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Abstract. An indirect-mapping approach to evolvable algorithms is presented
that is specifically intended for evolvable hardware. The conventional wisdom
is that because hardware is configured by downloading a bitstream of a fixed
size and hardware-specific format, hardware is not suited togenetic algorithms
in which the size of the chromosome may vary. The algorithm presented herein
departs from the traditional representation of a genome as the configuration bit-
stream of the hardware itself. Instead, the genome represents a set of rules from
which the configuration bitstream is built, in a process analogous to biological
growth, or ontogeny. Chromosomes are generated largely through a process of
self-organization that determines both the length and content. Evolved circuits
grow to a state of maturity, and demonstrate an effective model of hardware self-
repair.

1 Introduction

The purpose of this research is to demonstrate the plausibility and practicability of an
algorithm for evolvable hardware which has anindirect mapping between the genotype
and the phenotype. The conventional wisdom is that because configuration bitstreams
are of fixed size and format, the genome must also be of fixed size and format. This
work shows that algorithms exist for which this restrictionis lifted. The algorithm pre-
sented has unconstrained chromosome size. The size of a chromosome may vary from
individual to individual in the population, even though every individual has the same
target output configuration bitstream. For this system to bestable from generation to
generation, genes must necessarily be clustered properly on either side of the splitpoint.
Proper clustering results from a combination ofself-organization and natural selection,
as opposed tomutation and natural selection, an idea espoused by complexity theorists
[1]. The indirect mapping makes the space of the genotype huge with respect to the
space of the phenotype. Thus, many different genotypes may generate the phenotype or
phenotypes with maximum fitness.

2 Requirements for an Ontogenic (Growth) Algorithm

We wish to define the requirements for a growth algorithm implementing the indirect
mapping between a genome of no fixed size and a target application (assumed to be a
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hardware circuit) having a configuration bitstream (binaryvector)
�

of fixed length�
bits.

In a “first level of indirection,” the bitstream
�

is replaced by a symbol stream�
containing symbols� that comprise a larger set (total of� � � symbols):
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The length of the symbol stream,� , may differ from the length of the bitstream,
� , as it may be desirable to map a symbol to groups of bits. Also,a symbol can map
differently depending on its position in the bitstream. This tactic allows the hardware
bitstream to be grouped in a meaningful way. Most hardware bitstreams are grouped
into sets of bits corresponding to the configuration of each core module in the array,
interspersed with other sets corresponding to the configuration of the interconnect, and
so forth. For example, the symbol ‘�’ might map to the bits defining a 4-input NOR
gate when its position in the bitstream corresponds to a LUT,but it might map to a
completely different 20-bit value when its position in the bitstream corresponds to an
interconnect crossbar switch.

The general concept is that the target symbol stream starts in a known initial state,
and the growth algorithm modifies it iteratively until convergence (defined below). The
genome contains the rules for the modification, in the form ofa table of (key:value)
pairs representing, respectively, (context:result). A context is defined as any recogniz-
able pattern of one or more symbols. The context should be defined in terms of the
relative position of symbols to some (variable) reference point, butnot anabsolute po-
sition. Theresult is defined as a pattern of one or more symbols, relative to the same
reference point.

The table of rules should cover the entire space of possible contexts. That is, every
position in the symbol stream should be covered by at least one rule. It is important
that the iterative algorithm converges because the application of all rules to the current
bitstream results in the same bitstream, not because no rules were applicable!

In the general case, each iteration operates as follows:

1. Loop through each position in the current symbol stream. For each position:
(a) Loop through each rule in the table. For each rule:

i. Determine the context of the stream position as defined by the rule.
ii. Measure the “distance” between the current context and the context defined

in the rule.
(b) Determine the rule that is the best match for the position(minimum distance).
(c) Apply the result of the rule to a temporary bitstream.

2. Arbitrate where more than one result applies to a single stream position to obtain a
single, unique symbol stream result.

3. If the new result is the same as the current symbol stream, then the growth algorithm
has converged.

4. Update the current symbol stream with the new result.
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Note that this “general algorithm” leaves a number of specifics undefined or loosely
defined. The distance between contexts, for instance, may beany reasonable distance
metric. However, if the size of a context differs from rule torule, then the distance
metric will require normalizing between rules to unambiguously determine the mini-
mum distance over all rules. Arbitration (also undefined) may be a fixed rule, such as
selecting as winner the result that is closest to the currentresult. Or, arbitration may be
encoded into the rule table and evolved along with the rest ofthe system.

