Simple Addition of Ranking Method for Constrained
Optimization in Evolutionary Algorithms

Pei Yee Ho
Department of Bioscience and Bioinformatics
Kyushu Institute of Technology
680-4 Kawazu, lizuka, Fukuoka
820-8502, Japan

peiyee@yahoo.com

ABSTRACT

During the optimization of a constrained problem using evo-
lutionary algorithms (EAs), an individual in the population
can be described using three important properties, i.e., ob-
jective function, the sum of squares of the constraint vio-
lation, and the number of constraints violated. However,
the question of how to combine these three properties ef-
fectively is always difficult to solve due to the scaling and
aggregation problems. In this paper, a simple addition of
ranking method is proposed to handle constrained optimiza-
tion problems in EAs. In this method, each individual is
ranked based on the above three properties separately, re-
sulting in three new properties which are in the same order
of magnitude. Simple addition of the three new terms can
then be performed and this produces a new global rank-
ing for each individual. The algorithm was tested using 13
benchmark problems on the basis of evolution strategy and
genetic algorithm. Results showed that the proposed algo-
rithm performed well in all of the problems with inequality
constraints, without requiring any parameter tuning for the
constraint handling part. On the other hand, problems with
equality constraints can be handled well through the addi-
tion of a simple diversity mechanism and a tolerance value
adjustment scheme.

Categories and Subject Descriptors: G.1.6 [Numerical
Analysis]: Optimization — constrained optimization, global
optimization

General Terms: Algorithms, Experimentation, Performance

Keywords: Constraint handling, evolutionary algorithms,
simple ranking, single objective optimization

*The author is also affiliated to Institute for Advanced Bio-
sciences, Keio University, Tsuruoka, Yamagata, 997-0017,
Japan.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

GECCO' 05, June 2529, 2005, Washington, DC, USA.

Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

889

*
Kazuyuki Shimizu
Department of Bioscience and Bioinformatics
Kyushu Institute of Technology
680-4 Kawazu, lizuka, Fukuoka
820-8502, Japan

shimi@bio.kyutech.ac.jp

1. INTRODUCTION

Consider a general nonlinear optimization problem formu-
lated as minimizing f(Z), where & = [z1, z2,. .., xn]T, sub-
jecttog; (£) <0,7=1,...,m, h; (Z)=0,j=m+1,...,p,
and bounded by ¢! < z; < z¥, i = 1,...,n. Both inequal-
ity constraints g; () and equality constraints h; (Z) can be
in the form of linear or nonlinear equations. For equality
constraints, they can be transformed into inequality con-
straints through the use of a very small tolerance value §, as
described by

9; (@) =|h; (@) -0<0, j=m+1....p. (1)

To solve the above optimization problem, EAs have been
widely adopted due to their flexibility and adaptability to
the task in hand, in combination with the robust perfor-
mance and global search characteristics [2]. However, EAs
are unconstrained optimization methods which require an
addition of constraint handling part to make them useful
in real world applications. A recent review by Coello Coello
[4] has discussed on various techniques available for the han-
dling of constraints in EAs. Other than that, recently pub-
lished new techniques included the use of an improved diver-
sity mechanism [7], the use of multiobjective optimization
concept with a new ranking scheme [1] or a mechanism to
reduce the constrained search space [5]. Despite the varieties
available, the main issues when dealing with constraint han-
dling in EAs are concerned with the scaling and aggregation
of objective function and constraint violation, and also on
the maintenance of diversity within a population such that
the global minimum can be found.

In this paper, a simple addition of ranking method is pro-
posed. Although the idea of individuals ranking based on
objective function and constraint violation is not new, e.g.,
the works of Angantyr et al. [1], Ray et al. [8], and Runars-
son and Yao [10], the proposed method offers a much simpler
way of ranking and aggregation strategies when compared to
the existing methodologies. For the optimization problems
with equality constraints, a simple reinitialization scheme of
the whole population is incorporated to maintain diversity
within the population. To ease the search of feasible individ-
uals within the search space, a tolerance value adjustment
scheme is also incorporated. It is the aim of this paper to
show that the concept of ranking addition is able to solve
highly constrained optimization problems as effective as the
existing approaches, but with a much simpler algorithm.

Table 1: An example of ranking assignment for a
population with 6 individuals

Individual Feasible f(Z) R s Rs v Ry
Ind 1 Yes 10 4 0 1 0 1
Ind 2 No 20 5 B0 6 3 6
Ind 3 No -1 2 3 5 1 3
Ind 4 Yes 50 6 0 1 0 1
Ind 5 No 20 1 10 3 1 3
Ind 6 No 0 3 20 4 2 5

The paper is organized as follows: Section 2 presents the
general ideas of the proposed methodology. Section 3 gives
the complete algorithm in the basis of evolution strategy
(ES) and genetic algorithm (GA). Section 4 shows the results
on the studies of 13 benchmark problems, and finally Sect.
5 concludes the paper.

