
Evolutionary Unit Testing of Object-Oriented Software
Using Strongly-Typed Genetic Programming

Stefan Wappler
Technical University of Berlin

DaimlerChrysler Automotive IT Institute
Ernst-Reuter-Platz 7, 10587 Berlin, Germany

Phone: +49 30 39982 358

stefan.wappler@tu-berlin.de

Joachim Wegener
DaimlerChrysler AG

Research and Technology
Alt-Moabit 96a, D-10559 Berlin, Germany

Phone: +49 30 39982 232

joachim.wegener@daimlerchrysler.com

ABSTRACT
Evolutionary algorithms have successfully been applied to
software testing. Not only approaches that search for nu-
meric test data for procedural test objects have been in-
vestigated, but also techniques for automatically generating
test programs that represent object-oriented unit test cases.
Compared to numeric test data, test programs optimized
for object-oriented unit testing are more complex. Method
call sequences that realize interesting test scenarios must be
evolved. An arbitrary method call sequence is not necessar-
ily feasible due to call dependences which exist among the
methods that potentially appear in a method call sequence.
The approach presented in this paper relies on a tree-based
representation of method call sequences by which sequence
feasibility is preserved throughout the entire search process.
In contrast to other approaches in this area, neither repair of
individuals nor penalty mechanisms are required. Strongly-
typed genetic programming is employed to generate method
call trees. In order to deal with runtime exceptions, we use
an extended distance-based fitness function. We performed
experiments with four test objects. The initial results are
promising: high code coverages were achieved completely
automatically for all of the test objects.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging —
Test coverage of code, Testing tools

General Terms
Verification

Keywords
automated test case generation, evolutionary testing, object-
orientation, strongly-typed genetic programming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007 ...$5.00.

1. INTRODUCTION
Evolutionary Testing (ET) has been shown to be success-

ful in automatically generating relevant unit test cases for
procedural software [7]. Applying ET can increase efficiency
and quality of the usually costly test data generation process
[9]. The application of search-based strategies for object-
oriented unit testing has not yet been investigated compre-
hensively; only three approaches are known to the authors
([11, 12, 5]).

With ET, the task of test case generation is formulated as
a search problem which is tried to be solved using an evolu-
tionary algorithm. Test cases for the unit testing of object-
oriented software consist of a sequence of method calls (the
test program) that realize a particular test scenario, and the
test evaluation typically expressed by assertion statements
which are evaluated after the test scenario has been exe-
cuted. In order to apply evolutionary algorithms, a suitable
representation of object-oriented test programs must be de-
fined. Furthermore, a fitness function must be formulated
which is able to distinguish between interesting test pro-
grams and bland ones. The search space of the evolutionary
search is the set of all conceivable test programs for a given
test object. The fitness function guides the evolutionary
search to search space regions that contain interesting test
programs for the test objective at hand.

This paper presents an approach which applies strongly-
typed genetic programming (STGP) to the generation of
object-oriented test programs. Method call sequences are
represented by method call trees. These trees are able to
express the call dependences of the methods that are rele-
vant for a given test object. Feasibility in terms of regarded
call dependences is preserved by all evolutionary operators
that work on the method call trees. We apply the approach
to generating test cases that satisfy branch coverage of Java
classes. Nevertheless, it can be easily adapted to also work
for other coverage criteria.

The paper is organized as follows. Section 2 recapitu-
lates unit testing of object-oriented software. Feasibility of
method call sequences is dealt with in section 3. Section
4 introduces strongly-typed genetic programming. Section
5 describes our approach based on STGP. The results of
experiments performed with the approach are presented in
section 6. Finally, section 7 concludes the paper.

2. OBJECT-ORIENTED UNIT TESTING
The primary aim of unit testing is to uncover errors within

a given unit (the test object) or, if no errors can be found,

1925

to gain confidence in its correctness. For doing so, the test
object is used in different scenarios which are considered to
be interesting or relevant for this test object. In the context
of object-orientation, the particular classes which constitute
an application are considered to be the smallest units that
can be tested in isolation. Test set adequacy criteria, such
as branch coverage, are used to answer the question of what
interesting test scenarios are and when the process of test
case generation can be terminated. A test set is said to be
adequate with respect to a given criterion if the entirety of
test cases in this set satisfies this criterion. For example, a
set of test cases that lead to the traversal of all branches of
the control flow graphs of the test object when all test cases
are executed, is adequate with respect to branch coverage.