The general-purpose definition of context removes the need to define whether the
bitstream should be considered 1-dimensional or 2-dimensional (to match the physical
layout of the hardware). However, when working with hardware in a 2-dimensional
array, the algorithm should act on the bitstream in an arrangement that preserves the
order and direction of rows and columns. This will necessitate another re-mapping of
the bitstream to obtain the correct bit sequence for the hardware.

Item 3 purposefully does not specify a “break” in the iterative loop, but only notes
the condition of convergence. If the growth algorithm itself is embedded in hardware,
the algorithm preferably runs forever, with a number of interesting conseqences (dis-
cussed below).

3 A Simplified Implementation of the General Algorithm

We define a simple growth algorithm meeting the requirementsdefined in the section
above. The growth algorithm is essentially a state machine and thegenome is the state
transition table. As a simplification of the general algorithm, thecontext is of a fixed
length for every position in the symbol stream. The context vector� is defined as a
windowed portion of the symbol stream centered around position

�
and including a

fixed kernel of � values to the right and left. The window slides from left to right,
resulting in� contexts, one for each position in the symbol stream.
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Endpoints of the symbol stream are handled by defining a symbol �� (outside of
the set
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 �� �) representing the symbol stream boundary, and letting
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The state machine table, or genome,� is a chromosome having
 genes, or rules.
In this work the genome is equated with the chromosome, although it is straightforward
to expand this to a multiple chromosome model (space limitations prevent the multiple
chromosome model from being presented here). Each rule is a (context:result) pair.
The rule’s context vector� 
 is the same length as the symbol stream context vector
� , making direct comparison between the two simple. The result is an output value� 

representing a state to which the system transitions on the next iteration. The symbol
set of� 
 does not include�� . Again, the general case is simplified by specifying only
one symbol for the result, which eliminates the need for arbitration.
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� � ��
repeat
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Table 1.The iterative growth algoritm.
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The system has a mapping function( ��
, called the systemchemistry, which maps

the space of the symbol set� onto the space of the bitstream
�

:

( ��
 � � �� 
 �� � ) � ) � (11)

In this simplified implementation of the general algorithm,each symbol maps to
a single bit, and maps to the same bit regardless of the position of the symbol in the
stream.

Every state machine needs an initial state. The initial state vector of this system is
�	 and is randomly selected at the outset, but remains the same for every individual of
every generation.

The growth algorithm is shown in Table 1. For each context vector
� 


, find the gene
(rule) having the minimum distance to the context vector. Set the next-state symbol

� *

to be the output symbol specified for this rule. After the entire next state vector� * has
been determined, replace the current state vector� with the computed next state vector
� *, and repeat.

The distance functiondist
��

can be any reasonable distance metric. One choice is
a Hamming distance metric. The metric used for this proof-of-concept research was a
simple linear distance between symbols,e.g., dist

��	 
 �+ � � ,�	 - �+ , � ,� - . , � /
,

with the boundary symbol treated separately asdist
��� 
 �� � � �

, and distance to all
other symbols being a constant, large distance (a system parameter, but normally set to/�).

Breaking out of the iterative loop upon condition of convergence is required when
evolving the system. Because there is no guarantee that array � will converge to a static
value, it is useful to force a break after some predeterminednumber of iterations. In-
dividuals for which the growth algorithm does not converge are assigned a low fitness
value.
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Fig. 1. Diagram of operations performed by the ontogenic algorithm. The values in the figure
correspond to the example in the text.

4 Example

To visualize the operation of the ontogenic algorithm, consider an example using pa-
rameters sequence length� � � � �� and symbol space� � �

with assignments�	 =
‘a’, �� = ‘b’, �+ = ‘c’, �� = ‘d’, and �� = ‘x’ for the boundary symbol. The randomly-
selected initial state�	 is the symbol string “adbdbbccacb”. The mapping from symbols
to bitstream bits is( �� � � �

, ( ��� � �
, ( ��� � �, and( ��� � �.

