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Abstract. Artificial Development is a promising approach to evolution-
ary design optimization inspired by biological development. However,
there is still no consensus as to which problem classes this approach has
a clear advantage over classical direct encodings. We attack this prob-
lem by introducing the concept of fitness function modifiers based on
complexity. Our results indicate that using these modifiers, we are able
to discriminate a developmental mapping from a direct encoding with
respect to their efficiency at solving classes of problems defined by the
fitness modifiers.

1 Introduction

Evolutionary computation (EC) is a popular field of research with many applica-
tions. Evolutionary algorithms often employ relatively direct genotype-phenotype
mappings. Recently, there has been increased interest in employing mappings
inspired by biological development [1-11]. Biological development is here con-
sidered as the growth process from the fertilized egg, to a grown-up multicellular
organism. We will refer to this subfield of EC as Artificial Development (AD)
but terms like Artificial Embryogeny or Computational Development also occur.

Reducing the genome size with developmental mappings was considered as
a possible approach to the scalability problem in complex evolutionary design
optimizing tasks [12,5,1]. However, this issue turned out to be more complex
than expected [3]. Several comparative studies between direct encodings and de-
velopmental mappings indicated that direct encodings were at least as efficient
as developmental mappings for the problems studied [13,7, 14]. There is no con-
sensus in the field as to when developmental mappings should be applied. We
therefor believe the following question to be important for further progress in
AD: For which classes of problems is it beneficial to apply developmental map-
pings over more traditional direct encodings?

If we are unable to answer this question it might remain impractical to sys-
tematically utilize the beneficial properties of artificial development. As such,
we believe that even partial answers to this question would be interesting. We
propose the following approach to partly answer the question above: Given an



evolutionary algorithm and a fitness function, try to find ways to modify the
fitness function such that the problem gets harder for direct encoding, but does
not change the difficulty for developmental mappings. And similarly, modify the
fitness function such that the problem gets harder for developmental mappings
but does not change the difficulty for direct encodings.

Motivated by previous results on developmental mappings and phenotypic
complexity [15], we hypothesize that one can construct such fitness function
modifiers based on phenotypic complexity. Our approach to complexity is based
on Kolmogorov complexity [16].

2 Background

We will use the following notation. The set of binary strings of length n is denoted
{0,1}™. If z is a binary string, then x; denotes the ith bit of z and z[i...j] denotes
the substring of x beginning with the ith bit of x and ending with the jth bit
of . The notation ™ denotes n repetitions (or concatenations) of the binary
string x. If « and y are binary strings, then ¢(x) denotes the length of z, and if
(z) = L(y), then x @ y denotes the binary XOR-operation on x and y. Recall
that t 2 = 00---0 and £ § 00---0 = « for all binary strings . The set of
natural numbers is denoted IN. Each binary string is associated with a natural
number by the standard enumeration ¢,0,1,00,01,.... The set of real numbers
is denoted IR, and the set of non-negative real numbers is denoted IR™.

2.1 Kolmogorov Complexity and Lempel-Ziv Compresssion

The fitness modifiers described later are based on complexity. Kolmogorov com-
plexity is quantitative measure of complexity based on Turing machines [16].
(See eg. [17] to recall the definitions of TMs and partial recursive functions.)

Definition 1. The Kolmogorov complexity C(x) of a natural number x (or the
corresponding binary string) is defined as

Cle) = min{ £(p) | 6(p) == }, (1)

where ¢ is the partial recursive function corresponding to a fized universal Turing
Machine.

Informally, the Kolmogorov complexity of a binary string is the length of the
shortest program which outputs that string on a fixed universal Turing Machine
and then halts.

This complexity measure is not computable, but we use the Lempel-Ziv com-
pression algorithm [18] to approximate the Kolmogorov complexity. In the exper-
iments described below, we used the standard compression library z1ib [19]. For
practical purposes, each bit in a binary string is encoded as the ASCII-character
0 or 1. The resulting buffer of 0 and 1 characters is compressed using 1zip. We
denote the length of the compressed result as Cz(x). Example: The Lempel-Ziv
complexity of a binary string consisting of 100 zeros is CL,z(01%0) = 12.