2. GENERAL IDEAS

Considering an individual from a population of any EAs,
it can be easily described in terms of three important nu-
merical properties, i.e., (1) f (&), the value of objective func-
tion; (2) s = >0, max [0, g; (£))?, the sum of squares of
constraint violation; and (3) v, the number of constraints
violated (0 < v < p). Since these three properties are in dif-
ferent orders of magnitude, the question now would be “How
can we combine these three properties into ONE term?”

To solve this question, a simple ranking method is used.
By comparing an individual against all other members in the
population, the individual can be ranked in terms of f (Z), s,
and v, respectively, which produces three new terms denoted
by R¢, Rs, and Ry. In here, each individual is assigned a
rank equals to one plus the number of individuals which
dominate it. To make it clearer, an example of ranking
assignment for a population with 6 individuals is shown in
Table 1. It can be clearly seen from this table that the
three new terms Ry, Rs, and R, are in the same order of
magnitude. As a result, mathematical manipulation of these
three terms can be performed easily without bias.

After solving the scaling problem, the next issue is the
aggregation problem. The following aggregation strategy is
proposed:

Condition 1. All of the individuals in the population are
infeasible,

¢ (%) = Rs + Ry 2
Condition 2. Feasible individuals exist in the population,
¢ (%) = Re + R + Ry 3)

In here, ¢ (Z) is the new global ranking for each individual,
and this function then becomes the new objective function
to be minimized. Equation (2) is proposed based on the
fact that when all of the individuals of a population are in-
feasible, the information from f (&) is not important. When
there is a mixture of feasible and infeasible individuals, both
of the information from objective function and constraint vi-
olation become important. The concept of simple addition
of ranking in (3) is proposed based on the fact that an in-
feasible individual with only slight constraint violation and
small f value, is considered as better than another individ-
ual which is feasible but with a much larger f value. For

890

example, the infeasible Individual 5 in Table 1 (¢ (Z) = 7)
is more preferable than the feasible Individual 4 which has
a much larger f value (¢ (%) = 8).

Besides scaling and aggregation, there are another two dif-
ficulties when dealing with equality constraints. First, with
a very small tolerance value (e.g., 6 = 0.0001), searching for
the resulting extremely small feasible regions becomes diffi-
cult [6]. Second, once the first feasible individual is found,
further minimization in the objective function is difficult
because feasible regions are normally disjoint among each
other. As a result, the optimization is trapped inside a local
minimum and unable to find the global minimum.

Inspired by the tolerance value adaptation scheme from
Hinterding [6], the same concept is used but with a differ-
ent approach. Instead of adapting the § value based on a
certain feedback, the optimization is run by changing the
§ value in (1) alternatively between two different values, d1
and d2. For an optimization problem with a total number
of p constraints where m of them are inequality constraints,
we have 51j = Aj, where A]' > (52]', and 52j = 0.00017 for
j=m+1,...,p. In this paper, d1; and d2; will be used in-
terchangeably with the notation of ; and d2 respectively for
the ease of readability. When the optimization is run using
02, the solutions found are feasible and these solutions are
considered to be located in the feasible regions. The feasible
region that contains the optimal solution is named as target
region in here. On the other hand, the optimization using
01 enables us to find solutions which are located near to
the feasible regions. We define the regions containing such
solutions as search regions.

To find a suitable value for 015, we use the information
from (1). By ignoring the ¢ value in (1), we have the maxi-
mum value of the function as max (|h; (Z)|). We define

b1 = B x max (|h; (Z)]) , (4)

where B can be varied from 0 to 1. The smaller the value
of B, the closer is the solution to the feasible region. The
use of max (|h; (Z)|) in (4) helps in determining an upper
bound for d1; and this is necessary because h; () can be in
different orders of magnitude for j =m +1,...,p.

After deciding the values for 61, we need to define the
criteria so that the algorithm can shift within d; and d2
effectively. By using the new objective functions given by
(2) and (3), the following algorithm is proposed:

j:m+13"'7pa

1. Start the optimization using 41 (by replacing ¢ in (1)
with 51j)

2. After the first feasible individual that fulfills §; is found,
continue with the optimization for k generations

3. Continue with the optimization using d2 (by replacing
d in (1) with 52j)

4. Once the first feasible individual that fulfills 2 is found,
stop the optimization, reinitialize the whole popula-
tion, go back to Step 1 again

By letting the algorithm to run for k generations using
01 as the tolerance value, the objective function value can
be further minimized before it enters the feasible region (d2
region). However, the optimization is stopped once the first
feasible individual is found in the d2 region. This is because
the jumping from one local minimum to another is normally
difficult due to the disjoint between two feasible regions.

