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Abstract. This paper demonstrates that the self-adaptive technique of
Differential Evolution (DE) [1] can be simply used for solving epistatic
multi-objective optimization problems. The real-coded crossover and mu-
tation rates within the NSGA-II [2] have been replaced with a simple
Differential Evolution scheme and results are reported on a rotated prob-
lem which has presented difficulties using existing Multi-objective Evolu-
tionary Algorithms. The Differential Evolution variant of NSGA-II has
demonstrated rotational invariance and superior performance over the
NSGA-II on this problem.

1 Introduction

Traditional genetic algorithms that employ low mutation rates and fixed step
sizes have significant trouble with problems exhibiting epistatic behaviour, where
parameters are interdependent. Although the NSGA-II is a very robust multi-
objective optimization algorithm it suffers from the same limitations as tradi-
tional Genetic Algorithms on these problems.

Previous work has reported on the poor performance of a number of MOEAsS,
including NSGA-II, on a rotated problem which exhibits epistatic behaviour [2].
The primary reason for this poor performance is the crossover and mutation op-
erators employed within the algorithm. Epistatic problems of this type require
correlated self-adapting mutation step sizes in order to make timely progress in
optimization. Traditional GAs are unsuited to this type of problem [3]. In con-
trast, Differential Evolution has previously demonstrated rotationally invariant
behaviour in the single objective domain [4]. This provides motivation to further
demonstrate its worth as a technique for addressing epistatic multi-objective
optimization problems. After surveying existing works in the literature, it is ap-
parent that no work has explicitly demonstrated rotationally invariant behaviour
in multi-objective problems. Therefore, a simple alteration to the NSGA-II has
been proposed, which replaces the mutation and crossover operators with a
Differential Evolution algorithm for generating candidate solutions. Differential
Evolution has all the desired properties necessary to handle complex epistatic
problems without the implementation complexity and computation cost of some
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self-adaptive Evolutionary Strategies [4]. A number of experiments have been
conducted on a uni-modal rotated problem from the literature [2], and found
that integrating Differential Evolution within the NSGA-II achieves rotational
invariance on this problem.

In the following section a brief introduction to the important concepts of
Multi-objective Optimization, Differential Evolution, and Rotated Problems is
provided. Section 3 will discuss the proposed model which integrates Differential
Evolution with the NSGA-II. Section 4 outlines the performance metrics em-
ployed in this study. Section 5 describes the experiments that were conducted,
followed by the parameter settings and discussion of results in Section 6 and 7.
The outcomes of this work and some possible future directions are outlined in
Section 8.

2 Background

2.1 Multi-objective Optimization

Multi-objective optimization deals with the optimization of problems which are
formulated with some or possibly all of the objectives in conflict with each other.
Such problems can be described as a vector of objectives f(x) = (f1(x), f2(x), ..
, fn(X)) subject to a vector of parameters x = (z1,xa, ..., Z;,) € X, where x is
an input parameter vector from the parameter vector space X, n is the number
of objectives, and m is the number of parameters. A solution x = (21, z2, ..., Tp)
dominates a solution y = (y1,¥2,...,yn) if objective function f;(x) is no worse
than objective function f;(y) for all n objectives and there exists some objective
Jj where f;(x) is better than f;(y). The non-dominated solutions in a population
are those solutions which are not dominated by any other individual in the
population. Multiobjective evolutionary optimization is typically concerned with
finding a diverse range of solutions close to the Pareto-optimal front, which is
the globally non-dominated region of the objective space.

A number of evolutionary multiobjective algorithms have been developed
since the late 80s, and NSGA-II [2], amongst others, is typically regarded as the
current state of the art.

