Growing and Evolving Bitstreams in a Fixed
Configuration Space

R. Timothy Edwards

Johns Hopkins University Applied Physics Lab,
11100 Johns Hopkins Road,
Laurel, MD 20723-6099, USA
ti m&travi nsky. j huapl . edu

Abstract. An indirect-mapping approach to evolvable algorithms isspnted
that is specifically intended for evolvable hardware. Thaveotional wisdom
is that because hardware is configured by downloading ardaist of a fixed
size and hardware-specific format, hardware is not suitegbteetic algorithms
in which the size of the chromosome may vary. The algorithesented herein
departs from the traditional representation of a genoméesanfiguration bit-
stream of the hardware itself. Instead, the genome repeaeset of rules from
which the configuration bitstream is built, in a process agaiis to biological
growth, or ontogeny. Chromosomes are generated largedyighra process of
self-organization that determines both the length andectnEvolved circuits

grow to a state of maturity, and demonstrate an effectiveahafchardware self-
repair.

1 Introduction

The purpose of this research is to demonstrate the plaitysidild practicability of an
algorithm for evolvable hardware which hasiadirect mapping between the genotype
and the phenotype. The conventional wisdom is that becausegaration bitstreams
are of fixed size and format, the genome must also be of fixedasizd format. This
work shows that algorithms exist for which this restrictistifted. The algorithm pre-
sented has unconstrained chromosome size. The size of @asome may vary from
individual to individual in the population, even though gvéndividual has the same
target output configuration bitstream. For this system tathble from generation to
generation, genes must necessarily be clustered propeeligter side of the splitpoint.
Proper clustering results from a combinatiorsef-organization and natural selection,
as opposed toutation and natural selection, an idea espoused by complexityigisor
[1]. The indirect mapping makes the space of the genotype hith respect to the
space of the phenotype. Thus, many different genotypes eragrgte the phenotype or
phenotypes with maximum fitness.

2 Requirements for an Ontogenic (Growth) Algorithm

We wish to define the requirements for a growth algorithm ampnting the indirect
mapping between a genome of no fixed size and a target appfidassumed to be a

2 R. Timothy Edwards

hardware circuit) having a configuration bitstream (binaggtor)b of fixed lengthB
bits.

In a “first level of indirection,” the bitstrearb is replaced by a symbol stream
containing symbolg that comprise a larger set (total @+ 1 symbols):

b =b1,bss. . bsy. e, bp)
b € [0,1] 2)
S = 51,82,---,8i,---,88 3)
si € [a1,--,90,ax] (4)

The length of the symbol streari, may differ from the length of the bitstream,
B, as it may be desirable to map a symbol to groups of bits. Asymbol can map
differently depending on its position in the bitstream. Stactic allows the hardware
bitstream to be grouped in a meaningful way. Most hardwatstrbams are grouped
into sets of bits corresponding to the configuration of eamte enodule in the array,
interspersed with other sets corresponding to the configaraf the interconnect, and
so forth. For example, the symbel’*might map to the bits defining a 4-input NOR
gate when its position in the bitstream corresponds to a T it might map to a
completely different 20-bit value when its position in thisstleam corresponds to an
interconnect crossbar switch.

The general concept is that the target symbol stream steat&inown initial state,
and the growth algorithm modifies it iteratively until comgence (defined below). The
genome contains the rules for the modification, in the forna ¢dble of key:value)
pairs representing, respectivelgpfitext:result). A context is defined as any recogniz-
able pattern of one or more symbols. The context should beetein terms of the
relative position of symbols to some (variable) reference point,nmitanabsol ute po-
sition. Theresult is defined as a pattern of one or more symbols, relative toghees
reference point.

The table of rules should cover the entire space of possdsitegts. That is, every
position in the symbol stream should be covered by at leastrole. It is important
that the iterative algorithm converges because the apijalicaf all rules to the current
bitstream results in the same bitstream, not because roweale applicable!