2.2 Developmental mappings and fitness functions

The literature on AD describes many developmental systems and mappings [10].
They vary considerably, but many can be classified as either a grammatical or
a chemical approach. We decided to use the developmental mapping described
by Kitano in [12]. This is an example of a grammatical approach to develop-
ment. With this mapping, the genotype represents a matrix-rewriting grammar.
The phenotype (a quadratic matrix) is obtained by iterated rewriting of a start
symbol. We will refer to this mapping as the Kitano mapping.

The choice of mapping was motivated by its simple design, and our previ-
ous experience with the mapping. The literature often refers to this mapping.
For example, Siddiqi and Lucas compared Kitano mapping to direct encoding
for evolving neural networks [14]. In our particular implementation of Kitano
mapping, the genotype is 357 bits long. See [15] for more details about our
implementation of the mapping.

We will contrast Kitano mapping with a direct encoding. A direct encoding is
here simply the identity function from genotype to phenotype. So the genospace
is here identical to the phenospace in direct encodings.

While developmental mappings are traditionally applied to design optimiza-
tion problems, they are here applied to pseudo-boolean function optimization [20].
These functions are more convenient for our purpose than design optimization
problems. The pseduo-boolean fitness functions chosen were ONEMAX [21], DEB-
DECEPTIVE and ROYALROAD [22], because they are well-known, simple to im-
plement, and has varying hardness. The function ONEMAX is relatively simple,
while the function DEBDECEPTIVE seems harder. These functions are defined in
Appendix B. All three fitness functions have an optimum at z* = 111 ---1.

2.3 Fitness function modifiers

The main approach in this paper is to find uniform ways of modifying fitness
functions to make them either hard for developmental mappings and unchanged
for direct encodings, or hard for direct encodings and unchanged for developmen-
tal mappings. This is achieved with the introduction of fitness function modifiers.

In this paper, a fitness function modifier is an operator which, when given a
pseudo-boolean function, returns a new, modified pseudo-boolean function . We
describe two fitness function modifiers, one which we will call Complexity Filter
and the other which we call Complezity Translate. They are parametrized by
positive real-valued parameters ¢y and ¢; respectively. A class of problems is de-
fined by a fitness function and a fitness function modifier with an accompanying
range of its parameter.

Definition 2 (Complexity Filter). Given a pseudo-boolean fitness function
f:{0,1}" — IR™, and a positive, real value cr, the Complexity Filter returns a
new pseudo-boolean fitness function f* : {0,1}" — IR defined as follows:

r(z) = {f(x) if Cz(z) <cy-£(x), and @

0 otherwise,



where x* is the optimal argument to the function f.

The modifier is parametrized by the value of c¢. The returned function f* is
equivalent to the original function f when the parameter cy is much higher than
1.0. When the value of c; is close to zero, the modified function f* evaluates to 0
for almost all arguments, and becomes a needle-in-the haystack function. Infor-
mally, the Complexity Filter “removes information” from the fitness landscape
depending on phenotypic complexity. If the optimal argument z* to the function
f has low complexity and the parameter cy is above a certain threshold, then
the original function f and the modified function f* share the same optimal
argument.

Definition 3 (Complexity Translate). Given a pseudo-boolean fitness func-
tion f : {0,1}™ — IR, and a binary string z of length n with Cz(z) = ¢t - n,
the Complexity Translate modifier returns a new pseudo-boolean fitness function
f:{0,1}" — IR defined as follows:

fia) = flao2). (3)

We consider this modifier to be implicitly parametrized by the value of ¢;. To
apply the modifier for a certain parameter setting of ¢;, we have to search for
a binary string z with Lempel-Ziv complexity Crz(z) = ¢; - £(2z). It might not
be possible to find such a binary string for all values of ¢;, so the complexity
translate modifier may be undefined for some values of ¢;. In almost all cases,
the modified fitness function f* will have a different optimal argument than the
original fitness function f. In the general setting, if a fitness function f has an
optimum value of f(z*) for the argument x*, then the modified fitness function
f* has optimum value f*(z*@®z2) = f((2*®2)D2) = f(2*®(2®2)) = f(a*) for the
argument z* @ z. In the case where z = 04(*) (corresponding to a low parameter
setting of ¢;), the functions f and f* are equal, and have the same optima. The
parameter setting of ¢; changes the complexity of the optimal argument of the
modified fitness function f*.

