus we have arrived at the following principle

Finite sample MaxLike principle (FinMaxLike)
Mazimize in the class of Bayesian networks @

maxL (q|X) = max Z Z x“ i) Njirﬂf(:,r:;z) (16)

=1 x;,m;

Remark: When an edge i; — i is added, L(g|X) is increased by

N (@i s Tig s Tig) 1 N(Tiy s By Wiy )N (i)
I(X;,, X |1I;,) = E 27 2 Lo 2 2 17
( " 12| 12) N nN($i1:7ri2)j"($i2=7ri2) ( )

Tiy Tig,Tig



which is called the conditional mutual information of X;, and X;,, given IT;, [1].
Since this is always non-negative, FinMaxLike does not prefer exact models of
small complexity (a small number of connections) compared to exact models of
large complexity. Thus a criterion is urgently needed with the following property:
It combines maximizing the log-likelihood with minimizing the complexity.

There have been many proposals for such a criterion. We just discuss the pop-
ular criterion derived by [13]. It has been also called the Bayesian Information
Criterion [2].

Definition 9 Let V' be the number of free parameters in the marginal distribu-
tions of the graphical model q. Then the weighted BIC measure is defined by

BIC, = N L(g|X) — alnN +V (18)

It has been shown that BIC' is asymptotically equivalent to the minimum de-
scription length. [13] computed a = 0.5 as the best weighting factor for N — oc.

The BIC criterion can be used to incrementally construct a Bayesian net-
work starting from the empty network. In most programs a simple greedy hill
climbing heuristic is used, which chooses the edge maximizing (18). This gives
the algorithm LFDA (Learning Factorized Distribution Algorithm). For details,
the reader is referred to [6, 3].

5 How to test EDA algorithms

EDA algorithms are complex stochastic programs. They have to be tested in a
number of carefully selected steps. In our opinion most researchers developing
EDAs have concentrated so far on the benchmark method to show the power of
EDA algorithms. A popular benchmark or a difficult function is taken and the
success of the optimization algorithm is shown. The success rate is the percent-
age of runs computing the optimum. There is no detailed discussion why the
algorithms work. The internal behavior of the algorithm (e.g. which Bayesian
network it has constructed etc.) is not reported. With the benchmark approach
a generalization of the results is difficult.

We propose that EDA algorithms should be tested in carefully selected steps
instead — starting from theoretically understood problems to more complex ones.
Both FDA and LFDA depend on parameters. For FDA these are the size of the
population N, the selection strength (for truncation selection this is the selection
threshold 7 = M/N, where M is the number of selected individuals), and the
Bayesian hyper-parameter p. LFDA has in addition the structure penalty factor
a. We evaluate the algorithms and the parameters with a set of synthetic fitness
functions. The first three functions are separable of order 5. That means that
they consist of m = n/5 disjunct blocks of size 5. Thus we have

Fl(m) :Zfl($5i—47---7$5i) (l=1,2,3)
i=1



The first two sub-functions are defined as follows

1 = (1'1"%'2;:5371'47375) = (1:171;17 1)
0 otherwise

f1($1,$2,$3,$4,$5) = {

1 = (z1,72,23,24,75) = (1,1,1,1,1)
f2($1,-’L'2,.’L'3,£E4,.CC5) = 09 = (55'1,332,513'3,5134,335) = (050705())0) (20)
0 otherwise

The third function is deceptive.

(09 <= Y 2,=0
08 <= >z, =1
0.7 <= > z;,=2
06 «— Yu;=3
00 <= Yur;=4
\1.0 <:>E$i=5

fdec($1;x2;w3;w4,$5) =9 (21)

The fourth and the fifth function are non-separable. They consist of m overlap-
ping blocks of size 3 (n = 2m + 1). We have a different function for the last
block.