In the general case, each iteration operates as follows:

1. Loop through each position in the current symbol streammeBch position:
(a) Loop through each rule in the table. For each rule:
i. Determine the context of the stream position as definedheyule.
ii. Measure the “distance” between the current context hadontext defined
in the rule.
(b) Determine the rule that is the best match for the positioimimum distance).
(c) Apply the result of the rule to a temporary bitstream.
2. Arbitrate where more than one result applies to a singdast position to obtain a
single, unique symbol stream result.
3. Ifthe new resultis the same as the current symbol stréam the growth algorithm
has converged.
4. Update the current symbol stream with the new result.

Growing and Evolving Bitstreams 3

Note that this “general algorithm” leaves a number of spexifindefined or loosely
defined. The distance between contexts, for instance, maypeeasonable distance
metric. However, if the size of a context differs from rulertde, then the distance
metric will require normalizing between rules to unambigsly determine the mini-
mum distance over all rules. Arbitration (also undefinedy e a fixed rule, such as
selecting as winner the result that is closest to the curesuit. Or, arbitration may be
encoded into the rule table and evolved along with the regteo$ystem.

The general-purpose definition of context removes the neeldfine whether the
bitstream should be considered 1-dimensional or 2-dinoeas$i(to match the physical
layout of the hardware). However, when working with hardsvar a 2-dimensional
array, the algorithm should act on the bitstream in an aearent that preserves the
order and direction of rows and columns. This will necessitmother re-mapping of
the bitstream to obtain the correct bit sequence for thevirarel

Item 3 purposefully does not specify a “break” in the iteratioop, but only notes
the condition of convergence. If the growth algorithm itselembedded in hardware,
the algorithm preferably runs forever, with a number of ieging consegences (dis-
cussed below).

3 A Simplified Implementation of the General Algorithm

We define a simple growth algorithm meeting the requiremeefimed in the section
above. The growth algorithm is essentially a state machidelaegenome is the state
transition table. As a simplification of the general algumt thecontext is of a fixed
length for every position in the symbol stream. The contedtor v is defined as a
windowed portion of the symbol stream centered around ipositand including a
fixed kernel of K values to the right and left. The window slides from left tght,
resulting inS contexts, one for each position in the symbol stream.

V =01,02,...,V,...,U8 (5)
Vi = 8(i—K)s- -+ 1 S(i+ K) (6)

Endpoints of the symbol stream are handled by defining a symbdoutside of
the sefqgo, . . ., gg]) representing the symbol stream boundary, and letting

si = qx, i<1l, i>8 @)

The state machine table, or genor@kis a chromosome havinyy genes, or rules.
In this work the genome is equated with the chromosome, adthd is straightforward
to expand this to a multiple chromosome model (space limitatprevent the multiple
chromosome model from being presented here). Each rule éergett:result) pair.
The rule’s context vector; is the same length as the symbol stream context vector
v, making direct comparison between the two simple. The tésaln output value;
representing a state to which the system transitions onékeiteration. The symbol
set ofo; does not includegx . Again, the general case is simplified by specifying only
one symbol for the result, which eliminates the need forteation.

G=(ri:01),(r2:02),...,(ri:0i),...,(rnm : 00m) (8)

4 R. Timothy Edwards

s =so
repeat {
for (1<i< B){
j= Ilngl?%%/}l((dISt(w’ 95))

!
S; = Oj*

if(s' = s) break
s=¢
b = m(s;) 1<:<B

}

Table 1. The iterative growth algoritm.

i =7T36G,-K)s- s T(i,+K) 9
0; € |q1,---,40] (20)

The system has a mapping functioif), called the systerohemistry, which maps
the space of the symbol sebnto the space of the bitstredsm

m(g) €0,1] 1<i<Q (12)

In this simplified implementation of the general algoritheach symbol maps to
a single bit, and maps to the same bit regardless of the pogifithe symbol in the
stream.

Every state machine needs an initial state. The initiakstattor of this system is
so and is randomly selected at the outset, but remains the sameedry individual of
every generation.

The growth algorithm is shown in Table 1. For each contextorag, find the gene
(rule) having the minimum distance to the context vectot.tBe next-state symba},
to be the output symbol specified for this rule. After the mntiext state vectas’ has
been determined, replace the current state veoiith the computed next state vector
s', and repeat.