How does the Complexity Translate modifier alter the complexity of the
optimal solution of the modified function? We can sandwich the Kolmogorov
complexity of the new optimum z* @ z between two values as follows:

max(C(z*),C(z)) —min(C(z"),C(2)) —c < C(z* & 2) 4)
Clx*dz) <C(a")+C(2) +e, (5)

where ¢ is a small constant. A proof is given in Appendix A.

In our case, the optimal solution x* has very low complexity, so if z has high
complexity (i.e. high value of ¢;), then by inequality (4), the optimum z* @ z
of the modified function f’ will also have a relatively high complexity. On the
other hand, if z also has low complexity (low value of ¢;), then by inequality (5),
the optimal solution of the modified function will have a low complexity .

In contrast to the Complexity Filter modifier, the Complexity Translate mod-
ifier does not remove information from the fitness landscape. But the points in



the fitness landscape are translated, such that for high ¢;-settings, the optimum
is moved to a complex point in the fitness landscape. The Discussion section
continues the description of the fitness modifiers.

3 Experiments

The objective of the experiments is to study how the fitness function modifiers
change the behavior of a genetic algorithm using either a direct encoding, or a
developmental mapping.

Density estimation of phenotypic complexity distribution From the
definition of the fitness function modifiers, it is reasonable to assume that differ-
ences in the phenotypic complexity distribution of direct encoding and Kitano
mapping may affect the outcome of the evolutionary experiments.

To get a clearer picture of this issue, we randomly sampled one million geno-
types to the direct encoding, and one million genotypes to the Kitano mapping.
Then, we mapped the genotypes into phenotypes using the direct encoding (i.e.
uniformly distributed random strings) and the Kitano mapping respectively.
Then we computed the Lempel-Ziv complexities of the phenotypes, and from
these values estimated the distribution of phenotypic complexity in the direct
encoding, and in the Kitano mapping.

GA settings The evolutionary experiments were implemented using the
GALIB [23] genetic algorithm library. Linear roulette wheel selection was used
with a mutation rate of 0.01 per bit in the genome, a crossover rate of 0.9 and a
population size of 30. The maximum number of allowed generations was 50000.
The fitness functions were instantiated with problem size n = 100.

Complexity Filter Experiments were carried out using the Complexity
Filter with a parameter setting of cy in the interval 0.1 to 1.0, with step size
0.05 and 50 repetitions for each parameter setting. The modifier was applied to
ONEMAX , ROYALROAD and DEBDECEPTIVE first using direct encoding and
then Kitano mapping.

Complexity Translate By decompressing binary strings of varying lengths
using the Lempel-Ziv algorithm, we constructed a set Z of 901 binary strings
with Lempel-Ziv complexities almost uniformly distributed on the interval 12 to
36. This corresponds to ¢; values in the interval 0.12 to 0.36. (Notice that the
parameters ¢y and ¢; are not directly comparable.)

For each binary string z in this set Z, one experiment was carried out for
all three fitness functions using the Complexity Translate modifier with z as
parameter. Again, the experiments were performed for both direct encoding and
Kitano mapping.

4 Results

4.1 Density plot

The results from the estimation of complexity distributions are shown in Fig-
ure 3. The most notable difference between the two distributions, is that most



of the random strings (i.e. phenotypes of direct encoding) have a relative high
complexity, and the variance in complexity is little. This result complies with
the Incompressibility Lemma in Kolmogorov complexity. On the other hand, the
Kitano mapping has a larger variance.

The mean complexity in the Kitano mapping distribution is not much lower
than the mean complexity in the random string distribution.

4.2 Evolutionary runs

The results of the experiments are presented as scatter plots. Each point cor-
responds to the result of one evolutionary run. The plots show the number of
generations (log;q-scaled) used before either the optimal phenotype was discov-
ered or the upper limit of 50000 generations was reached. This is plotted against
the parameter of the employed fitness modifier. Runs using direct mapping are
plotted as crosses while runs using Kitano mapping are plotted as circles.