2.2 Differential Evolution

Differential Evolution is a population-based direct-search algorithm for global
optimization. It has demonstrated its robustness and power from a variety of
applications such as neural network learning [5], IIR-filter design [6], and the
optimization of aerodynamic shapes [7]. It has a number of important charac-
teristics which make it attractive as a global optimization technique, and the
reader is referred to [4] for an excellent introduction to Differential Evolution
which covers this in more detail. The primary property of Differential Evolution
that will be the topic of study in this paper is rotational invariance.
Differential Evolution differs from other EAs in the mutation and recom-
bination phase. Unlike stochastic techniques such as Genetic Algorithms and



Solving Rotated Multi-objective Optimization Problems Using DE 3

Evolutionary Strategies, where perturbation occurs in accordance with a ran-
dom quantity, Differential Evolution uses weighted differences between solution
vectors to perturb the population. In single objective optimization, the new indi-
vidual is compared with a current population member and if it evaluates better
it replaces the member.

randomly select ri,19,r3 € {1,2,...,n}; r1 #ro #£r3 £ (1)
w1 =Xi6 + K- (X306 —Xi,6) + F - (X1,6 — Xr2,0)

If the new individual u; g41,evaluates better than the currently selected individ-
ual X; @, then the current individual is replaced with the new one. The algorithm
iterates from i to n, where n is the size of the population.

Contour line represents
region of constant fitness
T

Fig. 1. The above figure shows the vector addition and subtraction necessary to gen-
erate a new candidate solution in DE/current-to-rand/1.

The Differential Evolution variant described here is known as DE/current-
to-rand/1 (Equation 1) and it guarantees rotational invariance. The shorthand
description of this model states that DE/current-to-rand/1 generates ‘vectors
that are linear combinations of the current vector x;,, and a randomly chosen
donor x,3.¢’ [4]. The crossover constant, CR, is not used and implicitly equals 1.
The Population of a Differential EA is typically randomly initialised according
to the initial parameter bounds. At each generation GG, the population undergoes
perturbation. Three individuals, or solution vectors denoted by x, are randomly
selected from the population such that x,1,¢ # Xr2.¢ # Xr3,¢. The coefficient
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K is responsible for the level of combination that occurs between x,3 ¢ and the
current individual x; ¢. The coefficient F' is responsible for scaling the step size
resulting from the vector subtraction x,1,¢ — X,2,g. Figure 1 details the rela-
tionship between the vectors responsible for the generation of a new candidate
solution.

2.3 Rotated Problems

A rotated problem is rotated on one or more planes in the decision space, where
the number of planes is determined by the dimensionality of the problem. A prob-
lem with D dimensions in the decision space has D(D — 1)/2 possible planes of
rotation. A problem rotated on all possible decision space planes means that
every decision space variable has some dependency on every other. The interde-
pendence between parameters is known as epistasis.

In order to generate a rotated problem, each solution vector x is multiplied
by the rotation matrix M, and the result is assigned to y (Equation 2). The new
vector is then evaluated on each of the objective functions.

Figure 2 demonstrates the effect of rotation on the 2-dimensional version of
the multi-objective problem outlined below. The shapes of the functions stay the
same, but their orientations change.
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Fig. 2. The above figure shows the effect of a 45-degree rotation on the xixz2 plane
on function f; and f». Before rotation, the functions are aligned with the coordinate
system, and after rotation they are not.
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minimize  fi(y) =y1 and f2(y) = g(y)exp(—y1/9(y))
D
where g(y)=1+10(D —1)+ 3 [y? — 10 cos(4my;)] (2)
i=2
and y=Mx, -03<z;<0.3, fori=1,2,...,D.

It is apparent from the contour plots in figure 2 that before rotation the functions
are aligned with the coordinate system. When the functions are aligned with the
coordinate system, it is possible to make progress in the search by perturbing the
parameters 1 and zo independently. Unfortunately many interesting problems
are not of this variety. With rotated problems, significant progress in the search
can only proceed by making simultaneous progress across all parameters within a
solution vector. On these types of problems, the small mutation rates frequently
used in Genetic Algorithms are known to be even less efficient than a random
search [3]. Self-adaptation has been relatively successful at solving this sort of
problem using Evolutionary Strategies, but it requires the learning of appropriate
correlated mutation step sizes and it can be rather computationally expensive
when D becomes large [4]. Differential Evolution is an attractive solution to this
problem because of its ability to self-adapt to the fitness landscape through the
self-correlation of mutation step sizes by adding the difference between randomly
selected solution vectors.