The distance functiodist() can be any reasonable distance metric. One choice is
a Hamming distance metric. The metric used for this proe¢aricept research was a
simple linear distance between symbals,, dist(¢1,43) = |1 —g3| = |1 — 3| = 2,
with the boundary symbol treated separateld&ss$(gx,gx) = 0, and distance to all
other symbols being a constant, large distance (a systesmmgder, but normally set to
2Q).

Breaking out of the iterative loop upon condition of conwvarge is required when
evolving the system. Because there is no guarantee thatsawill converge to a static
value, it is useful to force a break after some predetermingdber of iterations. In-
dividuals for which the growth algorithm does not convergeassigned a low fitness
value.

Growing and Evolving Bitstreams 5

__, sliding context window i=1to 11
| @ dlb dlb@ clc a ¢ b symbol stream

|x d| |b b c| context

a
l i Chromosome

distance 7 becdllc
to rules 6 cbdl|lb
4 dcd||d

7 xcdlla

3 dbd|la

7 4 dcd]||lc

key (rule) value (next state)

next state
I@c ac a@c cbechb symbol stream

Fig. 1. Diagram of operations performed by the ontogenic algoritfiire values in the figure
correspond to the example in the text.

4 Example

To visualize the operation of the ontogenic algorithm, dd@san example using pa-
rameters sequence length= S = 11 and symbol spac@ = 4 with assignmentg; =
‘a, ¢ ='b’, g3 ='C’, q4 ='d’, and gx = ‘X’ for the boundary symbol. The randomly-
selected initial statey is the symbol string “adbdbbccacb”. The mapping from syrabol
to bitstream bits isn(a) = 0, m(b) = 0, m(c) = 1, andm(d) = 1.

Figure 1 shows a representation of the (single) chromosoamaining six genes,
or rules, with key:value) pairs. It also shows the computations for positions 1 and 6 i
the symbol stream on the first iteration, and the resultimgksyl stream. If followed
through, the growth sequence of the symbol streamdisdbbccach acacaccchch
acbcbcccbeb The symbol streams of iterations 3 and 4 are identical catihig that
further iterations will not change the result. The symboéain has converged, and
the final bitstream value can be mapped. Applying the mapgiven above, the final
bitstream 1991010111010

Onlyrules 1, 2, 4, and 5 were used in the growth algorithmeR@land 6, then, are
“junk DNA’ as far as this individual is concerned. That does, mowever, indicate that
they are not used elsewhere in the population, or that thitypetibe used to advantage
by this individual’s offspring.

5 Biologically Inspired?

Apart from the fact that the algorithm defines an indirect piag from genotype to
phenotype, several key aspects of the algorithm are “bicddly plausible.” Each po-
sition in the symbol stream.€., each cell in the organism) sees the same genetic code.
How that genetic code acts in each case is determined byxtpimteach position, cer-
tain genes are relevant (“active”) and some are not (“imat}i This is both a parallel
and a localized operation: It is independent of the ordesirgenes in the table, and it

is independent of the absolute position of any symbol in theam. But the fitness of

6 R. Timothy Edwards

an organism is highly dependent on the absolute positiofi efmbols in the stream,
and the evolution of the system is highly dependent on therard of genes!

In biology, the same genetic code is presented to each cgli/ing each cell a copy
of the genetic code. This is not feasible in electronic hamwHowever, the growth
algorithm in electronic hardware is many orders of magratiagter than cell growth in
a biological system, so it is possible to remap the massiafgllel operation of DNA
into a sequential operation (the loop through each symbibEstream), trading density
for speed.

6 The Evolutionary Algorithm

The evolutionary algorithm built around the ontogenic aiign is fairly pedestrian,
and operates as follows. Assuming convergence of the aberative growth algo-
rithm, the final, mapped configuration bitstre&nis loaded into hardware, tested for
the desired behavior, and assigned a fitness. After all ishgials in the population are
tested and assigned a fitness, pairs are chosen as paremésrefxt generation. The
method used for parent selection is not important; for thimfof-concept research, a
tournament-style selection was used, and no individuats Wweld over from one gen-
eration to the next. The method prohibits the pairing of amy individuals with the
same chromosome, as that would be equivalent to cloningjawiag an individual
from one generation to appear in the next one.