Complexity Filter Figure 1 shows the results for ONEMAX and ROYAL-
RoAD modified with the Complexity Filter. The plot for DEBDECEPTIVE is not
shown, but shows a similar trend as for the two other problems. Kitano mapping
seems to be less affected than direct encoding by parameter settings of cy above
0.1.

The performance of direct encoding increases suddenly as the value of ¢y
reaches 0.35. A general observation is that Kitano mapping is more efficient at
solving the three problems. Even for very low values of ¢y, Kitano mapping is
able to generate optimal solutions.

Direct encoding however, when applied to ONEMAX or ROYALROAD , did
not find any optimal solution in any of the runs for low c¢-values. Direct encoding
did not find the optimal solution in any of the runs with DEBDECEPTIVE .

Complexity Translate Results for ONEMAX and ROYALROAD modified
with the Complexity Translate modifier are shown in Figure 2. The plot for DEB-
DECEPTIVE is not shown, but follows a similar trend as the other two functions.

In these experiments, the direct encoding seems to be relatively insensitive
to changes of the parameter ¢;. The effectiveness of Kitano mapping is clearly
reduced as ¢; increases. Kitano mapping did seldom find the optimal solution
in any runs with high ¢; values. However, Kitano mapping seems to outperform
the direct encoding for very low values of ¢;.

5 Discussion

Except from extreme cases, Complexity Filter only affects the performance of di-
rect encoding, and Complexity Translate only affects the performance of Kitano
mapping. This result is interesting because it allows us to better understand and
appreciate special complexity-related characteristics of Kitano mapping.

The density plot gives some clues about the results of the evolutionary runs.
The density estimation plot shows that most of the random strings have a high
Lempel-Ziv complexity. When we apply the Complexity Filter modifier with cy
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Fig. 1. Complexity Filtering of ONEMAX (top) and ROYALROAD (bottom).

lower than the main peak of the random strings - as indicated with the dashed
vertical line in Figure 3 - the fitness of binary strings right of the line will be set
to 0. In some of the experiments, the performance of direct encoding suddenly
increased as cy reached 0.35. This complies well with the density plot, where
the main peak begins at around 0.35. The Kitano mapping distributes the phe-
notypes more evenly over possible ranges of complexity. This implies that when
using a relatively low value of ¢y, Kitano mapping still has a large portion of its
fitness landscape preserved. With values of ¢y below 0.15, the performance of the
Kitano mapping suddenly decreases. This complies well with the distribution of
complexities for the Kitano mapping. If we had replaced the evolutionary algo-
rithm with a completely random search, then the density plot might have been
sufficient to predict the performance of the two mappings on functions modi-
fied with Complexity Filter. However, when using an evolutionary algorithm, it
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Fig. 2. Complexity Translate of ONEMAX (top) and ROYALROAD (bottom).

is unreasonable to claim that the density plot gives the full explanation of the
results from the evolutionary runs.

To see this: Suppose that in phenospace of the Kitano mapping, the complex
and regular phenotypes are mixed together uniformly. Then, when the complex
phenotypes are given 0 fitness, the Complexity Filter would render the Kitano
fitness landscape highly irregular.

Our results indicate that this interpretation is not correct because Kitano
mapping is able to cope with the Complexity Filter. We suspect that the low
complexity phenotypes are more tightly grouped in the Kitano search space.
From the density plot, we know that low complexity phenotypes occupy a rela-
tively larger part of the Kitano search space. When using the Complexity Filter,
large regions of the Kitano search space will therefor remain relatively unaffected
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Fig. 3. Density Estimation of Phenotypic Lempel-Ziv Complexity Distribution.

by the Complexity Filter. This is not a claim, but a possible explanation of the
results using the Complexity Filter.

As mentioned in the background section, when we apply the Complexity
Translate modifier with a complex binary string z, the complexity of the opti-
mum increases. This is illustrated in Figure 3 with a simple, original optimum
xz*, and the modified optimum x* @ z. Given a high parameter setting of ¢,
the optimum of the modified fitness function is moved to the right along the
horizontal axis (or to a more “complex point in the fitness landscape”).

