
Molecular Programming: Evolving Genetic Programs
in a Test Tube

Byoung-Tak Zhang
Biointelligence Laboratory

School of Computer Science and Engineering
Seoul National University, Seoul 151-742, Korea

btzhang@bi.snu.ac.kr
http://bi.snu.ac.kr/

Ha-Young Jang
Biointelligence Laboratory

School of Computer Science and Engineering
Seoul National University, Seoul 151-742, Korea

hyjang@bi.snu.ac.kr
http://bi.snu.ac.kr/

ABSTRACT
We present a molecular computing algorithm for evolving
DNA-encoded genetic programs in a test tube. The use of
synthetic DNA molecules combined with biochemical tech-
niques for variation and selection allows for various possibil-
ities for building novel evolvable hardware. Also, the possi-
bility of maintaining a huge number of individuals and their
massively parallel manipulation allows us to make robust de-
cisions by the “molecular” genetic programs evolved within a
single population. We evaluate the potentials of this “molec-
ular programming” approach by solving a medical diagnosis
problem on a simulated DNA computer. Here the individual
genetic program represents a decision list of variable length
and the whole population takes part in making probabilis-
tic decisions. Tested on a real-life leukemia diagnosis data,
the evolved molecular genetic programs showed a compa-
rable performance to decision trees. The molecular evolu-
tionary algorithm can be adapted to solve problems in bio-
technology and nano-technology where the physico-chemical
evolution of target molecules is of pressing importance.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
program synthesis; I.2.6 [Artificial Intelligence]: Learn-
ing—induction; J.3 [Life and Medical Sciences]: Biology
and Genetics

General Terms
Algorithms, design

Keywords
Molecular programming (MP), genetic programs, in vitro
evolution, DNA computing, molecular evolutionary compu-
tation (MEC)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

1. INTRODUCTION
Genetic programming (GP) has been proposed as a method

for automatically constructing computer programs using the
principle of natural selection in nature [6]. Typically, tree-
structured programs are used to represent the individuals
in the population, various mutation and crossover operators
are applied to the programs to generate their variations,
and the fittest programs are selected to the next generation.
The fitness of the individual program is evaluated by test-
running it on a training set of example cases. Instead of
tree-structured programs, linear-structured representations
have also been proposed to evolve machine-code-like genetic
programs [12]. Langdon [7] reviews various data structures
used as representations for genetic programming. Applica-
tions of genetic programming range from controller design,
multi-agent programming [13] and modelling biological sys-
tems [4] to quantum computer programming [16]. One of
the distinguishing features of genetic programming is that it
evolves variable-length representations [10, 15]. GP usually
tries to find the program structure as well as its parameters.
The capability of GP to search the whole space of potential
programs based on training examples is very attractive from
the machine learning point of view.

In this paper we present a genetic programming method
that evolves DNA molecular structures in a test tube. The
program in our case represents a DNA sequence representing
a combination of markers for diagnosing a disease. For ex-
ample, a program (x1 = 1, x3 = 1, x5 = 1, y = 1) in the form
of “decision lists” or its DNA encoding (Figure 1) denotes
a decision rule saying “diagnose the DNA sample as posi-
tive for disease y if it contains all the three markers x1, x3,
and x5.” Based on a training set of input-output pairs (x, y)
of DNA samples x associated with their disease labels y,
our “molecular” genetic programming method, or “molec-
ular programming” for short, evolves diagnosis rules that
best predicts the training samples. The in vitro evolution of
DNA-encoded genetic programs opens up a possibility of us-
ing GP in bio-technology and nano-technology where DNA
is used as the structural material to be designed. Actually,
unbeknownst to many of the evolutionary computation re-
searchers, biochemists and bioengineers have been utilizing
the concept of evolutionary algorithms for the design of novel
molecules [17, 18, 19] and for the study of natural evolution
[5].