Each genome consists of a set &f rules and declares a split point positipn
between 1 andV inclusive. BothM andp may differ from individual to individual
in the population (this can only be true in an indirectly-mpag algorithm). Each new
individual Z is created from parentX andY by one-point crossover combination,
copying all rules from 1 t@(X) followed by all rulegp(Y") to M (Y"), or vice versa.

_f(riio)(X) 1<i<(p(X)-1)
¢(2) = {(o) (¥) p(¥) < i< M) (12)
p(Z) = p(X) (13)
M(Z) = M(Y) - p(Y) + p(X) (14)

Note that a “null genome,” that is, a chromosome without aeyes {4/ = 0) is
not disallowed by the algorithm; as it results always in thigiadl statesy being the
final state, normally it would have a low fitness and be elingdaguickly from the
population.

7 Prior Research

Research inindirect maps between genotype and phenotgjeeka ongoing in several
groups for a few years [2—4]. Prior research by the authowfs designed to investigate
growth of circuits in an unconstrained medium, based on Erppinciples of self-
organization. That algorithm (similar to that presentel@i, differs from the algorithm
presented in Section 3 by assuming that the modules in theriyimty hardware array
have an “off” state, and requiring a fixed rule (not part of femome) that a context of

Growing and Evolving Bitstreams 7

all “off” states must result in an “off” state. The initialae of the system is to have all
modules in the “off” state except for one module in the cenfahe array, defined as
the “seed” module. Upon application of the iterative alon, a circuit, defined as a
group of configured modules, grows from the “seed”, and soiesuas many modules
as it requires. While intriguing from a theoretical stanihpothis method has several
major drawbacks:

— Hardware resources (array size) are usually quite limbetthe algorithm assumes
unlimited resources.

— Hardware input and output is usually fixed or has limited aqguniability with re-
spect to the core module array. The original algorithm hawapto reliably map
inputs and outputs to the final, grown state of the system.

— There is no known growth algorithm that “naturally” limitsitwvard expansion dur-
ing growth. Constructing a ruleset that does so is highlytrived and impossible
to evolve reliably.

The idea of “naturally limited” growth is based directly oiological principles.
However, growth in biological systems is usually limiteddprocess of first forming a
membrane, then growing the system inward. Thus, an algosithich tends to produce
growth with unlimited outward expansion is not biologigakalistic. Instead, it makes
more sense to treat the boundary of the hardware as a “membaad grow the circuit
under the assumption that it will naturally fill the availaldpace. Inputs and outputs
in a hardware system are connected to sensors and actuatejgst as unrealistic to
assume these resources are unlimited, and they will teneue farther restrictions of
placement based on mechanical design. Because the cimaytlzoundary is usually
where input and output connections are located, growingitiait into the fixed space
allows system inputs and outputs to be predefined in speoifitibns, which is not
possible in the system with unconstrained growth.

Another questionable aspect of the original research wasigke of the configura-
tion bitstreamb of the module itself as the symbol streamEquating them has the
advantage of a simpler hardware implementation when irorating the growth algo-
rithm directly into the hardware. However, it has not bedal@shed whether or not
this method overconstrains the system, preventing ewsldtiward the desired fithess
goal. Until this issue is resolved, the algorithm has beedifigal such that the symbolic
value of a module used during the growth algorithm is mappéhé configuration bit-
stream value via a simple table. The table can be considierbéhlogical terms, to be
the “chemistry” of the system, and is fixed.

Apart from the issues of unconstrained growth and mappirigmfts and outputs,
the main unresolved issue from the original research wasgulkestion of whether the
ontogenic algorithm can be incorporated in an evolvabléesysPrior work showed
the ability to grow circuits demonstrating interestinguakly chaotic) computational
behavior, but did not attempt to measure fitness or evolveafspfunction or behavior.