Testing a single class usually also involves other classes,
e.g. classes that appear as parameter types in the method
signatures of the class under test (CUT). The transitive set
of classes which are relevant for testing a particular class is
called the test cluster for this class.

class Controller
{
 public Controller(Config cfg)
 public void reconfigure(Config cfg)
 public Config getConfig()
 public void connect()
 public int retrieve(int signal)
 public void disconnect()
}

class Config
{
 public Config(int port, int count)
 public int getPort()
 public int getSignalCount()
}

Figure 1: test cluster for class Controller

A unit test case for object-oriented software consists of a
method call sequence and one or more assertion statements.
The method call sequence represents the test scenario. Dur-
ing its execution, all objects participating in the test are
created and put into a particular state by calling several in-
stance methods for these objects. The assertion statements
check whether the system is in a valid state after the execu-
tion of the method call sequence. When testing an object-
oriented class using a coverage-oriented adequacy criterion,
test cases must be generated which satisfy the criterion for
all methods of this class. Hence, each test case focuses on the
execution of one particular method, the method under test
(MUT). Consequently, the entirety of adequate test cases
for each method of the class under test satisfies the given
adequacy criterion for the whole class.

Figure 1 shows the public interface of a Controller class
as well as the public interface of a Config class, which is
used by the Controller class (and hence is part of the test
cluster). Class Controller will be assumed to be the CUT
from now on. An example test case for testing method
Controller.reconfigure(Config) is depicted in figure 2.
The test scenario consists of creating two instances of class
Config with particular parameters and one instance of class
Controller using one of the Configs as parameter. Finally,
the test case checks whether the configuration returned by
method Controller.getConfig() equals the configuration

// test scenario
Config cfg1 = new Config(0x0A, 5);
Config cfg2 = new Config(0x0B, 2);
Controller ctl = new Controller(cfg1)
ctl.reconfigure(cfg2);

// test evaluation
assert(
 ctl.getConfig().getPort() == cfg2.getPort());
assert(
 ctl.getConfig().getSignalCount() ==
 cfg2.getSignalCount());

Figure 2: example test case for method
Controller.reconfigure(Config)

which has been previously passed to method Controller.re-

configure(Config). If the checks are successful, the test
passes, otherwise it fails.

3. CALL SEQUENCE FEASIBILITY
The application of evolutionary algorithms for the auto-

matic generation of test cases for procedural software has
been investigated thoroughly during the last decade, and
successful approaches have been developed. Inspired by
the approaches for testing procedural software, new search-
based approaches for testing object-oriented software have
been recently researched (e.g. [11, 12, 5]). With procedu-
ral evolutionary testing, a candidate solution is represented
by a vector of real or integer values. In principle, no con-
straints or consistency criteria exist among the variable of
such a vector. However, the representation of a candidate so-
lution for object-oriented evolutionary testing must encode
the complete method call sequence which consists of arbi-
trary method calls including the actual parameters. Since
call dependences exist among the methods of the test clus-
ter, not any arbitrary method call sequence is executable.
Figure 3 shows two method call sequences without actual

// infeasible:

Config(int,int);
Config.getPort();
Controller.connect();

// feasible:

Config(int,int);
Controller(Config);
Controller.connect();

Figure 3: left: infeasible sequence; right: feasible
sequence

target objects and parameters. The sequence on the left is
infeasible because no instance of class Controller is avail-
able (i.e. has been created in advance by preceding calls)
for the third method call (Controller.connect()). The se-
quence on the right is feasible as all required target objects
and parameter objects are available for each method call.

