Genetic Algorithms using Low-Discrepancy Sequences

Shuhei Kimura
Department of Information and
Knowledge Engineering,

Faculty of Engineering, Tottori University
4-101, Koyama Minami, Tottori, JAPAN

kimura@ike.tottori-u.ac.jp

ABSTRACT

The random number generator is one of the important components
of evolutionary algorithms (EAs). Therefore, when we try to solve
function optimization problems using EAs, we must carefully choose
a good pseudo-random number generator. In EAs, the pseudo-
random number generator is often used for creating uniformly dis-
tributed individuals. As the low-discrepancy sequences allow us
to create individuals more uniformly than the random number se-
quences, we apply the low-discrepancy sequence generator, instead
of the pseudo-random number generator, to EAs in this study. The
numerical experiments show that the low-discrepancy sequence gen-
erator improves the search performances of EAs.

Categories and Subject Descriptors

1.2.8 [Avrtificial Intelligence]: Problem Solving, Control Methods,
and Search—Heuristic methods

General Terms
Algorithms

Keywords

Genetic algorithm, Random number generator, Pseudo-random num-
ber sequence, Low-discrepancy sequence

1. INTRODUCTION

The random number generator is a basic component of evolu-
tionary algorithms (EAs) as they are the stochastic search algo-
rithms for function optimization problems. Recently, several stud-
ies showed that the performances of EAs can be affected by the
choice of the pseudo-random number generator [3, 4, 11, 12]. In
general, when we try to design new EAs, we suppose that “good”
random number sequences are available for them. Therefore, when
EAs are applied to the function optimization problems, we should
choose a “good” pseudo-random number generator, such as the
Mersenne Twister [10].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GECCO' 05, June 25-29, 2005, Washington, DC, USA.

Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

1341

Koki Matsumura
Department of Information and
Knowledge Engineering,

Faculty of Engineering, Tottori University
4-101, Koyama Minami, Tottori, JAPAN

matumura@ike.tottori-u.ac.jp

One of the goodness measures of random number sequences is
uniformity. The most common measure of uniformity is discrep-
ancy (see, e.g., [19]). For the point set Py = {X1,X2,--- , XN} IN
[0,1]3, the discrepancy is defined as

T (Py) = \//[Ql]s [w —V(J)rdu, (1)

where u = (uyg,---,Us), J is a hyper-brick defined by [0,u] (i =
1,2,---,s), A(J,Py) is the number of points landed inside J, and
V (J) is the volume of J.

It was shown that uniform random number sequences have the
discrepancy in the order of

loglogN
N @

and they do not have the lowest discrepancy (see, e.g., [13]). As the
sequences that give the lower discrepancy than the uniform random
number sequences, the low-discrepancy sequences have been de-
veloped [7, 14, 19]. These sequences are also called quasi-random
or sub-random sequences, and they have the discrepancy in the or-
der of

(IO?\n N)S @

The low-discrepancy sequences are less random, but more uniform
than the random number sequences.

In EAs, pseudo-random number sequences are often used for
creating new sampling points. These sampling points should be
created uniformly, since we generally have no information about
the search space before the sampling. However, the randomly gen-
erated points are less uniform than those generated by the low-
discrepancy sequences. Therefore, in this study, we use the low-
discrepancy sequence generator, instead of the pseudo-random num-
ber generator, to create new individuals in EAs. As it was difficult
for binary-coded genetic algorithms (GASs) to utilize the uniformity
of the sequences, the low-discrepancy sequence generator was ap-
plied to a real-coded GA (see, e.g., [6]). The effectiveness of the
use of the low-discrepancy sequence was verified through numeri-
cal experiments on several benchmark problems.

2. LOW-DISCREPANCY SEQUENCES

Many low-discrepancy sequences have been proposed [7, 14,
19]. The sequence used in this study is described below.