8 Proof-of-Concept Simulation and Observations

To prove evolvability within the described biologicallgspired architecture, both the
problem space and architecture were simplified. First, itstréam was considered

Population size

Iteration

Fitness

Fig. 2. Evolution of a randomly-generated ontogenic system towdnigher fitness value. Around
iteration 25, a solution of fithess 9 briefly gains dominanae tb the robustness of its growth
pattern.

only as a one-dimensional vector. The “context” for a modsilde symbolic value of
the module concatenated with the symbolic values of one aemmwdules to its right
and left. To further simplify, the configuration of each mtelwas made a single bit.

An artificial fithess function was constructed as a functibiie bitstream. A fithess
was assigned to each bitstream value, in a random power &ribdition, with approx-
imately half the bitstreams having zero fitness, a quarteingafitness value 1, and
so forth, but ensuring that at least one bitstream had thermam fithess value. This
artificially constructed bitstream is designed to mimic i¢gl digital circuit function,
where fitness is defined as the number of input-output valwshing those of the de-
sired function. As is typical for an electronic circuit, #ss is not a direct function of
any definable variable space. In fact, this random fitnesstiumpresents a “needle in
a haystack” problem for the evolutionary algorithm. Saas cannot be sought in any
deterministic fashion other than a prohibitively costiyaxstive search of the problem
space. It cannot be expected that this, or any other evalrtyoalgorithm, can do any
better than another on such a problem. However, it sufficetdav that the system is
capable of evolving from an initial random, low fitness to ghfitness.

A simulation of the system was constructed to show the itatief interest, which
included the distribution of fithess throughout the pogata(Figure 2). The system
was executed repeatedly while varying these key paraméteeschemistry” mapping,
the initial state, the number of symbols, and the rate of trarta

What distinguishes the indirect mapping approach from tinectd mapping ap-
proach is the tendency to fill the population not with the leigfifitness solutions, but
with the solutions which are most stable as the result of@glénization. This can be
much stronger than the selection of the most fit solutionytsmhs with higher fitness
can even disappear from the population. In biology, thisisvin as “regression toward
the mean,” indicating that the fitness of an offspring witldeio be closer to the average
fitness of the population as a whole, regardless of the fitnitgge parents. The modal
solution, that is, the solution represented by the majarfithhe population, is quite sta-
ble. This appears to mimic the process of speciation, andaxjlain why species tend

Growing and Evolving Bitstreams 9

to be stable over long periods of time, and support the id&awofctuated equilibrium.”

To force evolution toward a specific goal requires some efaat, such as scaling the
fithess such that individuals with a fitness higher than th@ahfitness will have a

larger-than-proportional representation in the sucaeedeneration. As shown in Fig-
ure 2, the fithess scaling can successfully overcome thiistalb the self-organization

and nudge the population into an overall higher fithess.

A novel aspect of the indirect mapping approach is the effe@ndom mutation on
the solution. Crossover combination suffices to evolve ftstesn. However, the addi-
tion of a small amount of random mutation tends to speed upergence and stabilize
the solution. This is because changes to the indirect maptaways produce changes
to the solution. Some mutations will affect the offspringsoime pairs of parents but
not others, which leads to the rapid selection of the mosisbgenomes. This effect
is impossible to achieve with direct mapping, since any gedn the chromosome will
alter the solution of, on average, half of the offspring gated from that chromosome.
The allowance of multiple chromosomes magnifies this effect

Lack of convergence of the algorithms has been observedambeblem only in a
very small minority of cases, due to pathological combuadiof chemistry mapping,
starting vector, and the randomly-defined solution. Gdlyethe number of genes con-
verges within 50 generations.

The self-organizing process tends to fill the populatiomwhromosomes of a con-
stant size, but this is not necessarily the case. Indeesgitite possible to end up with
two specific chromosomes in the population having one sidéndily different; call
them ‘X’ and ‘Y’ (for obvious reasons). This happens reglylas a result of prevent-
ing offspring of two individuals with exactly the same germiintended to promote
genetic diversity by preventing a single genome from dommigathe population). In
other instances, the population is made “trivially divétsgthe presence giink DNA.