m—1

F(x) := Z fi(@ai—1, T2, T2i41) + g1(T2m—1, T2m, T2m+1) (1=4,5) (22)

i=1

The fourth function IsoPeak is defined by

m < (z,y,2) = (0,0,0)
f4(l’,y,2§) ={m—-1 < (m,y,z) = (17171) (23)
0 otherwise
m << (z,y,2) =(1,1,1
94(2,y,2) = ( . )= ) (24)
0 otherwise
The fifth function is the most difficult to optimize.
< (z,y,2) = (0,0,0)
-3 <= (z,y,2)=(1,0,0)0r (0,1,0
fo(@9,2) = (7,,2) = (1,00 or 0.1,0) (o)

m
m
m—1 < (z,5,2) = (1,1,1)
0 otherwise

m

> (z,9,2) = (0,0,0)
95(z,y,2) = 2m+5 <<= (z,y,2) = (1,1,1) (26)
0 otherwise



Table 1. Population size for which the optimum is found with 100% in 20 runs. p de-
notes use of the Bayesian hyper-parameter (29). The selection threshold for truncation
selection was set to 7 = 0.3, except * 0.1, { 0.7, 1 0.95. For missing values, the required
population size is too large.

Alg n|Fi Fip| Fo Fop| Faee Fagecp| F2 Fup Fs Fsp
FDA 25 (200 50 | 200 50 400 50 250 1200 500 3600
FDA 50200 50 | 200 50 600 100 | 700 4000* | 3500 -
FDA 100|500 100 | 200 100 | 800 100 | 1500 - 15000 -
FDA 200|700 200| 700 200 | 1200 300 |3500% - — —
LFDA 25 (400 300 | 500 300 |3500* 500* | 900 2000 | 1500 6000
LFDA 50 (800 400 | 700 500 |18000* 17000*|5000* 12000*| 50000 —
UMDA 25|70 150 |500* 600* - — - - - -
UMDA 50 (100 200 |1600* 1300* - — — — — —
UMDA 100{200 330 |4200* 3300* - - - - - -
UMDA 200|400 600 — — — — — - — —

The function F5 combines deception and isolation. The global optimum is
at x = (1,1,...,1), but the second largest values have a Hamming distance of
n — 3 or n — 4 to the optimum. The third largest values have a distance of n — 5
or n — 6. Thus the global optimum is extremely isolated. This problem poses a
challenge to any iterative optimization algorithm. The algorithms are attracted
by the second largest optimum. But from this region there exists no path to the
global optimum. All of the 0’s have to be flipped together in order to jump to
the global optimum. Any randomized local optimization procedure will need an
exponential time to find the global optimum. Nevertheless, we know from the
factorization theorem that FDA will compute the optimum in polynomial time.

In table 1 we show general results for some EDAs. UMDA uses only univariate
marginals for the factorization. The selection threshold T is defined by M = TN
where M is the number of selected points.

5.1 The Bayesian hyper-parameter p

Let the marginal distribution p(x) to be estimated from a population of size M.
Let x = (21,...,2x) and N(x) the number of individuals with configuration x.
Then in the Bayesian framework

. Nx)+p
500 = 37 pars (27)
is used with some p > 0. For p = 0 we have the conventional maximum likelihood
estimator. The question is how to set p. We discuss the problem with a specific
example — the factorization consists of m blocks of size k, and m — 1 blocks are
correct, in the last block all the bits in the whole population are incorrect. In
order to obtain the optimum we would like to maximize the probability to flip



the incorrect block, while leaving all the others intact:

-1

p M+p \™
= 2

r(h) = 3198, <M+2kp> 7 max (28)

Setting the derivative with respect to p equal to zero, we get

B M
Pmax = 9k —1)(m - 1) — 1

(29)

The above value has been derived under severe assumptions. We see in Table 1
that it works fine for the separable functions Fy, Fs, Fyec, but not at all for the
overlapping functions.

Nevertheless it gives some indication about the possible range. The derivation
of a hyper-parameter for conditional distributions is much more difficult.

5.2 The penalty weight «

Schwarz [13] has computed an optimal penalty factor @ = 0.5 under severe
assumptions. (One of the assumptions is N — 00.) Since we are using fairly small
population sizes, we investigate the influence of a on the computed network in
the neighborhood of a = 0.5. In the first test we generate uniform random data.
In this case the exact network has no edges at all. Table 2 shows empirical results.
How is an optimal a defined? It is obvious that no edges will be generated for
a large a. For very small o many edges will be generated. Thus we are looking
for a value of « at the transition between these two regimes. Loosely speaking,
we look for ay, with #edges < 5 for a > ay;, 4 < #edges < 10 for a = a4, and
#edges > 10 for a < ay;.