3 NSDE: A simple modification to the NSGA-II

The NSGA-II algorithm uses elitism and a diversity preserving mechanism. N
offspring are created from a parent population of size N. The combined popu-
lation of size 2N is sorted into separate non-domination levels. Individuals are
selected from this combined population to be inserted into the new population,
based on their non-domination level. If there are more individuals in the last
front than there are slots remaining in the new population of size N, a diversity
preserving mechanism is employed. Individuals from this last front are placed in
the new population based on their contribution to diversity in the population.
The algorithm then iterates until some termination condition is met. The NSGA-
IT uses a real-coded crossover and mutation operator but in the multi-objective
implementation of DE/current-to-rand/1, NSDE (Non-dominated Sorting Dif-
ferential Evolution), these mutation and recombination operators were not used,
and were replaced with Differential Evolution. In the single objective imple-
mentation of the Differential Evolution, if the new candidate u; ¢y1 evaluates
better than the current individual x; ¢, the current individual is replaced with
the new individual. In the multi-objective implementation this is not possible
because we don’t know which individual is better until all candidates are sorted
together and assigned to a non-domination level. Therefore, u; g1 is first added
to the new candidate offspring population. New candidates are generated using
DE/current-to-rand/1 until the candidate offspring population is filled up to size
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N. The new individuals are then evaluated on the objective functions, and then
subjected to the combined non-dominated sorting described above. For further
details regarding the implementation of the NSGA-II, the reader is referred to
the following paper for a detailed description of the diversity preserving mecha-
nisms and non-dominated sorting [2].

4 Performance Metrics

We use the following performance metrics introduced by Zitzler et al. [?]:

1

Mi(Y) = v > min{|[p’ - p[[*;p € Y} (3)
p' €Y’
* 1 * *
M5(Y') = V1| S Hd eYsIp —dlI" > o7} (4)
p'EY
M;(Y') = | Y max{||p; — qf|I*;p',a’ € Y} (5)
=1

where Y’ is the set of objective vectors corresponding to the non-dominated
solutions found, and Y is a set of uniform Pareto-optimal objective vectors.
A niche neighbourhood size, ¢* > 0, is used in equation (4) to calculate the
distribution of the non-dominated solutions. M3 (Y") gives the average distance
from Y’ to Y. M3(Y") describes how well the solutions in Y’ are distributed.
M35 (Y") should produce a value between [0, |Y”|] as it estimates the number of
niches in Y’ based on o*. The higher the value, the better the distribution is
according to o*. M5 (Y”’) measures the spread of Y.

5 Experiments

Experiments were conducted on the rotated problem in section 2.3. The dimen-
sionality of the decision space was 10, resulting in 45 possible planes of rotation.
Rotations were performed on each plane, introducing epistasis between all pa-
rameters. In order to demonstrate the rotational invariance of the NSDE on the
problem, we performed experiments with 0 degrees of rotation (no parameter
interactions) up to 45 degrees of rotation, at 5 degree intervals. Each experiment
was run 30 times, for a total of 800 generations (80,000 evaluations) for each
run. For comparative purposes the same experiments were performed with the
NSGA-IT as well. Results are presented in Figure 3, Figure 4, and Table 1.

6 Parameter Settings

A population size of 100 was used for both the NSDE and NSGA-II. A crossover
rate of 0.9 and mutation rate of 0.1 were used with the NSGA-II. 7. and 7,
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control the distribution of the crossover and mutation probabilities respectively
and were assigned values of 10 and 50 respectively. The choice of the NSGA-IT
parameters is the same as the parameter values previously used on this rotated
problem in other work. For the NSDE, F' was set to 0.8 and K was set to 0.4.
Suggestions from the literature helped guide our choice of parameter values for
the NSDE [4]. The niche neighbourhood size, o* was set to 0.

7 Results and Discussion

From Table 1 it is apparent that the NSDE maintains a significantly better
coverage (M) and spread (M3) than the NSGA-II, independent of the degree
of rotation on each plane. Although M7 suggests the NSGA-II apparently has
reasonable convergence towards the pareto-optimal front, if one takes into ac-
count the other criteria such as coverage (Mj) and spread (M) of solutions, it
is apparently quite poor. Figure 3 and 4 contains plots of 30 runs of the final
non-dominated set after 80,000 evaluations. These figures further demonstrate
that the NSDE was able to converge closely to the Pareto-optimal front rather
consistently, and independent of the degree of rotation.

