
JungleBoogie: A System for Studying Brain-Body
Evolution of Virtual Creatures

Richard Giuly

College of Computing
Georgia Institute of Technology, Atlanta, GA 30332

rgiuly@fastmail.fm

This paper describes JungleBoogie, an extensible system that generates and
optimizes the brain and body of virtual creatures. Evolution occurs in a virtual
3-D world that simulates the physics of motion. The creature bodies consist of
block segments with connecting joints. In each creature, a neural network
functions as a brain. Network outputs drive actuators that move joints. Virtual
light sensors feed into network inputs. A user-specified evaluation function
defines the fitness of an individual, and fitness determines the probability of
reproduction. JungleBoogie evaluates creature fitness based on given criteria
such as ability to push an object or follow a light source.

Introduction

Nature has generated many versatile, robust control systems with corresponding
physical bodies, e.g. the brain and body of an ant. The purpose of this project is to
mimic nature’s evolutionary design process and create intelligent virtual creatures in a
simulated physical environment. Evolved control systems could then be transferred to
real robotic bodies.

Evolving real world skills like object manipulation requires evolution in an
environment like the real world. JungleBoogie simulates the real world with a rigid
body dynamics engine called breve [2]. Virtual creatures are evaluated based on their
ability to sense and interact. JungleBoogie uses Newtonian physics so that the
creatures will operate in the same logical world we do.

In the spirit of nature, JungleBoogie allows a creature’s brain and body to evolve
simultaneously. Coevolving the creature’s brain and body helps keep complexity
matched. That is, coevolution avoids generation of a body incapable of carrying out
the brain’s commands or a brain too clumsy to control an expressive body.

Previous work

JungleBoogie is based on the work of Karl Sims and Gregory Hornby. Sims
created evolving creatures with sensors that could actively follow a goal object [4].
Hornby described parametric Lindenmayer-system encoding as a way to generate



more “natural” structures [1]. JungleBoogie integrates the ideas of Sims, Hornby, and
others into a single system that allows experimental evaluation of various
evolutionary mechanisms. It is an open-source project that will make evolving brain-
body research accessible to people without great programming overhead.

Software Features

Evaluating Creatures

JungleBoogie contains an extensible object-oriented system for evaluating population
members based on a user specified fitness function and environment. It describes a
generic evolutionary environment and fitness function in a class called
EvaluatePopulation. This class contains the population of creatures and the
framework of the genetic algorithm. By extending EvaluatePopulation, a programmer
can define evolution scenarios, fitness functions, and initial environments.
Environments may involve movable blocks or any other physical object supported by
breve.

Brain and Body Representation

JungleBoogie encodes creature morphology in a parametric L-System grammar. The
grammar deterministically expands into a string of commands that indicate how to
build the body. This indirect representation creates fractal-like morphology with
patterns, e.g. multiple identical limbs. Some commands are similar to logo turtle
commands like up, down, left, and forward. Others commands add a joint and a body
part at the current location, just as described in [1]. Creatures may have block body
parts or wheel-shaped body parts.

Brains are also in encoded in a parametric L-System grammar. The commands
operate on edges in the creature's neural net which is a directed graph. Exactly as in
[1], commands can split an edge and add a new neuron, merge two neurons, set the
edge weight, and set neuron parameters such as activation function.

Genetic Algorithm

Jungle Boogie generates a population, evaluates every member separately and then
regenerates a new population. The probability of members reproducing is proportional
to fitness. For crossover, JungleBoogie selects a random L-System production rule
successor from one creature and copies it into the target creature. Point mutation
involves changing, inserting, and deleting symbols in the L-System grammar that
defines the creature. There are two modes of neural net mutation. The first uses the L-
System grammar to generate a string of commands that create a network [1]. The
second mode occurs optionally after the first and modifies the network by arbitrarily



adding or deleting edges and nodes. The user specifies whether or not to enable the
second mutation mode.

Actuation and Sensing

After interpreting the morphology description, JungleBoogie uses breve to create
physical body segments connected with joints. Each time a joint is created, a
corresponding actuator neuron is created and attached to the neural network. The
output of the actuator neuron controls rotation speed about the joint.