Thus, continuing minimizing in this local minimum becomes
meaningless in some cases. To maintain diversity within
the population, reinitialization of the whole population is
performed in Step 4. Through the use of different initial
starting points, the chances of finding the global minimum
become higher. In short, we have two parameters, B and k,
to be tuned for the problems with equality constraints.

3. ALGORITHMS

To incorporate the ideas from Sect. 2, the (u, \)-ES as
adopted by Runarsson and Yao [9] is used. This ES is used
due to its simplicity. The exactly similar parameter settings
as that in [9] are also used such that a fairer comparison of
results can be made.

A brief description of the ES algorithm is given below (de-
tails please refer to [9]). In the (u, A)-ES, each individual 4
is described by (#;,d:),% = 1,...,\, where & is the vector of
objective variables (z1,...,%), and & is the vector of mean
step sizes for mutation (strategy parameters) (o1,...,0n).
The initial population of Z is generated using uniformly dis-
tributed random numbers across the variable bounds. On
the other hand, the initial setting of the mean step size is
0% = («¥ —ah) /v/n,i=1,...,X,j=1,...,n. Thisinitial
value is then used as the upper bound for &.

After evaluating the values of f (&), s, and v for each
individual, we can then easily rank all of the individuals
based on these three values respectively and obtain R¢, Rs,
and Ry. Using (2) and (3), we get the new global ranking
¢ (%) for each individual. By sorting the population with
respect to ¢ (Z), the best p individuals (with the smallest
¢ (%)) out of X\ are selected to become the parents for the
next generation. The (u, \) setting used is the same as that
in [9], i.e., (30,200)-ES. The parents are then used to create
A/p offspring on average.

The strategy parameters corresponding to the selected p
individuals are used to generate A\ new strategy parameters
through replication. To vary the strategy parameters, global
intermediate recombination between two parents and adap-
tation through log-normal update rule as described in [9]
are implemented. The term expected rate of convergence
(¢*) used in the update rule is set to 1. The new X strategy
parameters are then used to mutate the offspring. When an
offspring created is outside the variable bounds, mutation
will be retried for a maximum of ten times (following [9]).
Figure 1(a) shows the general flow chart of the algorithm.
By following Steps 1 to 4 in Sect. 2 and denoting the steps
within the dash box of Fig. 1(a) as Algorithm P1, we ob-
tain the general flow chart of the algorithm for problems
with equality constraints as illustrated in Fig. 1(b).

Besides ES, GA is another type of EAs that has been
widely used. When compared with ES, GA is much more
complicated with the large varieties in the fitness assign-
ment, selection, recombination, and mutation schemes. The
reason of using GA as the basis for evaluation is to show
that the proposed methodology can work well in different
types of EAs. The general flow chart of the algorithm is
shown in Fig. 2. Since some of the parents from the popu-
lation will be retained to the next generation when dealing
with GA or (u + A)-ES, the ranking procedure needs to be
performed twice instead of once as that in (u, A\)-ES. This is
because ranking process has to be performed with respect
to the whole population involved, i.e., parents + offspring.

The corresponding algorithm for the problems with equal-

891

ity constraints is similar to that shown in Fig. 1(b) with only
one exception, i.e., only the variables Z needs to be reinitial-
ized in the case of GA. This is different from the ES in which
both Z and & are reinitialized at the same time. This is due
to the difference in the methods of generating mutation step
sizes in both algorithms.

The GA from Chipperfield et al. [3] is adopted in this
study. The following operator schemes are used: population
representation and initialization - real value; fitness assign-
ment - linear ranking-based (selective pressure = 2); selec-
tion function - stochastic universal sampling; crossover oper-
ator - intermediate recombination; mutation operator - real
value mutation with no shrinking of mutation range; rein-
sertion - fitness-based; migration - fitness-based migration
using complete net structure. Other parameters included:
number of subpopulations = 4; number of individuals per
subpopulation = 50; generation gap = 0.95; crossover rate
= 0.7; mutation rate = 1/n; insertion rate = 1; migration
rate = 0.2; and number of generations between migration =
20. The number of individuals used here is 4 x 50 = 200,
which is the same as that of ES. Other parameter settings
chosen here are sort of typical values used in GA.

4. EXPERIMENTAL RESULTSAND DISCUS

SIONS

To evaluate the performance of the proposed methodol-
ogy, thirteen benchmark problems as that used in [7] and
[9] were tested. A summary of the characteristics of the op-
timization problems is shown in Table 2, where LI and NI are
the numbers of linear and nonlinear inequality constraints,
and LE and NE are the numbers of linear and nonlinear
equality constraints. These test problems are representative
of difficult global optimization problems and the degree of
difficulties indicated by the ratio of feasible region to that of
entire search space can be found in [7]. In here, maximiza-
tion problems are converted to minimization using — f (Z).
For each test, 100 independent runs were performed. All of
the runs were terminated after 1,750 generations, with the
exception of 175 generations for problem g12, similar to that
used in [9].