Figure 1 shows a representation of the (single) chromosome,containing six genes,
or rules, with (key:value) pairs. It also shows the computations for positions 1 and 6 in
the symbol stream on the first iteration, and the resulting symbol stream. If followed
through, the growth sequence of the symbol stream isadbdbbccacb, acacacccbcb,
acbcbcccbcb. The symbol streams of iterations 3 and 4 are identical, indicating that
further iterations will not change the result. The symbol stream has converged, and
the final bitstream value can be mapped. Applying the mappinggiven above, the final
bitstream is01010111010.

Only rules 1, 2, 4, and 5 were used in the growth algorithm. Rules 3 and 6, then, are
“junk DNA” as far as this individual is concerned. That does not, however, indicate that
they are not used elsewhere in the population, or that they will not be used to advantage
by this individual’s offspring.

5 Biologically Inspired?

Apart from the fact that the algorithm defines an indirect mapping from genotype to
phenotype, several key aspects of the algorithm are “biologically plausible.” Each po-
sition in the symbol stream (i.e., each cell in the organism) sees the same genetic code.
How that genetic code acts in each case is determined by context; in each position, cer-
tain genes are relevant (“active”) and some are not (“inactive”). This is both a parallel
and a localized operation: It is independent of the orderingof genes in the table, and it
is independent of the absolute position of any symbol in the stream. But the fitness of
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an organism is highly dependent on the absolute position of all symbols in the stream,
and the evolution of the system is highly dependent on the ordering of genes!

In biology, the same genetic code is presented to each cell bygiving each cell a copy
of the genetic code. This is not feasible in electronic hardware. However, the growth
algorithm in electronic hardware is many orders of magnitude faster than cell growth in
a biological system, so it is possible to remap the massivelyparallel operation of DNA
into a sequential operation (the loop through each symbol inthe stream), trading density
for speed.

6 The Evolutionary Algorithm

The evolutionary algorithm built around the ontogenic algorithm is fairly pedestrian,
and operates as follows. Assuming convergence of the above iterative growth algo-
rithm, the final, mapped configuration bitstream

�
is loaded into hardware, tested for

the desired behavior, and assigned a fitness. After all individuals in the population are
tested and assigned a fitness, pairs are chosen as parents of the next generation. The
method used for parent selection is not important; for this proof-of-concept research, a
tournament-style selection was used, and no individuals were held over from one gen-
eration to the next. The method prohibits the pairing of any two individuals with the
same chromosome, as that would be equivalent to cloning, or allowing an individual
from one generation to appear in the next one.

Each genome consists of a set of
 rules and declares a split point position�
between 1 and
 inclusive. Both
 and� may differ from individual to individual
in the population (this can only be true in an indirectly-mapped algorithm). Each new
individual � is created from parents� and � by one-point crossover combination,
copying all rules from 1 to� �� �

followed by all rules� �� �
to 
 �� �

, or vice versa.
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Note that a “null genome,” that is, a chromosome without any genes (
 � �
) is

not disallowed by the algorithm; as it results always in the initial state�	 being the
final state, normally it would have a low fitness and be eliminated quickly from the
population.

7 Prior Research

Research in indirect maps between genotype and phenotype has been ongoing in several
groups for a few years [2–4]. Prior research by the author [5]was designed to investigate
growth of circuits in an unconstrained medium, based on simple principles of self-
organization. That algorithm (similar to that presented in[2]), differs from the algorithm
presented in Section 3 by assuming that the modules in the underlying hardware array
have an “off” state, and requiring a fixed rule (not part of thegenome) that a context of
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all “off” states must result in an “off” state. The initial state of the system is to have all
modules in the “off” state except for one module in the centerof the array, defined as
the “seed” module. Upon application of the iterative algorithm, a circuit, defined as a
group of configured modules, grows from the “seed”, and subsumes as many modules
as it requires. While intriguing from a theoretical standpoint, this method has several
major drawbacks:

– Hardware resources (array size) are usually quite limited,but the algorithm assumes
unlimited resources.

– Hardware input and output is usually fixed or has limited configurability with re-
spect to the core module array. The original algorithm has noway to reliably map
inputs and outputs to the final, grown state of the system.

– There is no known growth algorithm that “naturally” limits outward expansion dur-
ing growth. Constructing a ruleset that does so is highly contrived and impossible
to evolve reliably.