JungleBoogie allows for multiple types of emitters and detectors analogous to light
sensors sensitive to different colors. Every body segment is created with a detector for
each color of light. A creature can optionally have a set of sensors that remain in fixed
positions relative to its main body segment.

Implementation

JungleBoogie runs within breve [2], a user-friendly programming environment that
provides dynamic physics simulation, OpenGL display, and GUI interfacing.
JungleBoogie’s object oriented code is extensible: new evolutionary strategies can be
tested, and different evaluation functions can be added. The graphical interface
displays creatures during evaluation and optionally displays the state of the neural net
during evaluation. JungleBoogie is open source: code is available at
www.jungleboogie.org.

Experiments

Three subclasses of EvaluatePopulation were created: EvaluatePuser, EvaluateSeek,
and EvaluateDoubleSeek. Each subclass defined a different kind of fitness: pushing,
seeking, and bi-directional seeking. Single creature evaluations occurred over a period
of ten seconds. On each machine, the population’s size was 30. Eight separate
populations were evaluated on eight different microprocessors. About 24 hours of
evolution was usually enough to produce interesting results.

To evaluate pushing, fitness was proportional to the average velocity of a block
initially lying next to the creature. Some of the EvaluatePusher creatures simply hit
the block one time with a baseball-bat appendage. One creature evolved locomotion
and a hook shaped appendage that pushed the block efficiently.

To evaluate seeking, fitness was proportional to velocity in one specific direction,
toward a fixed target. The target was always in the same place. Simple creatures
evolved, some with only three segments that could move to the target.

For Bi-directional seeking, JungleBoogie evaluated each creature twice, one time
where it had to seek a target behind it and another where it had to seek a target in
front. The total fitness was the sum of the average velocities toward the correct target.
Proximity sensors fed the neural net with input about distance from the center of each



body segment to the target. Evolution successfully found a way to use proximity
sensor data to tell whether to go back or forward: one resulting creature was able to
seek the target object while a human tester moved the object arbitrarily in either
direction. Videos of evolved creatures can be viewed at www.jungleboogie.org.

Future Work

The experimental fitness functions of seeking and pushing were purposely simple
enough to be solvable in a short time, but future work should explore more complex
fitness functions. There is no reason for intelligence to evolve when all a creature has
to do is move fast toward a target. One way to increase difficulty is with competition:
evaluation of multiple interacting creatures will be an important addition to
JungleBoogie’s features. Competing, coevolving creatures automatically increase the
difficulty of tasks incrementally as they improve. For example, consider the
evaluation function of final score in a soccer game against other creatures. As
opponents evolve better strategies, difficulty increases.

An alternative way of representing the brain is with procedural code rather than a
neural net. This alternate encoding would harness the power of Genetic Programming.
It would allow the brain to build up from evolved building blocks, automatically
defined functions [3].

Creatures could have more sensing ability like contact sensors, joint position
sensors, and vision. Vision sensors, available in breve, would allow the creature to
operate more like insects do in real life. Vision sensors create an image from the
creature’s point of view. If all the numeric color values of pixels in the image were
fed to the creature’s neural net, it could evolve a system for processing visual
information.

Acknowledgements. I am grateful to Dr. Tucker Balch of the Georgia Institute of
Technology for setting project milestones, giving helpful advice, and providing
necessary computing equipment.

References

1. Hornby, G. S. and Pollack, J. B. Body-brain coevolution using L-systems as a generative
encoding. In Genetic and Evolutionary Computation Conference, pages 868-875, 2001.

2. Klein, J. 2002. breve: a 3-D simulation environment for the simulation of decentralized
systems and artificial life. In Proceedings of Artificial Life VIII, the 8th International
Conference on the Simulation and Synthesis of Living Systems. The MIT Press.

3. Koza, J. R. 1994. Genetic Programming II. MIT Press.
4. Sims, K. Evolving Virtual Creatures. In SIGGRAPH 94 Conference Proceedings, Annual

Conference Series, pages 15-22, 1994.