The first test is to check the ability of (2) to find the first
feasible individual from the search space. We run the test
by using the algorithm in Fig. 1(a). In here, ¢ value is set
to 0.0001 for g03, g05, g11, and g13. As a comparison, the
test was also run by replacing (2) with ¢ (Z) = Rs. The
purpose is to see whether R, is important in finding the
feasible individuals. Table 2 shows the number of indepen-
dent runs where feasible individuals can be found (INVs), and
also the median of generation number when the first feasible
individual is found (Gfea) with its corresponding standard
deviation (Std), based on a total of 100 independent runs.

From Table 2, we can see that feasible individuals could
be found in all of the runs when using ¢ (%) = Rs + Rs.
The results were similar when using ¢ () = Rs, except in
g05. This shows that although the information of s alone
is enough to find the feasible individuals, the number of
constraints violated (v) can help in improving the search
of feasible individuals for problems which is highly con-
strained. From the column of Giea, we can see that the
algorithm was able to find the feasible individuals in less
than 30 generations for all of the problems, except in g05
and g13 which need 64 and 55 generations respectively. For

Start

Initidize (x, o) |

| Calculatef (x), s, v

Rank individuals to get
R.ROR

Yes

¥
| $00=R+R+R |
[

Feasibleindividuals

No

[Sort the individuals according to ¢ (x) |

Select the best iz individualsto
produce A offspring

v

| Update mean step sizes |

| Mutate the offspring |

(b)

Start

e

| Initidize (x, o)

Optimize using Algorithm P1
for one generation (using &,)

No

easible individuals
that fulfill &, exist?

Optimize using Algorithm P1
for k generations (using &,)

Optimize using Algorithm P1
for one generation (using &,)

easibleindividuals
that fulfill &, exist?2

generation?

Figure 1: General flow diagram of the (i, A\)-ES incorporated with simple addition of ranking
Core algorithm, (b) for problems with equality constraints

method. (a)

Algorithm P1

Start

Initialize x |

Rank individuals to get
R.ROR

Yes

¥
| $00=R+R+R |
[

Feasibleindividuals

No

A

Perform fitness assignment, selection,
recombination, and mutation to
produce offspring

Calculatef (x), s, v for offspring |

Rank the combine population of
parents + offspringto get R, R, R,

Calculate ¢ (x) for
the combine population

Insert offspring to replace parents |

Migrate individual s among
subpopulations

Figure 2: General flow diagram of the GA incorporated with simple addition of ranking method

892

problems g02, g04, g08, g09, and g12, feasible individuals
were found in the randomly initialized population without
any optimization. This is consistent with the study from [7]
which shows that these five problems have a ratio of feasible
region to that of entire search space which is greater than
0.5% (1/200 x 100 = 0.5%, assuming one feasible individual
is found in the population).

The second test is to check the performance of the pro-
posed (i, A)-ES algorithm in Fig. 1(a) for all of the prob-
lems. Table 3 shows the corresponding experimental results
and Table 4 shows a comparison of results to the stochastic
ranking method of Runarsson and Yao [9]. Comparison to
others results (e.g., [5] and [7]) are not made due to space
limitation. Table 3 is separated into two parts: the upper
part is for problems with inequality constraints only, the
lower part is for problems with equality constraints. Gr, is
the median of generation number to find the best solution
in a total of 100 independent runs, while Ns is the number
of runs where feasible solutions have been found.

For the problems with inequality constraints only, the pro-
posed algorithm was able to find the optimal solutions for
g01, g04, g06, g08, g12, and a very close to optimal solutions
for g02, g07, and g09. From Table 4, it can be seen that the
performance of the proposed strategy was similar to that of
stochastic ranking method for g01, g08, and g12. For prob-
lems g06 and g10, the mean and worst results obtained here
were even better than the stochastic ranking method. For
g02, g04, g07, g09, the mean and worst results were only
slightly worse than the stochastic ranking method.

However, when dealing with equality constraints, the pro-
posed strategy in Fig. 1(a) could only find the optimal solu-
tion for g03, but not in the problems of g05, gi1, and gi13.
For these cases, only a very slight reduction in the objective
function value was observed after the first feasible individual
was found. The optimization became stagnant in the local
minimum and causing the mean and worst results deviated
far away from that of [9]. The observation here then in-
duced the idea of adding a simple diversity mechanism and
a tolerance value adjustment scheme into the algorithm, as
illustrated in Fig. 1(b).