The idea of “naturally limited” growth is based directly on biological principles.
However, growth in biological systems is usually limited bya process of first forming a
membrane, then growing the system inward. Thus, an algorithm which tends to produce
growth with unlimited outward expansion is not biologically realistic. Instead, it makes
more sense to treat the boundary of the hardware as a “membrane,” and grow the circuit
under the assumption that it will naturally fill the available space. Inputs and outputs
in a hardware system are connected to sensors and actuators.It is just as unrealistic to
assume these resources are unlimited, and they will tend to have further restrictions of
placement based on mechanical design. Because the circuit array boundary is usually
where input and output connections are located, growing thecircuit into the fixed space
allows system inputs and outputs to be predefined in specific locations, which is not
possible in the system with unconstrained growth.

Another questionable aspect of the original research was the use of the configura-
tion bitstream

�
of the module itself as the symbol stream�. Equating them has the

advantage of a simpler hardware implementation when incorporating the growth algo-
rithm directly into the hardware. However, it has not been established whether or not
this method overconstrains the system, preventing evolution toward the desired fitness
goal. Until this issue is resolved, the algorithm has been modified such that the symbolic
value of a module used during the growth algorithm is mapped to the configuration bit-
stream value via a simple table. The table can be considered,in biological terms, to be
the “chemistry” of the system, and is fixed.

Apart from the issues of unconstrained growth and mapping ofinputs and outputs,
the main unresolved issue from the original research was thequestion of whether the
ontogenic algorithm can be incorporated in an evolvable system. Prior work showed
the ability to grow circuits demonstrating interesting (usually chaotic) computational
behavior, but did not attempt to measure fitness or evolve a specific function or behavior.

8 Proof-of-Concept Simulation and Observations

To prove evolvability within the described biologically-inspired architecture, both the
problem space and architecture were simplified. First, the bitstream was considered



0
2

4
6

8
10

12
14

16 0

10

20

30

40

50

60

70

0

2000

4000

6000

8000

Iteration

Fitness

P
op

ul
at

io
n 

si
ze

Fig. 2.Evolution of a randomly-generated ontogenic system towarda higher fitness value. Around
iteration 25, a solution of fitness 9 briefly gains dominance due to the robustness of its growth
pattern.

only as a one-dimensional vector. The “context” for a moduleis the symbolic value of
the module concatenated with the symbolic values of one or more modules to its right
and left. To further simplify, the configuration of each module was made a single bit.

An artificial fitness function was constructed as a function of the bitstream. A fitness
was assigned to each bitstream value, in a random power law distribution, with approx-
imately half the bitstreams having zero fitness, a quarter having fitness value 1, and
so forth, but ensuring that at least one bitstream had the maximum fitness value. This
artificially constructed bitstream is designed to mimic a typical digital circuit function,
where fitness is defined as the number of input-output values matching those of the de-
sired function. As is typical for an electronic circuit, fitness is not a direct function of
any definable variable space. In fact, this random fitness function presents a “needle in
a haystack” problem for the evolutionary algorithm. Solutions cannot be sought in any
deterministic fashion other than a prohibitively costly exhaustive search of the problem
space. It cannot be expected that this, or any other evolutionary algorithm, can do any
better than another on such a problem. However, it suffices toshow that the system is
capable of evolving from an initial random, low fitness to a high fitness.

A simulation of the system was constructed to show the statistics of interest, which
included the distribution of fitness throughout the population (Figure 2). The system
was executed repeatedly while varying these key parameters: The “chemistry” mapping,
the initial state, the number of symbols, and the rate of mutation.

What distinguishes the indirect mapping approach from the direct mapping ap-
proach is the tendency to fill the population not with the highest-fitness solutions, but
with the solutions which are most stable as the result of self-organization. This can be
much stronger than the selection of the most fit solution; solutions with higher fitness
can even disappear from the population. In biology, this is known as “regression toward
the mean,” indicating that the fitness of an offspring will tend to be closer to the average
fitness of the population as a whole, regardless of the fitnessof the parents. The modal
solution, that is, the solution represented by the majorityof the population, is quite sta-
ble. This appears to mimic the process of speciation, and mayexplain why species tend
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to be stable over long periods of time, and support the idea of“punctuated equilibrium.”
To force evolution toward a specific goal requires some extraeffort, such as scaling the
fitness such that individuals with a fitness higher than the modal fitness will have a
larger-than-proportional representation in the succeeding generation. As shown in Fig-
ure 2, the fitness scaling can successfully overcome the stability of the self-organization
and nudge the population into an overall higher fitness.