There are some similarities and differences between the

1761

standard genetic programming and the molecular program-
ming. Molecular programming (MP) is similar to a standard
GP in that its representation is of variable-length, which is
a defining characteristic that distinguishes GP from other
evolutionary computation methods. The use of decision lists
as the representation of program structure is distinguished
from other GP approaches, including the linear GP [12].
The use of DNA computing technology makes the design
of the evolutionary operators very different from the con-
ventional GP and other evolutionary computation methods.
The possibility of synthetic DNA molecules and their ma-
nipulation by biochemical techniques in a test tube allows
for the use of huge population size. Most of the operators,
such as reproduction and selection, are massively parallel.
In our simulations in this paper we will deal with population
sizes of 118, 096×106 ≈ 1.2×1011 or less for resource limita-
tions on silicon computers. However, in typical biochemical
DNA computing experiments 1015 molecules or more have
been used [8, 9]. Here the number 1015 comes from the use
of nanomolar DNA, i.e. 6.2 × 1023 (molecules/mol) × 10−9

(mol) ≈ 1015. This paper aims to investigate the potentials
of molecular computing in the context of GP.

The paper is organized as follows. Section 2 describes the
DNA-based diagnosis problem and our approach to solving
it. The decision-list representation of genetic programs is
suggested. Section 3 describes the molecular algorithm for
making robust decisions utilizing the molecular-scale huge
population size. Section 4 describes the procedure for evolv-
ing the DNA-encoded decision lists in the test tube. Section
5 shows the results of evolving the DNA-based genetic pro-
grams for solving the diagnosis problem. It also character-
izes the behavior of the evolutionary algorithm by analyzing
the fitness landscape of the molecular programs. Section 6
draws conclusions.

2. REPRESENTING THE MOLECULAR
GENETIC PROGRAMS

The aim is to build a decision-making system f that out-
puts a label y given an input pattern x = (x1, ..., xn), i.e.

f(x) = y for all (x, y). (1)

It is convenient to assume there exists a (unknown) target
system f∗ as an ideal model for f . However, we do not know
the exact form of f∗ and the only information we have to
build f is data collected from the input-output pairs of f∗,
i.e. a training data set.

To be more specific, consider a DNA-based diagnosis prob-
lem. Given a training set D of K labelled DNA samples in
the form

D = {(xi, yi)}Ki=1 (2)

xi = (xi1 , xi2 , ..., xin) ∈ {0, 1}n (3)

yi ∈ {0, 1}. (4)

Here xi represents the DNA markers (subsequences of genes)
in sample i and yi is its associated diagnosis. For example, a
training example (10101, 1) means the sample is diagnosed
positive (y = 1) if it contains the DNA markers numbered
1, 3, and 5 (x1 = 1, x3 = 1, x5 = 1) and does not contain
the rest (x2 = 0, x4 = 0).

To solve the diagnosis problem, a test tube of DNA molecules
representing the genetic programs or diagnosis rules is main-
tained. Given is a set D of training data consisting of pairs

Figure 1: Population of genetic programs in two
different representations: (a) set of decision lists,
(b) library of DNA molecules corresponding to (a).
The DNA code shown are illustration-purposes only
and this design does not fully reflect the biochemical
properties of the sequences.

of DNA-sample and its associated label, i.e. in the form of
Equation (2). The goal is to find a population of genetic
programs (or a single genetic program, depending on the
interpretation as discussed below) that can predict the cor-
rect diagnosis label for a future DNA-sample, i.e. a decision
maker f in Equation (1).

Each individual genetic program is represented as a con-
junction of binary variables xi and a class label y what we
shall refer to as a “decision list”. The generic form of a deci-
sion list is (x1 = 1, x3 = 1, x5 = 1, y = 1), where the commas
are interpreted as logical ANDs. The order of a decision list
is defined as the number of input variables in it. Thus, the
decision list z = (x, y) = (x1 = 1, x3 = 1, x5 = 1, y = 1) is of
order 3. The population consists of decision lists of variable
orders as illustrated in Figure 1(a).

The decision lists in DNA oligomers (i.e., short single-
stranded DNA sequences) are represented as shown in Fig-
ure 1(b). Each attribute-value pair is encoded as a sequence
of nucleotides (A, T, G, and C). The output label can also
be encoded as a DNA sequence. For example, if 6-mer (i.e.,
a polymer consisting of 6 monomers) is used as in the figure
to encode each binary variable with its value (e.g., (x1 = 0)
as AAAACC) and if a decision list contains 10 input vari-
ables and one output variable, then it can be encoded as a
DNA molecule of length 6× 11 = 66-mer.