2.1 Van Der Corput Sequence
The van der Corput sequence in base b is the one-dimensional

low-discrepancy sequence and can be constructed as follows (see,
e.g., [14]); for an integer b > 2, we put Zp = {0,1,--- ,b—1}, i.e,,

Table 1: Sample observation sites for the van der Corput se-

guences in base 2,3,4 and 5.

n Sy S3 S4 85

0 | 0.0000 | 0.0000 | 0.0000 | 0.0000
1| 0.5000 | 0.3333 | 0.2500 | 0.2000
2 | 0.2500 | 0.6667 | 0.5000 | 0.4000
3| 0.7500 | 0.1111 | 0.7500 | 0.6000
4 | 0.1250 | 0.4444 | 0.0625 | 0.8000
5| 0.6250 | 0.7778 | 0.3125 | 0.0400
6 | 0.3750 | 0.2222 | 0.5625 | 0.2400
7 | 0.8750 | 0.5556 | 0.8125 | 0.4400
8 | 0.0625 | 0.8889 | 0.1250 | 0.6400
9 | 0.5625 | 0.0370 | 0.3750 | 0.8400

Zy, is the least residue system modulo b. Every integer n > 0 has a
unique digit expansion

= 3 abl (4)
%"

in base b, where aj € Z, for all j > 0, and m is the integral part
of logyn, i.e., m = [logyn]. Also, let @,(n) be the radical-inverse
function in base b for an integer b > 2, where

@(n) = PyESS (®)
j=

for all integers n > 0. Thus, @,(n) is obtained from n by a sym-
metric reflection of the expansion (4) in the decimal point. Then,
for an integer b > 2, the van der Corput sequence in base b is the
sequence Sy, = {to,t1,t2,--- }, where

th = @(n). (6)

Different values of base b provide us with different van der Cor-
put sequences. Table 1 shows the first ten observation sites for four
van der Corput sequences in base 2, 3, 4 and 5, respectively.

2.2 Halton Sequence

The van der Corput sequence described above has an ability to
generate points that are uniformly distributed in the one-dimensional
space. The sequence, however, does not generate points uniformly
distributed in the higher-dimensional space. To overcome this draw-
back, Halton proposed the Halton sequence [7].

The Halton sequence is an extension of the van der Corput se-
quence to the higher-dimensional space. The s-dimensional Halton
sequence is defined as §4 = {Xo, X1, X2,--- }, where

Xn = (%1(n),%2(n),“' a(pl)s(n))' (7)

b1,by,---,bs are integers that are greater than one and pairwise
prime. In practice, they are often chosen to be the first s prime
numbers. Figure 1 shows 2-dimensional plots of 500 points gen-
erated by the Halton sequence and the pseudo-random number se-
quence (Mersenne Twister). As shown in the figure, the Halton
sequence allows us to generate points uniformly distributed in the
higher-dimensional space.

It is, however, difficult to use the statistical techniques for an-
alyzing the Halton sequence, since it is deterministic. This na-
ture is inconvenient when we try to compare the performances of
GAs with and without the low-discrepancy sequence. Therefore,

1342

A) Halton sequence

Ur—

T T
+ e T Ty
09
+ +
08 | -
. -

07 T, o, %

R
0.6 Py

04
03r T4
02

"
L +
01 + o

4
ol . P P S S
0 01 02 03 04 05 06 07 08 09 1

X

B) pseudo-random number sequence

T
s +
o + + 4
e
+ + PR ®oF T
09 ey + * + +
i + * + +
s Tt Y “
LR S + . P
08 F R o BT A
i Lo Ran T e
‘o PR E
L + 4t + e
+ + + 4
+F + + “ +
1o+ " A ot
o6 & * 4ot + M 4 il
F e et . +,
M M
D 05 + Foaox, e
. oo et
A g + b +
v # + e

oyt
0af v %

[

+
.
.
+r
e
I

.
03 %

-t
+
v
R

02

01

0 L L s
0 01 02 03 04 05 06 07 08 09 1

X

Figure 1: 2-D plots of 500 points generated by A)the Halton
sequence, and B)the pseudo-random number sequence, respec-
tively.

in this study, we use the random-start Halton sequence that in-
troduces some randomness into the Halton sequence [19]. The
random-start Halton sequence is equivalent to the sequence Sy =

{YOaYIaYZa T }. where
Yn= (%1(n+m1)7%z(n+m2),---,(pos(n+ms))’ (8)

and mq,my,---,mg (M; > 0) are constant integers randomly se-
lected. Even if the randomness is introduced, the sequence still
possesses the uniformity. Readers can find more detailed informa-
tion on this sequence in the paper written by Wang and Hickernell
[19].