We formally define sequence feasibility as follows: Let
M = {m1, m2, ..., mn} be the set of all public methods of
the test cluster classes. Additionally, let r : M → C ∪ �
(where C is the test cluster and � is the “no class” ele-
ment) be a function which assigns each method its return
type. Furthermore, let p : M → Pot(C), where Pot(C) is
the power set of C, be a function which assigns each method
the set of required objective parameter types. Finally, let
t : M → C ∪ � be a function which assigns each method
its declaring class if it is an instance method, or the � el-

1926

ement, if it is a static method or a constructor. A method
call sequence S =< m1, m2, ..., mj > is said to be feasible if

∀i ∈ 1, 2, ..., j : ∀c ∈ {t(mi)}∪p(mi)\{�}∃k < i : c = r(mk)

otherwise, it is said to be infeasible. In words, a sequence is
feasible if preceding method calls, which create the instances
that can serve as target object and parameter objects for
the method call, exist for each single method call of the
sequence.

When designing the representation which is used to en-
code object-oriented test cases and when defining the corre-
sponding fitness function, call sequence feasibility must be
taken into account. The previous approaches in the area
of object-oriented evolutionary testing deal with sequence
feasibility in different ways: Tonella [11] uses a source-code-
like representation and defines six special operators for mu-
tation and crossover working on this representation. One
of his mutation operators randomly inserts a new method
call into the sequence. Tonella ensures sequence feasibil-
ity by inserting recursively additional method calls which
create the instances that are required as parameter objects
for the method call that the mutation operator inserted.
Also, the crossover operator of Tonella does not preserve se-
quence feasibility per se; hence, additional method calls are
randomly inserted. The work of Liu et al. [5] builds upon
an Ant Colony Optimization algorithm. Unfortunately, the
authors do not describe how they deal with sequence feasi-
bility. In our previous work in this area [12], we used an ID
sequence to encode the method calls and mapped the IDs
to the actual methods during decoding. Integer mutation
and crossover were applied which also produced infeasible
sequences since the evolutionary operators were not aware
of the call dependences. Therefore, our fitness function used
different penalty mechanisms in order to penalize invalid se-
quences and to guide the search into search space regions
that contain valid sequences. Due to the generation of in-
feasible sequences, the approach lacks efficiency for more
complicated cases.

In this paper, we deal with the issue of sequence feasibil-
ity by using a representation for method call sequences and
evolutionary operators that preserve feasibility throughout
the entire search process. We use a tree-based represen-
tation which is supported by the majority of today’s GP
systems and apply already established tree-based mutation
and crossover operators. Our fitness function does not need
to incorporate a penalty mechanism since no infeasible se-
quences are generated.

4. STGP
Genetic Programming (GP) is a machine-learning approach

to automatically creating computer programs by means of
evolution [1]. Given a set of inputs X and outputs Y , a pro-
gram – or function – p is sought which satisfies Y = p(X).
A set of programs is manipulated by applying mutation and
crossover unless the optimum program is found or other ter-
mination criteria are met.

With a lot of GP approaches, the programs are repre-
sented using tree genomes. Figure 4 shows an example tree
representing a mathematical expression which uses the in-
put variables x = (a, b, c) where x ∈ X. The leaf nodes
of the tree are called terminals whereas the non-leaf nodes
are called non-terminals. Terminals can be inputs to the
program, constants or functions with no arguments. Non-

terminals are functions taking at least one argument. The
function set is the set of functions from which the GP sys-
tem can choose when constructing or manipulating trees.
The fitness of a candidate solution is based on its ability to

a

2 b

9 c

Figure 4: example GP program

satisfy Y = p(X). Let Yexp be the expected known output
and Yp the actual output produced by a program p with
Yp = p(X). Usually, the fitness f(p) of p is calculated using
the following formula:

f(p) =

|X|�

i=1

(p(xi) − yexpi)
2 (1)

where x ∈ X and yexp ∈ Yexp.
However, GP can also be applied in a non-machine-learning

context, e. g. when the set of outputs Y is not known in
advance or does not even exist. Then, the fitness calculation
must be based on other criteria that express the ability of a
program to fulfill a certain task.