The whole population consists of multiple copies of the
decision lists and the number of copies is proportional to
the importance of the decision list. The goal of molecu-
lar genetic programming is to find the probabilistic distri-
bution of the decision lists to solve the diagnosis problem.
Since each decision list represents a conjunction, the pop-
ulation represents a disjunction of conjunctions where each
conjunction may have multiple copies. This representation
has some similarity with the decision tree [11] in that the
whole population represent a disjunction of conjunctions of
attribute-value pairs. However, our ensemble representation
allows for probabilistic computation of decision labels rather
than deterministic as in conventional decision tree methods.

1762

3. EXECUTING THE MOLECULAR
GENETIC PROGRAMS

In the previous section it is described how to represent the
decision lists using DNA molecules. Essentially, the DNA
test tube (also called the DNA library) represents the joint
probability P (X, Y) of the input pattern X (DNA sample)
and the output class Y (diagnosis). In this section it is
discussed how the class label can be computed using the
library.

Since each genetic program (i.e. decision list) has a class
label, given a query the decision can be made based on
each individual program. An alternative interpretation, we
choose here, is to consider the whole population of decision
lists as a single genetic program. In this ensemble approach
the final decision making is performed by a consensus of the
decisions of the individuals in the population. Since each
decision list is labelled either 1 or 0, the whole population
is partitioned into the two clusters. Given a query (DNA
sample of a patient), its class (disease diagnosis) is deter-
mined by matching it against each and every decision list
in the population and taking its majority class. As we shall
see, the ensemble machine naturally makes use of the huge
number of decision lists produced by the molecular genetic
programming process to make decisions robust. A similar
ensemble method has been proposed previously in [20] in
the context of standard genetic programming.

The class label is determined by computing the proba-
bility of each class conditional on the input pattern x, and
then determining the class whose conditional probability is
the highest, i.e.

y∗ = arg max
Y ∈{0,1}

P (Y |x) (5)

= arg max
Y ∈{0,1}

P (Y,x)

P (x)
, (6)

where P (Y,x) = P (Y |x)P (x) was used and Y represents
the candidate classes.

A method for realizing Equation (5) is to initialize the
library with nth order decision lists and evolve their dis-
tributions. That is, the empirical probability distribution
P (X, Y) can be represented by a set of point estimators
that constitute the DNA library L of decision lists:

P (X,Y) ≈ 1

|L|
|L|�
i=1

f
(n)
i (X1, X2, ..., Xn, Y), (7)

where f
(n)
i (X1, X2, ..., Xn, Y) is the ith decision list of or-

der n and |L| is the library size. This is reasonable since
the probability of hybridization between two DNA strands
(i.e., Watson-Crick complementary binding of A-T and G-C
nucleotides) can be expressed as the Boltzmann distribution

P (xi, yi|xq , yq) =
exp (−ΔG(xi, yi|xq, yq))�
j exp (−ΔG(xj, yj |xq, yq))

, (8)

where ΔG is the free energy in the hybridization between the
DNA strands representing the library element (xi, yi) and
the query sample (xq, yq) and each decision list is designed
to represent the probability factor of matching:

f
(k)
i (xq, yq) = exp (−ΔG(xi, yi|xq, yq)) , (9)

where ΔG(xi, yi|xq, yq) is the free energy between the ith
library element and the given query sample. The matching

Figure 2: Illustration of the decision-making proce-
dure using the population of DNA-encoded genetic
programs: (a) Library of decision lists, (b) query
sample (in multiple copies), (c) decision lists hy-
bridized with query samples,(d) schematic for illus-
trating the whole decision procedure.

probability can be calculated by normalizing over the whole
library. This approximation in Equation (7) can be made
arbitrarily accurate by increasing the library size |L|.

However, the use of nth order decision lists only has some
weaknesses. It is well known that higher-order features are
too specific and not always useful in practice. It tends to
result in overfitting problem and lose the generality. Thus, in
this paper, we use the decision lists of variable length and let
evolution find the appropriate complexity of the programs.
This is where GP comes in. That is, our approach tries
to approximate the probability distribution by k-th order

decision lists f
(k)
i (Xj1 , Xj2 , ..., Xjk , Y) by

P (X, Y) ≈ 1

|L|
|L|�
i=1

f
(k)
i (Xj1 , Xj2 , ..., Xjk , Y), (10)

where |L| is the library size. Note that there are N(k) copies
of the k-th order library elements with

�n
k=1 N(k) = |L|.