Table 2. Number of edges added by LFDA for a uniform random data set (average
over ten runs).

a ||n| N |#edges||n| N |#edges| n | N |#edges
1.00|[25| 200 | 0.3 |50 400 | 0.4 |100| 800 | 0.8
0.75||25| 200 1.5 ||50| 400 | 3.4 |/100| 800 | 6.5
0.50(|25| 200 | 7.1 ||50| 400 | 17.2 ||100| 800 | 45.8
0.25(|25| 200 | 38.4 |50 400 | 89.4 ||100| 800 | 197.6
0.10(|25| 200 | 113.1 ||50| 400 | 254.7 ||100| 800 | 536.5
0.50(|25{10000f 0.5 ||50{10000/ 4.3 |/100{10000| 10.9

The results of table 2 suggest that a value of oy, = 0.75 fulfills the re-
quirements for reasonably large population sizes. For very large population sizes
atr = 0.5 might be indeed the best value.

Next we investigate populations generated by LFDA. We take the separable
function Fye. as example. Instead of reporting the number of found edges, we



first investigate the detection of dependent variables after the first three selection
steps. We tried two criteria, the (unconditional) mutual information (17), and
the Chi-Square test. The results were very similar. In Table 3 we show for the
first three generations how many of the twenty edges with the largest values of
(17) are correct, i. e. in the same block.

Table 3. Number of correct edges within the twenty edges with biggest mutual infor-
mation. Values for the first three generations, averaged over five runs.

a=10.25 a=0.5

n| N 7=0.1 7=03 7=0.1 7=03
25(1000(|11.2 19.4 20.0({3.6 5.4 7.2({11.4 17.8 19.4|3.0 2.2 3.4
50(1000|| 1.6 1.8 4.0{1.81.21.6| 2.6 3.2 7.0/1.81.01.8
50(5000|| 3.8 15.2 20.0({1.2 2.0 4.6| 4.8 7.211.6/2.8 4.6 4.8

Table 4. Number of correct edges (total number of edges) in the graph for the first
three generations of LFDA, running on Fyec with n = 50.

N a=0257=01 =025 1=03 a=05,7=01
1000{[18 (135), 23 (134), 20 (112)] 6 (87), 10 (104), 11 (110)] 2 (38), 5 (57), 9 (62)
5000([25 (98), 57 (119), 63 (122)|13 (74), 21 (83), 26 (95)|10 (25), 15 (39), 21 (43)

In Table 4 we give for the first three generations the number of correct edges
added to the graph. For Fyep with n = 50 there are 100 correct edges.

The results are very disappointing. A reasonable number of correct edges is
computed for large population sizes only. But all structure learning algorithms
depend on the correct computation of the dependent variables! It seems that for
large population sizes a smaller value of « is favorable.

This problem needs further investigation. Maybe the introduction of local
hill-climbing algorithms will bring improvements. These take the generated in-
dividuals and attempt to improve them by searching for better values in their
neighborhood. Then the space of the local maxima is much smaller than the orig-
inal search space. Thus structure learning algorithms should be able to compute
the dependencies more easily. First results in [8] confirm this conjecture.

6 Conclusion and Outlook

In this paper we have investigated some EDA algorithms for optimization. The
efficient estimation and sampling of distributions is a common problem in several
scientific disciplines. The different approaches have been discussed in more detail
in [5]. We have identified two principles used for the estimation — minimum rel-
ative entropy and minimum expected log-likelihood ratio. If p is the distribution
to be estimated, then MinRel minimizes K LD(q||p) whereas MinLike minimizes
KLD(pllq)-



The structure learning algorithms have problems to detect the correct depen-
dencies of the variables in reasonably large data sets. Thus the efficiency of such
algorithms is low. Here the introduction of local hill-climbing processes promises
improvements.

Our software can be downloaded from our web site
http://www.ais.fraunhofer.de/ “muehlen/.
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