3. REAL-CODED GA USING LOW-
DISCREPANCY SEQUENCE

In this section, we apply the low-discrepancy sequence generator
described above into a GA. A real-coded GA is used in this study
as it has an ability to easily utilize the uniformity of the sequences.

Many real-coded GAs have been proposed so far [5, 6, 9, 15,
18]. However, several real-coded GAs may be unsuitable for the
use of the low-discrepancy sequences, since the treatment of some
transformation disrupts the uniformity of the sequences. In this
study, we use a relatively simple real-coded GA, ENDX /MGG,

’ Famil

. random - N
Population sampling _Crossover
R

O
plO Q selection g?
sz ! I @)
E : : random
me parents | children

N/ Generation <— Generation+1

Figure 2: Framework of optimization process by ENDX/MGG.

because it requires no complicated transformation. ENDX /MGG
uses ENDX (Extended Normal Distribution Crossover) [8] as a re-
combination operator, and MGG (Minimal Generation Gap model)
[17] as a generation alternation model. The following is an algo-
rithm of ENDX /MGG (see also Figure 2);

1. Initialize
Asan initial population, create np individuals. Set Generation
=0.

2. Selection for reproduction
Select a pair of individuals randomly without replacing it
from the population. The selected individuals are used as
the parents for the recombination operator in the next step.

3. Generation of offspring
Generate nc children by applying the recombination operator,
ENDX, to the selected pair of the individuals.

4. Selection for survival
Select two individuals from the family containing the parents
and their children. One has the best fitness value, and the
other is selected randomly. Then, replace the parents with
the selected individuals.

5. Stop if the halting criteria are satisfied. Otherwise, Generation
+ Generation+ 1 and return to the step 2.

As the low-discrepancy sequence generator should be used to
create individuals, we apply it only to the steps 1 and 3 in this
study. To generate random numbers in the rest of the steps, the
pseudo-random number generator, Mersenne Twister [10], is used.
Each of the steps is described below in greater detail.

3.1 Step: Initialize

As an initial population, create np individuals. In real-coded
GAs, individuals are represented as n-dimensional real number vec-
tors, where n is the dimension of the search space. To make the ini-
tial population uniformly distributed, we use the low-discrepancy
sequence generator in this study.

3.2 Step: Selection for Reproduction

Select m parents, pq,Pa,-- -, Py, randomly from the population.
As ENDX is the multi-parental recombination operator, m parents
are selected here. For the random selection in this step, the pseudo-
random number generator is used.

1343

3.3 Step: Generation of Offspring

Generate n¢ children by applying ENDX to the selected parents,
P1,:++,Pm- ENDX is a multi-parental extension of UNDX (Uni-
modal Normal Distribution Crossover) [15], and it generates chil-
dren mainly along with the line connecting the two parents, p; and
P, according to the following procedure;

1. Let the mid point of the parents p; and p, be p = (py +
p,)/2, and let the difference vector of these parents be d =

P2 —P1-

2. Let the mass center of the rest of the parents be

9=ml_2]_ipj,

and let the difference vector of p; and g be g; = p; — 0.

3. Generate a child c according to the following equation;
m
c=p+<&d+) niq;,
2"

where & and nj are random variables that follow normal dis-
tributions N(0, a2) and N(0, 32), respectively.

In this study, in order to generate the random variables, & and n;,
we use the low-discrepancy sequence generator. The Box-Muller
transformation [2] (see also appendix) is used to generate normally
distributed numbers from uniformly distributed ones, because the
rejection method or the method based on the central limit theorem
may destroy the uniformity in the sequence.

3.4 Step: Selection for Survival

Choose two individuals from the family that includes the two
parents, p; and p,, and their children. One has the best fitness
value, and the other is selected randomly. Then, replace the parents
(i.e., py and p,) with the selected individuals. We use the pseudo-
random number generator in this step.