1763

Hence, the above equation can be rewritten as

P (X,Y) ≈ 1

|L|
n�

k=1

N(k) × f (k)(Xj1 , Xj2 , ..., Xjk , Y)

=
n�

k=1

�
N(k)

|L| × f (k)(Xj1 , Xj2 , ..., Xjk , Y)

�

=
n�

k=1

P (X(k), Y), (11)

where X(k) = Xj1 , Xj2 , ..., Xjk and N(k)
|L| is the weighting

factor or strength of the library elements of order k.
Figures 2 and 3 summarize the procedure for decision

making using the molecular genetic programs in the test
tube. Given a query pattern x all the molecules that match
the query is extract from the library. These molecules will
have class labels from which the majority label is decided as
the class of the query pattern. A class label is a sequence
appended to denote the class to which the pattern belongs.
In in-silico implementation of this method, the given query
has to be matched against each and every element of the
library. In in-vitro molecular computation this can be done
in a massively parallel fashion. Instead of a single query x,
multiple copies (up to the number of population size) of it
is used so that they can be matched with library elements
in parallel. The decision can be made by comparing the
number of elements in class 1 with those in class 0.

The molecular algorithm for computing the class labels is
summarized in Figure 3. It should be mentioned that there
are some technical issues to be considered before this al-
gorithm is efficiently realized using biochemical techniques.
For example, in Step 2, the input query example can be am-
plified (by, for example, polymerase chain reaction or PCR)
so that they can be matched in a massively parallel fashion
against library elements. In addition, the query instance
x = (x1, x2, ..., xn) can be chopped into n DNA pieces rep-
resenting x1, x2, ..., xn, respectively, so that each of them
can be matched separately to decision-list elements.

The extraction may involve some mismatches due to the
potential for formation of double-stranded DNA duplexes.
There is a lot of work going on to design the sequences and
codeword sets (see, for example, [14] and references therein).
From the machine learning point of view, the small error
occurred by DNA mismatches offers the possibility of gen-
eralization by allowing unobserved patterns to be classified.
The decision-making can still be robust because it is based
on the statistics of the huge number of molecular samples.

It is useful to check the decision criterion the above molec-
ular algorithm is computing. To see this, note that, in Step
3.1, the count or concentration c(x) of x in M approximates
the probability of observing the pattern which is called evi-
dence:

c(x)/|L| = |M |/|L| ≈ P (x). (12)

Step 3.2 essentially computes the frequencies c(Y |x) of molecules
belonging to different classes Y . These are an approxima-
tion of the conditional probabilities given the pattern, i.e. a
posteriori probabilities:

c(Y |x)/|M | = |MY |/|M | ≈ P (Y |x). (13)

Thus, in effect, the protocol computes the maximum a pos-

• 1. Let the library L represent the current empirical
distribution P (X,Y) as in Equation (10).

• 2. Present an input (query) pattern x.

• 3. Classify x using L as follows:

– 3.1 Extract all library molecules matching with x
into M .

– 3.2 From M separate the molecules into classes:

∗ Extract the molecules with label Y = 0 into
M0.

∗ Extract the molecules with label Y = 1 into
M1.

– 3.3 Compute y∗ = arg maxY ∈{0,1} |MY |/|M |.

Figure 3: The molecular algorithm for decision-
making based on DNA-encoded genetic programs.

teriori (MAP) criterion:

y∗ = arg max
Y ∈{0,1}

c(Y |x)/|M |
= arg max

Y ∈{0,1}
c(Y |x)

≈ arg max
Y ∈{0,1}

P (Y |x) (14)

which validates our objective set out in Equation (5). It is
worth noting that for classification purposes only the rela-
tive frequency or concentration of the molecular labels are
important.

4. EVOLVING THE MOLECULAR
GENETIC PROGRAMS

In the previous section it is assumed that the library rep-
resents the proper joint-probability distribution P (X,Y) of
patterns X and their class Y . Here we describe how the
library is revised from observed data.