Before continuing, we show the effects of varying the pa-
rameters B and k on the performance of the proposed algo-
rithm. Firstly, we varied the B value from 0.001 to 0.3 by
fixing the k value as 40. Secondly, we varied the k value from
10 to 50 by fixing the B value as 0.05. The corresponding
results are shown in Tables 5 and 6 respectively.

From Table 5, it can be seen that for B values from 0.001
to 0.2, the results for both g05 and gil were comparable
to that of [9] in terms of the best, mean, and worst results.
Only when B = 0.3, the results were worse than that of
[9]. For g13, the results of the proposed strategy were much
more better than that of [9] for B values from 0.01 to 0.3.
The worst results found in here were by far the best results
obtained when compared to others like [5], [7], and [9]. Al-
though Runarsson and Yao [9] is able to obtain 0.056224 as
the worst value when Py in their algorithm is set to 0.475,
this result is very sensitive to the setting of Py. A slight
change of P; from 0.475 to 0.45 can shift the worst value
from 0.056224 to 0.216915. The worst values obtained here
were consistent for a range of B values from 0.01 to 0.3,
indicating that the algorithm is more robust in terms of
parameter tuning. Besides, the results obtained here were
based on a total of 100 independent runs, instead of 30 as in

893

previous publications, indicating a higher reliability in the
results. Problem g13 only failed when B was set to 0.001.

From the study, it was found that the algorithm did not
perform well when the B value is either too small (0.001)
or too large (0.3). This is because when we set B as 0.001
(0.1% of the max (|h; (Z)])), d1; in (4) becomes too small
and this results in restricted size on the search region ar-
eas. As a result, the search of solutions that are close to
the target region that contain the global minimum becomes
more difficult. When the B value increases (0.01 to 0.2),
the search region areas become larger and this increases the
chances of the algorithm to find solutions near to the tar-
get region. However, when we set the B value to 0.3 (30%
of max (|h; (Z)])), the search region areas become too large
and the algorithm may lead us to other feasible regions (con-
taining local minima) which are located far away from the
desired target region. From this study, the suitable range
for B values was found to be from 0.01 (1%) to 0.2 (20%).
It has to be noted that some of the best solutions found
were even better than the optimal values, which is due to
the approximation of the equality constraints into inequality
constraints using (1).

On the other hand, Table 6 shows that when k was varied
from 10 to 50 generations, both g05 and gil gave compa-
rable results to that of [9] in terms of the best, mean, and
worst values. However, g13 gave good results only when us-
ing k values from 30 to 50. When the k value is large (30
to 50), we allow the algorithm to run for more generations
using d1 as the tolerance value. By doing so, the solutions
found in this stage will have smaller f values when compared
to the cases of using small k values (< 20). Since the search
regions are normally very close to the feasible regions, when
we continue the optimization using 2 as the tolerance value,
we only need to vary slightly on the variables & in order to
bring them into the feasible regions. As we have only var-
ied slightly on the variables &, the corresponding f value is
also only varied slightly at the same time. In other words,
a smaller f value obtained in the search region (41 region)
may subsequently lead to a solution which has a smaller f
value in the d2 region. As a result, larger k value is preferred
as this will give us solutions with smaller f values in the 1
region. The final settings chosen here were B = 0.05 and
k =40. A summary of the results is given in Table 7.

The optimization results using GA are shown in Table 8.
For g05, g11, and g13, the simple diversity mechanism and
tolerance value adjustment scheme in Fig. 1(b) is incorpo-
rated, with B = 0.05 and £ = 40. In general, the results were
comparable to that of ES-based results. Noticeable differ-
ences included a slightly better performance in GA for g04,
g06, g10, and a slightly worse performance for g07, g05, g11,
and g13. In the case of gl1, there were 2 runs which gave
solutions of 1.000. Since GA involves much more parame-
ter tuning than that of ES, the parameter settings chosen
here may not be the optimal values for the cases here. It
has to be noted that there was no attempt in this study to
perform fine tuning on the optimization parameters for ES
and GA, nor to study the effects of parameter variations on
the performance of the proposed algorithm.