4. EXPERIMENTS

In order to confirm the effectiveness of the use of the low-dis-
crepancy sequence, the real-coded GAs with and without the low-
discrepancy sequence generator were applied to several benchmark
functions.

4.1 Benchmark Functions

Four benchmark functions were used in our experiments. These
benchmark functions are given in Table 2. The experiments were
performed on 10, 15, and 20 dimensional functions (i.e., n = 10,15
and 20).

Rosenbrock function is unimodal. This function is non-separable
since the optimum resides at the deep and curved valley. Rastrigin
function is a multimodal one, but all of the local optima exist at
equal intervals and these optima array parallel to the axes of the co-
ordinate system. Hence, this function is well-scaled and separable.
Griewangk function is also multimodal. However, this function is
close to Sphere function when the dimension of the search space
is high. Therefore, the Griewangk function becomes easy as the
dimension increases. In order to compare the performances of the
algorithms on another multimodal function, we used Ackley func-
tion. The Griewangk function and the Ackley function are also
weakly non-separable.

Table 2: Benchmark functions.

Objective function Search region Optimum
Rosenbrock fro(X) = S [100(xit1 —X2) + (xi — 1)?] —2.048 < x; <2.048 | fro(1,---,1)=0
Rastrigin fra(x) = 10n+ 31, [xZ — cos(271x;)] —5.12<x <5.12 | fg(0,:-+,0)=0
Griewangk fgr(X) = o0 S1q X2 — [T cos %) +1 ~512<x <512 | fg(0,-+,0)=0
Ackley fac(x) =20+e -20<x <30 fac(0,---,0)=0
—20exp (—0.2 %) —exp (75”:1?52"’(‘)

Table 3: GAs used in the experiments. The low-discrepancy se-
guence generator (LDS) and the pseudo-random number gen-
erator (PRN) are differently applied to the steps of ENDX
IMGG.

GAs step 1 step 3
Initialize Gen. of off.

ENDX /MGG (both) LDS LDS

ENDX /MGG (none) PRN PRN

ENDX /MGG (init) LDS PRN

ENDX /MGG (xover) PRN LDS

4.2 Experimental Setup

We compared four GAs listed in Table 3. As described in the
section 3, we applied the low-discrepancy sequence generator into
the two steps of ENDX /MGG, i.e., the “Initialize” step and the
“Generation of offspring” step. This GA is referred to as ENDX
IMGG (both) in this study. We compared ENDX /MGG (both)
with the original ENDX/MGG that uses no low-discrepancy se-
quence generator. This original ENDX /MGG is called ENDX
IMGG (none) here. In addition, to study the effect of the use of
the low-discrepancy sequence on the GA performance more pre-
cisely, we also carried out the experiments using ENDX /MGG
(init) and ENDX /MGG (xover) that apply the low-discrepancy se-
quence generator only to the “Initialize” step and the “Generation
of offspring” step, respectively. In all of the experiments, we used
the Mersenne Twister [10] as the the pseudo-random number gener-
ator, and the random-start Halton sequence described in the section
2.2 as the low-discrepancy sequence generator.

We used the following GA parameters; the population size np
was 15n where n is the dimension, and the number of the children
generated by the crossover per selection nc was 100. The recom-
mended parameters in ENDX were used here; the number of par-
ents m is n+ 2, and the standard deviations of random numbers a
and 3 are 0.434 and 0.35/+/m — 3, respectively.

100 runs were carried out for each benchmark function. Each run
was continued until the best fitness value reached less than 1078,
or the population was converged within the range of 10~ in each
coordinate. The optimum was considered to be found only when
the best fitness value reached less than 10°.

4.3 Results and Discussions

The results are summarized in Table 4. The performance is com-
pared using two standards, the number of trials where the algo-
rithm succeeds in finding optimum (SUC) and the average number
of function evaluations required for finding the optimum (EVAL).
The standard deviations of the number of function evaluations re-
quired (SD) are also shown as the parenthesized values in the table.