We start with a random collection of DNA strands. Each
DNA sequence represents an instance (x, y) of a vector (X, Y)
of random variables of interest in the problem domain. With-
out any prior knowledge the DNA sequences are generated
to represent uniform distribution of the data variables. As a
new training example (x, y) is observed, the patterns match-
ing x is extracted from the library. The class y∗ of x is
determined by the classification procedure described in the
previous section. Then, the matching patterns are modified
in their frequency depending on their contribution to the
correct or incorrect classification of x. If the label v of the
library pattern (u, v) matching x is correct, i.e. v = y, it is
reproduced:

L← L + {(u, v)}. (15)

Optionally, if the label v is incorrect, i.e. v �= y, the matching
library pattern is removed from the library:

L← L− {(u, v)}. (16)

The update of the library in this way is more or less like
evolutionary computation with the additional feature that
the presentation of a training example proceeds one genera-
tion of the library (as a population). This is also a learning

1764

• 1. Let the library L represent the current empirical
distribution P (X, Y).

• 2. Get a training example (x, y).

• 3. Classify x using L as described in the previous sec-
tion. Let this class be y∗.

• 4. Update L

– If y∗ = y, then Ln ← Ln−1 +{Δc(u, v)} for u = x
and v = y for (u, v) ∈ Ln−1 ,

– If y∗ �= y, then Ln ← Ln−1−{Δc(u, v)} for u = x
and v �= y for (u, v) ∈ Ln−1.

• 5. Goto step 2 if not terminated.

Figure 4: The molecular algorithm for evolving the
population of DNA-encoded genetic programs.

procedure since the library improves its classification per-
formance as new examples are presented.

The molecular algorithm for the whole evolutionary learn-
ing procedure is summarized in Figure 4. In Step 4, Δc(u, v)
denotes the number of copies of (u, v) to be added or sub-
tracted. Addition operation can be implemented by PCR
and removal can be done by extraction of the corresponding
molecules. The update process relies upon the reliability
of DNA extraction technology. Note also that the learning
rule has a parameter Δc that reflects the strength of learn-
ing for each training example. This is also related to the
reproduction rate. Big Δc imposes high reproduction rate
while small Δc forces a low reproduction rate. How to set
this parameter is an important issue for the stability and
the adaptability of the algorithm.

To see the quantitative relationship between the param-
eter Δc and reproduction rate, the Bayesian framework for
evolutionary computation is used [21]. In view of Bayesian
evolution, the evolution from Ln−1 to Ln can be rewritten
as

Pn(X, Y |x, y) = (1 + δ)Pn−1(X, Y |x, y), (17)

where δ is a learning rate determining the strength of repro-
duction, hence also called reproduction rate. Using Bayes
rule, we can derive [22]

δ =
P (x, y|X, Y)− P (x, y)

P (x, y)
. (18)

This indicates that the molecular algorithm follows the Bayesian
evolutionary update rule [21]. Also it was shown that δ is
expressed as the amplification ratio of the number Δc(x, y)
of additional copies of molecules to the number of current
copies cn−1(x, y), i.e.

δ =
Δc(x, y)

cn−1(x, y)
. (19)

Since Δc(x, y) is determined by the number of PCR cycles
for signal amplification, the reproduction rate δ can be set
indirectly by controlling the number of PCR cycles or its
fraction.

5. SIMULATION RESULTS AND
DISCUSSION

Microarray gene expression data are used to evolve molec-
ular genetic programs for making diagnosis based on DNA.
Since molecular programming is based on DNA molecules,
it is very natural to solve the problem based on DNA. Mi-
croarrays or DNA chips are a new technology for measuring
gene expression intensities at the cDNA (i.e. the DNA se-
quence complementary to the mRNA sequence) level. Gene
expression data are collected from microarray experiments
for ALL/AML leukemia [3]. It should be noted that the mi-
croarray gene expression data contain much noise and this
application can be a good test bed problem for the molecular
programming approach against uncertainty.

The microarray data are preprocessed and 10 genes were
selected out of 12600 genes. The genes are chosen according
to the information gain measure for extracting features [11].
The training set consists of 120 examples each composed of
10 genes plus the associated leukemia class which is AML
or ALL. A 6-fold cross-validation is used for testing the per-
formance. That is, the whole data set of 120 examples is
partitioned into 6 subsets and a total of six sessions were
run, where each run used a subset of 20 examples for test
and the remaining 100 examples (5 subsets) for training.