A novel aspect of the indirect mapping approach is the effectof random mutation on
the solution. Crossover combination suffices to evolve the system. However, the addi-
tion of a small amount of random mutation tends to speed up convergence and stabilize
the solution. This is because changes to the indirect map do not always produce changes
to the solution. Some mutations will affect the offspring ofsome pairs of parents but
not others, which leads to the rapid selection of the most robust genomes. This effect
is impossible to achieve with direct mapping, since any change to the chromosome will
alter the solution of, on average, half of the offspring generated from that chromosome.
The allowance of multiple chromosomes magnifies this effect.

Lack of convergence of the algorithms has been observed to bea problem only in a
very small minority of cases, due to pathological combinations of chemistry mapping,
starting vector, and the randomly-defined solution. Generally, the number of genes con-
verges within 50 generations.

The self-organizing process tends to fill the population with chromosomes of a con-
stant size, but this is not necessarily the case. Indeed, it is quite possible to end up with
two specific chromosomes in the population having one side distinctly different; call
them ‘X’ and ‘Y’ (for obvious reasons). This happens regularly as a result of prevent-
ing offspring of two individuals with exactly the same genome (intended to promote
genetic diversity by preventing a single genome from dominating the population). In
other instances, the population is made “trivially diverse” by the presence ofjunk DNA.
In this algorithm, junk DNA can be defined as any rule in the associative lookup table
that is not exercised during the growth process.

9 Discussion and Future Research

The indirect mapping allows the genome to act as a coded, backup definition of the
individual. It is anticipated that for very large systems, the genome is much smaller
than the bitstream, resulting in an efficient coding. While the mapping is not reversible,
it is possible to use the genome to repair damage to the individual.

If the indirect-map growth algoritm is viewed as a nonlineardynamic system, then
naturally limited growth can be seen as an “attractor state”of the system. The final
system state can be fed back to the growth algorithm and produces the same state.

Damage to the individual can then be viewed as pushing the dynamic system away
from this attractor. Small, temporary damage like single-event upsets (SEUs) do not
push the system out of the capture zone of an attractor. When the growth algorithm
operates continuously, the system returns to the attraction state. Most single-bit changes
and even many multiple-bit changes of the configuration state of the individual will be
corrected in one iteration.

With a properly evolved chromosome, the system can have multiple attractor states,
each leading to a (possibly different) fit solution. Some massive faults or permanent
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damage can be repaired. Massive, permanent damage will pushthe system out of the
capture zone and into another attractor. It is not clear how well this can be made to work
in practice, but it has the potential to allow evolved circuits or systems to continue to
operate uninterrupted while sustaining damage.

An interesting line of future investigation is to look at system implementations in
which the ontogenic algorithm runs continuously, and the target circuitmay change the
value of the symbol stream that created it. Due to the “self-healing” mechanism men-
tioned above, many such changes will have no affect on the circuit. However, specific
changes may permanently change the state of the system, a form of “memory” in the
system hardware. Such changes are volatile; they cannot be recovered when the system
is reset and regrown.

10 Conclusions

This research demonstrates that it is possible to “grow” a circuit from a non-reversible,
coded representation, that the growth is stable, and that a population of individuals
thus coded can, through directed evolution, achieve a specific target function. Unlike
previous work, the algorithm supports the growth of circuits onto hardware of a fixed
size, with system inputs and outputs able to be specified prior to executing the growth
algorithm. These aspects are critical for the ability to evolve any system on real hard-
ware, such as an FPGA, where the size of the system is fixed, andpositioning of inputs
and outputs may be fixed or less flexible than the positioning of general-purpose logic
modules.

The algorithm described here is a conveniently simple and straightforward way of
creating an indirect mapping between genotype and phenotype under the primary con-
straint that the phenotype must be of fixed length but that thegenotype need not be. It is
certainly not the only possible indirect-mapping algorithm to satisfy those constraints,
and it likely is not the best. Hopefully this work will interest others in the indirect map-
ping approach, and encourage a search for alternative and better algorithms.
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