As the Rosenbrock function is unimodal, the optimum solution

1344

was found in all of the trials. ENDX /MGG (both) and ENDX
IMGG (xover), however, optimized this function with the smaller
number of function evaluations than those of the others. The differ-
ence in the number of function evaluations was not disregardable at
the significance level a = 1%. This fact may indicate that the appli-
cation of the low-discrepancy sequence into the “Generation of off-
spring” step decreases the number of function evaluations required
for the optimization. On the other hand, the search performance of
ENDX /MGG (init) that applies the low-discrepancy sequence only
to the “Initialize” step resembled that of ENDX /MGG (none). The
application of the low-discrepancy sequence into the “Initialize”
step may not improve the search performance on this function.

On the multimodal functions, the search performances of ENDX
IMGG (both) and ENDX /MGG (none) were almost the same as
those of ENDX /MGG (init) and ENDX /MGG (xover), respec-
tively. Since ENDX /MGG (both) and ENDX /MGG (init) found
the optimum with higher probability than the others on the multi-
modal functions, the application of the low-discrepancy sequence
into the “Initialize” step may play an important role in the opti-
mization of multimodal functions. On the contrary, even if the low-
discrepancy sequence was applied to the “Generation of offspring”
step, the number of trials where the algorithm succeeds in finding
optimum did not increase on these multi-modal functions.

The low-discrepancy sequences are often used by Monte Carlo
methods in order to estimate the high-dimensional integral (see,
e.g., [7]). In general, a Monte Carlo method with the low-discrepancy
sequences is called a quasi-Monte Carlo method. In the estimation
of the integral, the accuracy of the quasi-Monte Carlo method in-
creases much faster than that of the original Monte Carlo method
which uses no low-discrepancy sequence. Accordingly, the use
of the the low-discrepancy sequences is considered a promising
technique for resolving the curse of dimensionality in the high-
dimensional integral. On the other hand, although EAs change the
search space adaptively in contrast to Monte Carlo methods, EAs
are related to Monte Carlo methods. Therefore, the low-discrepancy
sequences may also improve the search performances of EAs in the
high-dimensional space.

5. CONCLUSIONS

In this study, in order to generate individuals uniformly, we ap-
plied the low-discrepancy sequence generator, instead of the pseudo-
random number generator, into the real-coded GA. The experimen-
tal results showed that the use of the low-discrepancy sequence en-
hances the search performance of the GA. When the low-discrepancy
sequence was used to make the initial population uniformly dis-
tributed, the probability of finding the optimum solution was im-
proved. Moreover, the low-discrepancy sequence decreased the
number of function evaluations required for the optimization, when
the recombination operator creates children utilizing the low-dis-
crepancy sequence generator.

Table 4: Summary of results.