For the simulation of in vitro evolution of the molecular
genetic programs, the population size of 118, 096 × 106 ≈
1.2×1011 was used, where 118,096 is the number of different
library elements and 106 is the number of their copies. The
library was initialized to contain each and every conjunction
of order 1 through 10. These include (x1 = 0, y = 0), (x1 =
0, y = 1), (x1 = 1, y = 0), (x1 = 1, y = 1), (x1 = 0, x2 =
0, y = 0), (x1 = 0, x2 = 0, y = 1), (x1 = 1, x2 = 0, y = 0),
Thus, the total number of the different library elements is

N =

10�
k=1

10Ck · 2k · 2 = 118, 096 (20)

where the notation 10Ck denotes the number of combina-
tions to choose k variables out of 10. Each of the elements
is our genetic program.

The questions we are interested to address in the simula-
tions are:

• Does the molecular GP process converge to the best
solution available by the training data?

• If yes, how fast is the convergence? What’s the effect
of reproduction rate?

• What is the effect of program size and its variability
on accuracy?

• Can the method evolve compact genetic programs if
they exist?

• Does the huge population size really contribute to the
accuracy and robustness of the genetic programs?

Figure 5 shows the evolution of the fitness as generation
goes on. Fitness was measured each generation when a
new training example was observed. One sweep through
the training set constitutes an epoch which is equivalent to
100 generations in this experiment. The best accuracy of
approximately 90% was obtained in 7 epochs.

1765

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 1 2 3 4 5 6 7 8 9 10

Number of epochs

C
la

ss
ifi

ca
tio

n
ra

te

Figure 5: Fitness evolution of the population of
molecular genetic programs. Shown are the average
classification rates over the 6-fold cross-validation
runs. Though there are fluctuations the fitness val-
ues tend to converge 90 % accuracy. The reproduc-
tion rate was 0.01.

The effect of size-variability was investigated by compar-
ing the result above against the GP runs with fixed-size
programs. Figure 6 shows the fitness curves for the 4 runs
with programs of fixed order 1, 4, 7, and 10. It is observed
that most of the cases the fixed-length programs achieve
lower-accuracy. Only the run for fixed-order of 4 obtained a
relatively good accuracy which is still inferior to the run for
variable-length programs. This seems attributed to the fact
that the population of variable-length programs has stronger
expressive power than that of fixed programs.

One of the natural properties we get through molecular
computing technology in our genetic programming is the
huge population size. Baeck et al. discusses the effect of
population size in a simple GA context [1]. To test the effect
of large population sizes on our variable-length EC, various
runs with varying library sizes were compared. We set all
the other parameters the same as the other experiments and
changed the population size by resampling (undersampling
or oversampling, depending on the necessity) the programs
in the population. Figure 7 compares the fitness curves
when the library size was reduced from 1011 to 107. It in-
dicates that too much reduction in population size hurts
the stability of the evolutionary algorithm. To put in other
way, a large population size helps improve the performance.
This seems because in our ensemble approach the number
of copies reflects the strength of each genetic program in the
voting for the classification (diagnosis in this case). Larger
population has better chance of fine-controlling the proba-
bility distribution of genetic programs.

Figure 8 shows the change of program sizes during a run.
Shown are the distributions of program sizes at generations
of 0, 5, 10. The population at generation 0 is bell-shaped
with peak at size k = 7 where the total number of variable
combinations is the largest. Note that there are only very
small number of small programs at generation 0. This is
because the population was initialized according to the pos-
sible number of programs, i.e. 10Ck · 2k · 2 with order k. As
generation goes on, the number of large programs decreases
and the number of small programs increases. This shows

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Number of Examples

F
itn

es
s

Order 1

Order 4

Order 7

Order 10

Figure 6: Fitness curves for runs with fixed-size pro-
grams. Shown are average fitness values for runs
with programs of fixed-order 1, 4, 7, and 10.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10

Number of epochs

C
la

ss
ifi

ca
tio

n
ra

te

1.00E+11
1.00E+07

Figure 7: Effect of population size on ensemble per-
formance. Shown are the best-fitness curves for pop-
ulation sizes of 1011 (in our experiments) and 107

(subsampling case for testing). The results show that
too much subsampling degrades the performance.

the tendency of the evolutionary process utilizing the lower-
order decision lists. Note that this size shift is relatively
smooth. This seems because the ensemble approach tries to
find the best population as opposed to the best individual.