Another important finding from this study was that the
concept of ranking addition worked equally well even if we
neglected the information from the number of constraints
violated, R.. We have retested both of the ES and GA by
replacing (3) with ¢ (£) = R¢+ Rs and the results are shown

Table 2: Characteristics of the thirteen benchmark problems and feasibility study

¢ (%) = Rs + Ry ¢ (Z) = Rs
Problem | n Type LI | NI | LE | NE | Ns | Gtea | Std | Ns | Gtea | Std
g01 13 | quadratic | 9 0 0 0 100 13 3 100 12 3
g02 20 | nonlinear | 1 1 0 0 100 1 0 100 1 0
g03 10 | nonlinear | 0 0 0 1 100 17 12 | 100 19 11
g04 5 | quadratic | 0 6 0 0 100 1 0 100 1 0
g05 4 | nonlinear | 2 0 0 3 100 64 3 93 63 3
g06 2 | nonlinear | 0 2 0 0 100 7 2 100 7 2
g07 10 | quadratic | 3 5 0 0 100 12 2 100 12 2
g08 2 nonlinear 0 2 0 0 100 1 1 100 1 1
g09 7 | nonlinear | 0 4 0 0 100 1 1 100 1 1
g10 8 linear 3 3 0 0 100 23 5 100 17 4
gll 2 | quadratic | 0 0 0 1 100 12 4 100 12 5
gl2 3 | quadratic | 0 | 9% | © 0 | 100 1 0 | 100 1 0
gl3 5 | nonlinear | 0 0 1 2 100 55 4 100 54 4

Table 3: Experimental results using (y, A\)-ES with simple addition of ranking method (Number in boldface

means optimal solution is found)

Prob. Optimal Best Median Mean St. Dev. Worst Gm Ns
Problems with inequality constraints only
g01 -15.000 -15.000 -15.000 -15.000 0.0E4-00 -15.000 691 100
g02 -0.803619 -0.803602 -0.780828 -0.777351 2.0E-02 -0.712177 1225 100
g04 -30665.539 -30665.539 -30665.539 -30665.228 9.9E-01 -30659.007 679 100
206 -6961.814 -6961.814 -6952.210 -6896.354 9.5E+401 -6566.977 34 100
g07 24.306 24.307 24.384 24.417 1.2E-01 25.004 533 100
g08 -0.095825 -0.095825 -0.095825 -0.095825 3.0E-17 -0.095825 383 100
g09 680.630 680.632 680.649 680.663 3.9E-02 680.863 387 100
gl0 7049.25 7063.312 7289.269 7365.964 2.5E+02 8220.442 678 100
gl2 -1.000000 -1.000000 -1.000000 -1.000000 0.0E+00 -1.000000 63 100
Problems with equality constraints
203 -1.000 -1.000 -1.000 -1.000 2.5E-05 -1.000 1682 100
g05 5126.498 5126.499 5433.689 5473.997 2.7TE+402 6080.091 247 100
gll 0.750 0.750 0.826 0.827 6.0E-02 0.957 493 100
gl3 0.053950 0.443019 0.997364 0.973519 8.5E-02 0.998250 1750 100

Table 4: Comparison of results between the proposed methodology in ES (A)

[9] (SR) (Number in boldface means better or similar results to that of SR)

and the stochastic ranking of

Best Result Mean Result Worst Result
Prob. Optimal A SR A SR A SR
g01 -15.000 -15.000 -15.000 -15.000 -15.000 -15.000 -15.000
g02 -0.803619 -0.803602 -0.803515 -0.777351 -0.781975 -0.712177 -0.726288
g04 -30665.539 | -30665.539 -30665.539 -30665.228 -30665.539 -30659.007 -30665.539
g06 -6961.814 -6961.814 -6961.814 | -6896.354 -6875.940 | -6566.977 -6350.262
g07 24.306 24.307 24.307 24.417 24.374 25.004 24.642
g08 -0.095825 -0.095825 -0.095825 | -0.095825 -0.095825 | -0.095825 -0.095825
g09 680.630 680.632 680.630 680.663 680.656 680.863 680.763
gl0 7049.25 7063.312 7054.316 7365.964 7559.192 8220.442 8835.655
gl2 -1.000000 -1.000000 -1.000000 | -1.000000 -1.000000 | -1.000000 -1.000000
g03 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000
g05 5126.498 5126.499 5126.497 5473.997 5128.881 6080.091 5142.472
gll 0.750 0.750 0.750 0.827 0.750 0.957 0.750
gl3 0.053950 0.443019 0.053957 0.973519 0.067543 0.998250 0.216915

894

Table 5: Effects of varying B on the optimization results, ¥ = 40 (Number in boldface means better or similar
results to that of SR [9])

Prob.(Optimal) B — 0.001 0.01 0.05 0.1 0.2 0.3 SR
g05 Best 5126.498 5126.497 5126.498 5126.498 5126.498 5126.498 5126.497
(5126.498) Mean 5126.898 5126.550 5127.179 5130.083 5129.118 5235.356 5128.881
Worst 5135.019 5126.967 5142.413 5166.521 5156.092 6100.280 5142.472
Ns 100 100 95 91 95 86 -
gll Best 0.750 0.750 0.750 0.750 0.750 0.759 0.750
(0.750) Mean 0.750 0.750 0.750 0.750 0.750 0.760 0.750
Worst 0.750 0.750 0.750 0.750 0.750 0.760 0.750
Ns 100 100 100 100 100 100 -
gl3 Best 0.129034 0.053953 0.053952 0.053950 0.053976 0.053993 0.053957
(0.053950) Mean 0.350095 0.055216 0.054419 0.054639 0.054892 0.055850 0.067543
Worst 0.443812 0.064755 0.055600 0.056572 0.060031 0.064886 0.216915
Ns 100 100 100 100 100 100 -