The density plot might trick us into believing that using direct encoding, it is
much easier to find a specific complex phenotype, than to find a specific regular
phenotype. However, under a totally uniform distribution, all binary strings are
equally probable. Consequently, it is not surprising that the direct encoding is
not affected by the setting of the ¢; parameter in Complexity Translate. The
results from ONEMAX modified with Complexity Translate is a good example
of this. It is more challenging to explain why the Kitano mapping was affected
by the ¢; parameter of Complexity Translate. It is unclear whether the density
plot can give us any hints about the reason for this.

The construction of the Complexity Translate modifier was motivated by re-
sults from earlier experiments with the Kitano mapping [15]. Results from that
work indicate that the distance-preservation of the Kitano mapping from geno-
type to phenotype depends on phenotypic complexity. If the phenotype has high
complexity we can expect a poor preservation of distance. One could conjecture
that distance-preservation of the mapping might be a necessary condition for
an evolutionary algorithm to find the optimal solution [24], and this might ex-
plain our results with Kitano mapping on Complexity Translate. Furthermore,
Downing observed that it was harder to evolve irregular binary strings with his
developmental mapping [25]. Furthermore, if Complexity Translate translates
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the optimum to a bitstring outside the image of the Kitano mapping, then the
optimum will of course not be found with Kitano mapping.

6 Conclusion

We have approached the problem of distinguishing for which problems a devel-
opmental mapping is beneficial in evolutionary computation by focusing on the
classical Kitano mapping [12].

Two general methods of modifying fitness functions were described: the Com-
plexity Translate modifier, and the Complexity Filter modifier. Their construc-
tion was motivated by previous results on phenotypic complexity and develop-
mental mappings [15].

Experimental results indicate that the Complexity Filter modifier can make
a problem harder for direct encoding, while preserving the difficulty of the prob-
lem for the Kitano mapping. Furthermore, the results indicate that Complexity
Translate modifier can make a problem harder for the Kitano mapping, but
unchanged for a direct encoding.

The approach was demonstrated on three different fitness functions: ONE-
Max , DEBDECEPTIVE and ROYALROAD .

A density estimation plot of phenotypic complexity distribution aided in un-
derstanding complexity in direct encoding and Kitano mapping. Certain features
in the results seem explainable simply by observing this density plot.

The authors believe the results are significant because they allow better ap-
preciation and understanding of the differences between direct encodings and
developmental mappings. Better understanding of the special characteristics of
developmental mappings is needed if they are to be used in a practical setting.

A A short proof

Proposition 1. Let x and y be two binary strings of equal length. Then
max(C(z), C(y)) — min(C(z), C(y)) —c < C(z @ y) (6)
Clzaoy) <C(z)+Cly) +c, (7)
where ¢ is a (small) constant.

Proof. Inequality (7) is trivial: If we have two programs which generate the
binary strings = and y independently, then we can apply the XOR-operation
(suppose the program for XOR takes ¢ bits) to obtain z@®y. Now, to see inequality
(6), suppose first that x is less complex than y. Assume p; is the shortest program
which generates x, and ps is the shortest program which generates x ®y. We can
make a program ps which combines p; and ps to compute = @ (x @ y) = y. The
length of the program ps is ¢(p3) = £(p1) + ¢(p2) + ¢, where c is the length of
the program which computes the XOR-operation. The shortest program which
computes y is therefor no longer than the length of program ps, so we have
C(y) < (p1) + £(p2) + ¢, which implies C(y) — C(z) — ¢ < C(z @ y). An analog
argument applies when x is more complex than y. ]
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B Definition of fitness functions

ONEMAX ,(z) = Zmz where = € {0,1}",
i=1
ROYALROAD ,(z) = Z H z; wherexz € {0,1}" andn=a-b,

i=0 j=ib+1

m
DEBDECEPTIVE ,(z) = Zg(w[im...im +3]) where z € {0,1}", andn=4-m

i=1
: 1
g(x) = {(1)6 — 0.2h(z) g Zg; i i and h(z) = Zﬂci
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