In this algorithm, junk DNA can be defined as any rule in thevaigive lookup table
that is not exercised during the growth process.

9 Discussion and Future Research

The indirect mapping allows the genome to act as a coded upag&finition of the
individual. It is anticipated that for very large systemse genome is much smaller
than the bitstream, resulting in an efficient coding. WHile mapping is not reversible,
it is possible to use the genome to repair damage to the thgivi

If the indirect-map growth algoritm is viewed as a nonlindgnamic system, then
naturally limited growth can be seen as an “attractor stafehe system. The final
system state can be fed back to the growth algorithm and pesdthe same state.

Damage to the individual can then be viewed as pushing thardimsystem away
from this attractor. Small, temporary damage like singlere upsets (SEUs) do not
push the system out of the capture zone of an attractor. Wieigrowth algorithm
operates continuously, the system returns to the attrastaie. Most single-bit changes
and even many multiple-bit changes of the configuratiorestathe individual will be
corrected in one iteration.

With a properly evolved chromosome, the system can havéptesdttractor states,
each leading to a (possibly different) fit solution. Some sheasfaults or permanent

10 R. Timothy Edwards

damage can be repaired. Massive, permanent damage willtpesystem out of the
capture zone and into another attractor. Itis not clear heWthis can be made to work
in practice, but it has the potential to allow evolved citswr systems to continue to
operate uninterrupted while sustaining damage.

An interesting line of future investigation is to look at 8y® implementations in
which the ontogenic algorithm runs continuously, and tigecircuitmay changethe
value of the symbol stream that created it. Due to the “self-healing” mechanism men-
tioned above, many such changes will have no affect on tleeitiHowever, specific
changes may permanently change the state of the systenmafdmemory” in the
system hardware. Such changes are volatile; they cannetbeered when the system
is reset and regrown.

10 Conclusions

This research demonstrates that it is possible to “growf@udifrom a non-reversible,
coded representation, that the growth is stable, and thatpalgtion of individuals
thus coded can, through directed evolution, achieve a fip¢aiget function. Unlike
previous work, the algorithm supports the growth of cirswihto hardware of a fixed
size, with system inputs and outputs able to be specified friexecuting the growth
algorithm. These aspects are critical for the ability toles@ny system on real hard-
ware, such as an FPGA, where the size of the system is fixegyasitibning of inputs
and outputs may be fixed or less flexible than the positionfrgeaeral-purpose logic
modules.

The algorithm described here is a conveniently simple araigsttforward way of
creating an indirect mapping between genotype and pheeatyger the primary con-
straint that the phenotype must be of fixed length but thag&émotype need not be. It is
certainly not the only possible indirect-mapping algaritto satisfy those constraints,
and it likely is not the best. Hopefully this work will inteseothers in the indirect map-
ping approach, and encourage a search for alternative died blgorithms.

References

1. Kauffman, S. A.: Investigations. Oxford University Psé¢éew York (2000)

2. Miller, J. F.: Evolving developmental programs for addion, morphogenesis, and self-repair.
In: Lecture Notes in Atrtificial Intelligence, W. Banzhaf, Christaller, P. Dittrich, J. T. Kim,
J. Ziegler (eds.) 7th European Conference on Artificial LWfel. 2801 (2003) 256265

3. Haddow, P. C., and Tufte, G.: Bridging the Genotype-Ptyg®Mapping for Digital FPGAs.
In: Proceedings of the Third NASA/DoD Workshop on EvolvaHirdware. IEEE Computer
Society Press (2001) 109-115

4. Gordon, T. G. W., and Bentley, P. J.: Towards Developmemviolvable Hardware. In: Pro-
ceedings of the 2002 NASA/DoD Conference on Evolvable HarewlEEE Computer Soci-
ety Press (2002) 241-250

5. Edwards, R. T.: Circuit Morphologies and Ontogenies. Mnoceedings of the 2002
NASA/DoD Conference on Evolvable Hardware. IEEE Computmri&y Press (2002) 251—
260