The only difference between the NSDE and the NSGA-IT is in the method
of generating new individuals. NSDE uses the self-correlating step sizes of Dif-
ferential Evolution, and the NSGA-IT uses real-coded crossover and mutation
operators. It is obvious that the cause of the poor performance by the NSGA-II
on the rotated problem is the mutation and crossover operators, which are not
suited to this type of problem. We have demonstrated that Differential Evolu-
tion can provide rotationally invariant behaviour on multi-objective optimization
problems.

8 Conclusion

Outside of Evolutionary Strategies, Differential Evolution is currently one of
the few viable technique for optimizing multi-objective optimization problems
with epistatic interactions between parameters. We can also conclude that tradi-
tional GAs are unsuitable for optimizing difficult problems of this kind. Future
work in this area should consider even harder rotated problems with the NSDE,
possibly incorporating some of the features of existing test functions, such as
multi-modality, non-uniformity, and discontinuities.
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Table 1. M7, M3, M3, and the number of evaluations (averaged over 30 runs). Rq4
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represents the rotated problem where d is the degree of rotation on each plane.

Metric|Algorithm Ro Rs Rio Ris R
NSGA-II | 6.26E-04 | 2.42E-02 | 1.49E+00 | 1.14E+00 | 3.49E-01
M +7.55E-05| £9.31E-02 |+3.07E+00|+1.62E4+00| £6.85E-01
! NSDE | 2.22E-03 | 3.76E-03 | 5.60E-03 | 2.95E-01 | 2.18E+00
+1.97E-04| £5.22E-03 | £1.18E-02 | £7.51E-01 | £9.03E-16
NSGA-II [9.86E+01 | 8.56E+01 | 6.87E+01 | 5.35E+01 | 6.41E+01
M +7.00E-02|+2.46E+00|+2.42E+01|+2.35E4+01|+1.98E+401
2 NSDE |9.85E+01]| 9.85E+01 | 9.85E+01 | 9.86E+01 | 9.85E+01
+5.49E-02| £1.28E-01 | £2.14E-01 | £2.22E-01 | £4.68E-01
NSGA-II [1.10E4+00| 5.44E-01 | 6.47E-01 | 5.37E-01 | 8.66E-01
M +5.48E-06| +3.33E-01 | £7.94E-01 | £6.27E-01 |+1.52E+00
3 NSDE |1.10E+00]| 1.10E+00 | 1.11E+00 | 1.12E+00 | 1.17E+00
+7.48E-04| £1.79E-02 | £3.68E-02 | £8.01E-02 | £3.56E-01
Metric|Algorithm Rss R0 Rss Ryo Rys
NSGA-II | 3.71E-01 | 5.18E-01 | 8.97E-01 | 8.17E-01 | 1.01E+400
M +5.47E-01 | £7.91E-01 |+2.08E4+00|+1.79E400|+1.87E400
! NSDE | 2.36E-03 | 1.38E+00 | 3.86E-03 | 2.29E-02 | 5.82E-01
+4.41E-19 |+1.07E400| £5.06E-03 | £6.26E-02 | £9.78E-01
NSGA-II | 6.94E+01 | 5.22E+01 | 5.24E+01 | 4.60E+01 | 5.11E+01
M2 +2.66E+01|+3.61E401|+3.42E+01|+3.39E+01|+3.75E+01
2 NSDE | 9.86E+01 | 9.85E+01 | 9.85E+01 | 9.83E+01 | 9.86E+01
+5.22E-01 | £1.19E-01 | £3.13E-01 |+1.36E400| £2.00E-01
NSGA-II | 9.34E-01 | 8.39E-01 | 5.61E-01 | 7.95E-01 | 1.43E+400
M +1.22E400|£1.47E4+00| £9.51E-01 |£+1.75E4+00{+2.32E400
3 NSDE | 1.32E+00 | 1.10E+00 | 1.09E+00 | 1.11E400 | 1.28E+400
+5.81E-01 | £3.14E-02 | £5.03E-02 | £1.50E-01 | £9.62E-01
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