Table 6: Effects of varying k& on the optimization results, B = 0.05 (Number in boldface means better or
similar results to that of SR [9])

Prob.(Optimal) k— 10 20 30 40 50 SR
g05 Best 5126.498 5126.497 5126.498 5126.498 5126.497 5126.497
(5126.498) Mean 5126.957 5126.630 5127.026 5127.179 5128.705 5128.881
Worst 5130.593 5127.868 5162.960 5142.413 5161.161 5142.472
Ns 100 100 99 95 92 -
gll Best 0.750 0.750 0.750 0.750 0.750 0.750
(0.750) Mean 0.750 0.750 0.750 0.750 0.750 0.750
Worst 0.750 0.750 0.750 0.750 0.750 0.750
Ns 100 100 100 100 100 -
gl3 Best 0.443224 0.054003 0.053952 0.053952 0.053949 0.053957
(0.053950) Mean 0.817467 0.080323 0.054896 0.054419 0.054466 0.067543
Worst 0.997133 0.183116 0.060928 0.055600 0.056277 0.216915
Ns 100 100 100 100 100 -

Table 7: Experimental results using the proposed (u, A)-ES algorithm in Fig. 1(b), B = 0.05, k¥ = 40 (Number
in boldface means optimal solution is found)

Prob. Optimal Best Median Mean St. Dev. Worst Gm Ng
205 5126.498 5126.498 5126.587 5127.179 2.2E+4+00 5142.413 821 95
gll 0.750 0.750 0.750 0.750 1.4E-05 0.750 844 100
gl3 0.053950 0.053952 0.054290 0.054419 3.9E-04 0.055600 841 100

Table 8: Experimental results using GA with simple addition of ranking method (Number in boldface means
optimal solution is found)

Prob. Optimal Best Median Mean St. Dev. Worst Gm Ng
g01 -15.000 -15.000 -15.000 -15.000 1.7E-05 -14.9999 1578 100
g02 -0.803619 -0.803595 -0.779878 -0.772451 2.1E-02 -0.714454 1734 100
203 -1.000 -1.000 -1.000 -1.000 2.1E-05 -1.000 1730 100
g04 -30665.539 -30665.539 -30665.535 -30665.535 2.4E-03 -30665.526 1606 100
206 -6961.814 -6961.556 -6958.102 -6957.835 2.4E+00 -6951.137 760 100
g07 24.306 24.397 25.051 25.134 5.7E-01 27.444 1722 100
g08 -0.095825 -0.095825 -0.095825 -0.095825 2.1E-14 -0.095825 938 100
209 680.630 680.634 680.659 680.670 3.1E-02 680.802 1708 100
gl0 7049.25 7095.17 7245.82 7282.60 1.6E+402 7968.10 1661 100
gl2 -1.000000 -1.000000 -1.000000 -1.000000 7.9E-14 -1.000000 162 100
205 5126.498 5126.502 5131.832 5140.032 1.9E401 5220.956 1126 70
gll 0.750 0.750 0.750 0.757 3.5E-02 1.000 880 100
gl3 0.053950 0.054284 0.066533 0.072600 2.0E-02 0.152089 863 100

895

Table 9: Experimental results by using ¢ (Z) = Rt + Rs

in boldface means optimal solution is found)

instead of ¢ (¥) = R¢ + Rs + Rv in Condition 2 (Number

Best Result Mean Result Worst Result
Prob. Optimal ES GA ES GA ES GA
g01 -15.000 -15.000 -15.000 -14.988 -15.000 -13.828 -15.000
g02 -0.803619 -0.803592 -0.803432 -0.780031 -0.774204 -0.710399 -0.708042
g03 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000
g04 -30665.539 | -30665.539 -30665.539 | -30664.494 -30665.538 | -30641.088 -30665.535
206 -6961.814 -6961.814 -6961.638 -6896.409 -6957.912 -6601.170 -6950.474
g07 24.306 24.308 24.336 24.356 24.411 24.616 24.670
g08 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825
209 680.630 680.631 680.633 680.667 680.658 680.867 680.731
gl0 7049.25 7050.864 7113.279 7223.263 7259.945 8809.788 7917.746
gl2 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 | -1.000000 -1.000000
g05 5126.498 5126.498 5126.499 5126.674 5134.886 5137.700 5190.904
gll 0.750 0.750 0.750 0.750 0.756 0.750 1.000
gl3 0.053950 0.053948 0.054386 0.054306 0.061760 0.055947 0.099296

in Table 9 (with no changes in all other settings). It was
interesting to note that there were only slight variations in
the best and mean values after removing the term R,. This
shows that the information from the constraint violation to
some extent, can be represented solely by the sum of squares
value.