It should be mentioned that the control of evolution might
be trickier if the evolution allows for variable-size programs.
In our experiments, this has to do with the initialization of
population. If the population is initialized with the same
copies of each distinct length of program, it will have more
of large programs and less of small ones. For example, there
are 10C1 · 21 · 2 = 40 programs of order 1 and there are

10C4 · 24 · 2 = 6720 programs of order 4.

6. CONCLUSION
We presented an evolutionary method, called molecular

programming (MP), for learning genetic programs using DNA
computing technology. A novel representation method is in-
troduced that makes use of the molecular DNA structures

1766

0.E+00

5.E+09

1.E+10

2.E+10

2.E+10

3.E+10

3.E+10

4.E+10

1 2 3 4 5 6 7 8 9 10

Order

N
u
m
b
e
r
o
f
p
ro
g
ra
m
s

0.E+00

5.E+09

1.E+10

2.E+10

2.E+10

3.E+10

3.E+10

4.E+10

4.E+10

1 2 3 4 5 6 7 8 9 10

Order

N
u
m
b
e
r
o
f
p
ro
g
ra
m
s

0.E+00

5.E+09

1.E+10

2.E+10

2.E+10

3.E+10

3.E+10

4.E+10

1 2 3 4 5 6 7 8 9 10

Order

N
u
m
b
e
r
o
f
p
ro
g
ra
m
s

Figure 8: Distribution of the size of genetic programs. Shown are the number of programs of each size in the
final population in a run. It shows the tendency that, as generation goes on, smaller programs are used more
frequently than larger ones. From left to right the epoch number is 0, 5 and 10 where one epoch consists of
100 generations. The reproduction rate was 0.01.

while maintaining the advantages of variable-length encod-
ing capability of genetic programming (in contrast to other
evolutionary computation methods). A molecular evolution-
ary algorithm is described that makes use of the biochemical
techniques for in vitro molecular computing. These include,
for example, the massively parallel matching and selection
based on the A-T and G-C molecular recognition capability
of DNA molecules, the PCR-based exponential reproduction
of fitter programs, and the global search capability coming
from the population size. Also a DNA-computing-based vot-
ing method that allows for robust decision-making on the
basis of the huge population is presented. This additional
feature does not involve much overhead since the huge num-
ber of simple random genetic programs can be obtained for
almost free in DNA computing.

The simulation results on the leukemia cancer diagnosis
problem show that effective learning is possible using the
molecular “genetic” programming method. This is in some
sense surprising considering the fact that each genetic pro-
gram is of simple structure. Our analysis shows that even
though the individual programs are simple, their collection
as a whole has a powerful representation capability equiva-
lent to the disjunctive normal form. This explains the high
accuracy of the diagnosis results. It is also remarkable that
the genetic programs are composed of boolean variables and
still the results are relatively robust against noise and in-
complete information. This seems attributed to the redun-
dancy of the library representation of DNA-coded decision
lists. This redundancy comes naturally from the big popu-
lation size. It seems an interesting future work to study the
theoretical connection between the molecular programming
algorithms and the bagging algorithms [2] in the sense both
algorithms make use of a large number of weak learners to
make robust decisions.

It should be noted that the presented algorithms are de-
signed to be implemented eventually in wet DNA technol-
ogy. In fact, our Molecular Evolutionary Computing (MEC)
project (years 2000-2010) aims to advance this technology
and its applications using microfluidics-based lab-on-a-chip.
There remains several details at the biochemical and physico-
chemical level that should be taken into account in simu-
lations to reflect the wet-lab realities. These include, for
example, the undesirable mismatches in DNA hybridization

and the control of temperatures and concentrations for re-
action.

7. ACKNOWLEDGEMENTS
This research was supported by the National Research

Laboratory Program of the Ministry of Science and Tech-
nology, by the Next Generation Technology Program of the
Ministry of Industry, Commerce and Energy, and by the
BK-21 Program of the Ministry of Education. The au-
thors thank Sung-Kyu Kim and Jinhan Kim for assistance
in preparing the manuscript.