Objective | Dim. ENDX/MGG(both) ENDX/MGG(none) ENDX/MGG(init) ENDX/MGG(xover)
function n SUC EVAL SUC EVAL SUC EVAL SUC EVAL
(SD) (SD) (SD) (SD)
10 | 100/100 | 9.74x10° | 100/100 | 1.01x10° | 100/100 | 1.02x10° | 100/100 | 9.75 x 10°
(7.08 x 10%) (6.85 x 104 (7.57 x 10%) (8.33 x 10%)
Rosenbrock | 15 | 100/100 | 3.29x 10% | 100/100 | 3.49x 10% | 100/100 | 3.48x 10° | 100/100 | 3.33 x 10°
(2.57 x 10°) (2.43 x 105) (2.50 x 10°) (2.33 x 10°)
20 | 100/100 | 9.41x 105 | 100/100 | 1.06x 107 | 100/100 | 1.05x 107 | 100/100 | 9.42 x 10°
(7.77 x 10°) (9.96 x 10°) (9.53 x 10°) (7.71 x 10°)
10 | 90/100 | 5.57x10° | 84/100 | 5.76x10° | 94/100 | 5.61x10° | 84/100 | 5.89 x 10°
(6.41 x 10%) (7.59 x 104 (6.88 x 10%) (8.42 x 10%)
Rastrigin 15 | 89/100 | 9.13x10° | 71/100 | 9.41x10° | 84/100 | 9.11x10° | 76/100 | 9.45x10°
(1.04 x 10°) (1.24 x 105) (1.20 x 10°) (1.23 x 10°)
20 | 88/100 | 1.27x 105 | 73/100 | 1.33x10° | 89/100 | 1.26x10° | 72/100 | 1.32 x 10°
(9.23 x 10%) (2.46 x 10°) (8.90 x 10%) (1.71 x 10°)
10 | 72/100 | 5.74x10° | 60/100 | 5.86x10° | 74/100 | 5.91x10° | 71/100 | 6.00 x 10°
(8.31 x 10%) (7.24 x 10%) (7.53 x 10%) (8.88 x 10%)
Griewangk | 15 | 99/100 | 6.92x10° | 98/100 | 6.93x10° | 99/100 | 6.79x10° | 95/100 | 6.95x 10°
(5.53 x 10%) (5.95 x 10%) (3.91 x 10%) (6.18 x 10%)
20 | 97/100 | 9.58x10° | 98/100 | 9.42x10° | 99/100 | 9.39x10°> | 98/100 | 9.98 x 10°
(6.99 x 10%) (5.35 x 10%) (6.15 x 10%) (2.86 x 105)
10 | 100/100 | 5.13x10° | 100/100 | 5.18x10° | 100/100 | 5.18x10° | 100/100 | 5.16 x 10°
(1.51 x 10%) (1.49 x 10%) (1.54 x 10%) (1.42 x 10%)
Ackley 15 | 100/100 | 8.84x 10° | 100/100 | 8.81x 10° | 100/100 | 8.83x 10° | 100/100 | 8.80 x 10°
(1.85 x 10%) (1.67 x 104 (1.83 x 10%) (1.58 x 10%)
20 | 100/100 | 1.32x 105 | 100/100 | 1.29x10° | 100/100 | 1.29x 10% | 100/100 | 1.31x 108
(3.29 x 10%) (2.10 x 10%) (2.55 x 10%) (2.92 x 10%)

In this study, we applied the low-discrepancy sequence only to
the simple real-coded GA, ENDX /MGG. Moreover, we tested the
performances of the GAs with and without the low-discrepancy se-
quence only on the four benchmark functions. Therefore, further
experiments should be required to investigate the effectiveness of
the use of the low-discrepancy sequences more precisely.

The low-discrepancy sequences have been applied into EAs in
very few studies [16]. The low-discrepancy sequences, however,
may have an ability to enhance the performances of lots of EAs
including real-coded GAs, evolution strategies (e.g., [1]), and so
on. In future work, we should confirm whether the low-discrepancy
sequences improve the search performances of more powerful EAs.

6.
(1]

(2]

(3]

(4]

(5]

REFERENCES

T. Béck, U. Hammel and H.P. Schwefel. Evolutionary
Computation: Comments on the History and Current State.
IEEE Trans. on Evolutionary Computation, 1(1): 3-17, 1997.
G.E.P. Box and M.E. Muller. A Note on the Generation of
Random Normal Deviates. Ann. Math. Stat., 29: 610-611,
1958.

E. Cant(-Paz. On Random Numbers and the Performance of
Genetic Algorithms. In Proc. of Genetic and Evolutionary
Computation COnference (GECCO) 2002, 754-761, 2002.
J.M. Daida, D.S. Ampy, M. Ratanasavetavadhana, H. Li and
O.A. Chaudhri. Challenges with Verification, Repeatability,
and Meaningful Comparison in Genetic Programming:
Gibson’s Magic. In Proc. of GECCO 1999, 1851-1858, 1999.
K. Deb, D. Joshi and A. Anand. Real-coded Evolutionary
Algorithms with Parent-Centric Recombination. In Proc. of

1345

(6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

Congress on Evolutionary Computation (CEC) 2002, 61-66,
2002.

L.J. Eshelman and J.D. Schaffer. Real-coded Genetic
Algorithms and Interval-Schemata. In Proc. of Foundations
of Genetic Algorithms (FOGA) 2, 187-202, 1993.