The above performance tests have successfully illustrated
the effectiveness of using (2) and (3) as the new objective
functions in finding the global minimum. With the use of
ranking, the information from both of the objective function
and constraint violation can be converted into numerical val-
ues which are in the same order of magnitude. The ranking
methodology used here is fast and direct as the information
from the constraint violation are represented by the sum of
squares value and the number of constraints violated. This
is in contrast to the time consuming pareto ranking which
needs to take into account the values of each constraint func-
tion separately (e.g., in [1] and [8]). The biggest contribution
from this work is the idea of using ranking to convert the
information from the objective function and constraint vio-
lation into values which are in the same order of magnitude,
such that direct summation of the ranking terms can then
be used to integrate all of the information into one term.
By doing so, both of the feasible and infeasible individuals
can be retained to the next generation in an effective way.
This is in contrast to the stochastic ranking method of [9], in
which only one of the information (either the objective func-
tion or the constraint violation) is being considered based
on a certain probability.

5. CONCLUSIONS

In conclusions, a simple addition of ranking method has
been developed for the handling of constraints in EAs. The
proposed methodology is able to integrate the information
from both of the objective function and constraint violation
in an effective way. The computational cost of the proposed
approach is comparatively low since pairwise comparison of
individuals is not required. Besides, the algorithm does not
require any parameter tuning (except those required by the
EAs) when dealing with inequality constraints. Although
there are two parameters needed for the case of equality
constraints, they are not value specific which are sensitive
to slight changes in the values. A wide range of values can

896

be used for B and k, causing the results to be robust towards
the tuning. Future works included the extension of the pro-
posed approach into multiobjective optimization problems.

6. REFERENCES

[1] A. Angantyr, J. Andersson, and J.-O. Aidanpaa. Constrained
optimization based on a multiobjective evolutionary
algorithms. In Proceedings of the Congress on Evolutionary
Computation 2003 (CEC’2003), volume 3, pages 1560-1567,
Piscataway, New Jersey, December 2003. Canberra, Australia,
IEEE Service Center.

T. Béack, U. Hammel, and H.-P. Schwefel. Evolutionary
computation: comments on the history and current state.
IEEE Transactions on Evolutionary Computation, 1(1):3-17,
April 1997.

A. J. Chipperfield, P. J. Fleming, and C. M. Fonseca. Genetic
algorithm tools for control systems engineering. In Proceedings
of the Adaptive Computing in Engineering Design and
Control, pages 128-133. Plymouth Engineering Design Centre,
1994.

C. A. Coello Coello. Theoretical and numerical constraint
handling techniques used with evolutionary algorithms: a
survey of the state of the art. Computer Methods in Applied
Mechanics and Engineering, 191(11-12):1245-1287, January
2002.

A. Hernandez-Aguirre, S. Botello-Rionda, C. A. Coello Coello,
G. Lizdrraga-Lizdrraga, and E. Mezura-Montes. Handling
constraints using multiobjective optimization concepts.
International Journal for Numerical Methods in Engineering,
59(15):1989-2017, April 2004.

R. Hinterding. Constrained parameter optimisation: equality
constraints. In Proceedings of the Congress on Evolutionary
Computation 2001 (CEC’2001), volume 1, pages 687692,
Piscataway, New Jersey, May 2001. IEEE Service Center.

E. Mezura-Montes and C. A. Coello Coello. An improved
diversity mechanism for solving constrained optimization
problems using a multimembered evolution strategy. In
Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO’2004), pages 700-712, Heidelberg,
Germany, June 2004. Seattle, WA, Springer Verlag. Lecture
Notes in Computer Science Vol. 3102.

T. Ray, T. Kang, and S. K. Chye. An evolutionary algorithm
for constrained optimization. In Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO’2000),
pages 771-777, San Francisco, California, July 2000. Morgan
Kaufmann.

T. P. Runarsson and X. Yao. Stochastic ranking for
constrained evolutionary optimization. IEEE Transactions on
Evolutionary Computation, 4(3):284-294, September 2000.

T. P. Runarsson and X. Yao. Constrained evolutionary
optimization: the penalty function approach. In R. Sarker,

M. Mohammadian, and X. Yao, editors, Evolutionary
optimization, pages 87-113. Kluwer Academic Publishers,
2002. ISBN: 0-7923-7654-4.

(2]

(3]

(4]

(5]

6

(7]

(8]

(9]

(10]