8. REFERENCES
[1] T. Baeck, J. N. Kok, G. Rozenberg, Evolutionary

computation as a paradigm for DNA-based computing,
Evolution as Computation, L. F. Landweber and E.
Winfree (Eds.), Springer-Verlag, pages 15-40, 2002.

[2] L. Breiman, Bagging predictors, Machine Learning,
24:123-140, 1996.

[3] M. H. Cheok, W. Yang, C.H. Pui, J. R. Downing, C.
Cheng, C. W. Naeve, M. V. Relling, and W. E. Evans,
Treatment-specific changes in gene expression
discriminate in vivo drug response in human leukemia
cells, Nature Genetics, 34:85-90, 2003.

[4] D. Kalyanmoy et al. (Eds.), Genetic and Evolutionary
Computation - GECCO 2004: Genetic and
Evolutionary Computation Conference, LNCS 3103,
2004.

[5] M. Kloster and C. Tang, Simulation and analysis of in
vitro DNA evolution, Phys. Rev. Lett., 92(3), 2004.

[6] J. R. Koza, Genetic Programming: On the
Programming of Computers by Means of Natural
Selection, MIT Press, Cambridge, MA, USA, 1992.

[7] W. B. Langdon, Data Structures and Genetic
Programming, Kluwer, 1998.

[8] J.-Y. Lee, S.-Y. Shin, T.-H. Park, and B.-T. Zhang,
Solving traveling salesman problems using DNA
molecules encoding numerical values, BioSystems,
78:39-47, 2004.

[9] H.-W. Lim, J.-E. Yun, H.-M. Jang, Y.-G. Chai, S.-I.
Yoo, and B.-T. Zhang, Version space learning with

1767

DNA molecules, DNA Computing 8, LNCS
2568:143-155, 2003.

[10] S. Luke and L. Panait, Fighting bloat with
nonparametric parsimony pressure, Parallel Problem
Solving from Nature - PPSN VII, LNCS 2439,
Springer-Verlag, pages 411-421, 2002.

[11] T. M. Mitchell, Machine Learning, The McGrow-Hill
Companies, Inc., 1997.

[12] P. Nordin, W. Banzhaf, and F. Francone, Efficient
evolution of machine code for CISC architectures
using blocks and homologous crossover, Proc. Third
Annual Genetic Programming Conference (GP-99), L.
Spector, W. Langdon, U.-M. O’Reilly and P. Angeline
(eds.), pages 275-299, Morgan Kaufmann, 1999.

[13] U.-M. O’Reilly, P. Testa, S. Greenwold, and M.
Hemberg, Agency-GP: Agent-based genetic
programming, GECCO-2001 Late Breaking Papers,
2001.

[14] S.-Y. Shin, I.-H. Lee, D. Kim, and B.-T. Zhang,
Multi-objective evolutionary optimization of DNA
sequences for reliable DNA computing, IEEE
Transactions on Evolutionary Computation,
9(2):143-158, 2005.

[15] T. Soule and J. Foster, Effects of code growth and
parsimony pressure on populations in genetic
programming, Evolutionary Computation,
6(4):293-309, 1998.

[16] L. Spector, Automatic Quantum Computer
Programming: A Genetic Programming Approach,
Boston, MA: Kluwer Academic Publishers, 2004.

[17] D. S. Wilson and J. W. Szostak, In vitro selection of
functional nucleic acids, Ann. Rev. Biochem.,
68:611-647, 1999.

[18] M. C. Wright and G. F. Joyce, Continuous in vitro
evolution of catalytic function, Science, 276:614-617,
1997.

[19] R. Yokobayashi, R. Weiss, and F. H. Arnold, Directed
evolution of a genetic circuit, Proc. Natl. Acad. Sci.
USA, 99(26):16587-16591, 2002.

[20] B.-T. Zhang and J.-G. Joung, Building optimal
committees of genetic programs, Parallel Problem
Solving from Nature 2000, LNCS 1917:231-240, 2000.

[21] B.-T. Zhang, A unified Bayesian framework for
evolutionary learning and optimization, Advances in
Evolutionary Computation, Chapter 15, pages
393-412, Springer-Verlag, 2003.

[22] B.-T. Zhang and H.-Y. Jang, A Bayesian algorithm
for in vitro molecular evolution of pattern classifiers,
DNA Computing 10, LNCS 3384:458-467, 2005.

1768