J.H. Halton. On the Efficiency of Certain Quasi-Random
Sequences of Points in Evaluating Multi-Dimensional
Integrals. Numerische Mathematik, 2: 84-90, 1960.

S. Kimura, I. Ono, H. Kita and S. Kobayashi. An Extension
of UNDX based on Guidelines for Designing Crossover
Operators: Proposition and Evaluation of ENDX. Trans. of
the Society of Instrument and Control Engineers, 36(12):
1162-1171, 2000 (in Japanese).

H. Kita, I. Ono and S. Kobayashi. Multi-parental Extension
of the Unimodal Normal Distribution Crossover for
Real-coded Genetic Algorithms. In Proc. of CEC 1999,
1581-1588, 1999.

M. Matsumoto and T. Nishimura. Mersenne Twister: A
623-Dimensionally Equidistributed Uniform Pseudorandom
Number Generator. ACM Trans. on Modeling and Computer
Simulation, 8(1): 3-30, 1998.

M.M. Meysenburg and J.A. Foster. Randomness and GA
Performance, Revisited. In Proc. of GECCO 1999, 425-432,
1999.

M.M. Meysenburg and J.A. Foster. Random Generator
Quality and GP Performance. In Proc. of GECCO 1999,
1121-1126, 1999.

W.J. Morokoff and R.E. Caflisch. Quasi-random sequences
and their discrepancies. SIAM J. on Scientific Computing,
15(6): 1251-1279, 1994,

[14] H. Niederreiter. Random Number Generation and
Quasi-Monte Carlo Methods. Philadelphia: SIAM, 1992.

[15] I. Ono and S. Kobayashi. A Real-coded Genetic Algorithm
for Function Optimization Using Unimodal Normal
Distribution Crossover. In Proc. of 7th Int. Conf. on Genetic
Algorithms, 246-253, 1997.

[16] I.C. Parmee and C.R. Bonham. Improving Cluster Oriented
Genetic Algorithms for High-perfomance Region
Identification. In Proceedings US United Engineering
Foundation’s ‘Optimization in Industry’ Conference, 2001.

[17] H. Satoh, M. Yamamura and S. Kobayashi. Minimal
Generation Gap Model for GAs considering both Exploration
and Exploitation. In Proc. of the 1IZUKA, 494-497, 1996.

[18] S. Tsutsui, M. Yamamura and T. Higuchi. Multi-parent
Recombination with Simplex Crossover in Real Coded
Genetic Algorithms. In Proc. of GECCO 1999, 657-664,
1999.

[19] X. Wang and F.J. Hickernell. Randomized Halton Sequences.
Mathematical and Computer Modelling, 32: 887-899, 2000.

APPENDIX
A. BOX-MULLER TRANSFORMATION

The Box-Muller transformation is a method of generating pairs
of independent normally distributed random numbers, given a source
of uniformly distributed random numbers [2]. If x1 and x, are uni-
formly and independently distributed between 0 and 1, then z4 and
Z, as defined below have a normal distribution with mean u =0
and variance g2 = 1.

71 = v/—2In(x1) cos(2mxy),
2o = /—2In(x1)sin(2mx2).
When the low-discrepancy sequences are used as the input of the

Box-Muller transformation, it seems to give us “good” normally
distributed points (Figure 3).

1346

A) Halton sequence

B) pseudo-random number sequence

3 -
.
+ . .,
N
2F E - +
. LRI R
+ ettt N
Pl
+ LR
b e, T e 3
‘- R .
L -
1 gt et ++§f§1 ++ o
+ R T + +
T +¢++L+#++t+t i#;#j W
. T
i
Z P BT S
-
Dol f e+t +*ﬁ*1¢:§”+" :ﬁ;g Tt
+ E + Tt
. prfedbgenh G e T
e 4 o
.
PSS #,,Hi*ﬁﬂ N
Ar ¢+ fai e
. +f -
R .
L T T
e +
EE, #
N
2k o gr# .
+ + *
* +
L
N
3 . . . \ \
3 2 1 [} 1 2 3

Figure 3: 2-D plots of 500 normally distributed points gen-
erated by A)the Halton sequence, and B)the pseudo-random
number sequence, respectively.