Usually, the nodes of a genetic programming tree are not
typed. Consequently, the functions of the function set must
be able to accept each conceivable argument (the closure
property of the function set). Since a lot of problems which
could be solved by GP are formulated more effectively and
efficiently using types, Montana suggests a typing mecha-
nism for GP nodes [8]: each node has a particular return
type, i. e. the type of the subtree of which the node is the
root. Also, the children are typed, i. e. the arguments of
the function the node represents possess particular types.
When applying tree construction, mutation, and crossover,
the types specify which (non-)terminal can be used as a child
of a node and which nodes can be exchanged between two in-
dividuals. Montana calls his GP algorithm, that is aware of
types, strongly-typed genetic programming (STGP). Strong
typing has been extended to support type inheritance and
polymorphism (e. g. by the works of Haynes et al. [4], Luke
[15], Yu [16]). Consequently, STGP is able to deal with
the typing concepts which are inherent to most of the cur-
rent object-oriented programming languages such as C++
or Java.

5. A NEW APPROACH BASED ON STGP
In this section, we present our approach to automatically

generating object-oriented unit test cases. At first, we intro-
duce the method call dependence graph as a means to model
call dependences. Afterwards, we outline the overall evolu-
tionary algorithm that consists of two optimization levels.
How to define the function set and the type set of a GP
system is described subsequently. Finally, the last part of
this section defines the fitness function we use.

1927

5.1 Modelling Call Dependences
As discussed in section 3, a test program is a sequence of

method calls S =< m1, m2, ..., mn >. These method calls
realize a certain test scenario by creating objects, putting
them into particular states, and finally executing the method
under test. Each method mi of the sequence can only be
executed if a suitable target object and appropriate param-
eter objects were created during the method calls m1 to
mi−1. This means that for a single method call, all call de-
pendences for this method – i.e. the preceding creation of
the required target and parameter objects – must be satis-
fied. The call dependences that exist among the test cluster
methods can be expressed using a method call dependence
graph (MCDG). This graph is a bipartite, directed graph
whose nodes of type 1 represent methods (method nodes),
and the nodes of type 2 represent classes (class nodes). A
link between a method node and a class node means that
the method can only be called if an instance of the linked
class is created in advance. A link between a class and
a method means that an instance of the class is created
or delivered by the linked method. Figure 5 shows the
MCDG for the test cluster of figure 1. For instance, method
Controller.reconfigure(Config) can only be called if an
instance of class Controller and an instance of class Config
are present. An instance of class Config can be obtained by
either calling Config(int,int) or Controller.getConfig().
Obviously, the example graph is cyclic. A method call se-

Ctrllr.reconfigure(Config)

Controller Controller(Config)

Config

Config(int,int)

Controller.getConfig()

Controller.connect()

Controller.disconnect()

Controller.retrieve(int)

Config.getPort()

Config.getSignalCount()

Figure 5: method call dependence graph

quence is feasible if it corresponds to an acyclic subgraph of
the method call dependence graph. Such acyclic subgraphs
can be modeled as trees. Starting at a particular method,
the method call dependence graph can be traversed until
each branched path has reached a node which has no out-
going link. During traversal, decisions must be made on the
class nodes that have multiple out-links: one of the linked
method must be selected. An example tree is shown in figure
6. The method node labeled Controller.reconfigure(Con-

fig), which is the root node of the tree, is connected to
the Controller and Config class nodes in the MCDG. At
the Controller class node, there is no decision to make
since only Controller(Config) delivers an instance of class
Controller. This method is connected to the Config class
node meaning that a method must be selected which deliv-
ers such an instance. In the tree, the decision was made in
favor of Config(int,int). The same is true for the other
subpath going from Controller.reconfigure(Config) via
the Config class node to the constructor Config(int,int).

Controller.reconfigure(Config)

Controller(Config) Config(int,int)

Config(int,int)

Figure 6: basic method call tree

In the context of strongly-typed genetic programming, it
would be easy to configure an STGP system in order to
produce trees that are subgraphs of a given method call de-
pendence graph. The trees could be sequentialized and used
as method call sequences that are feasible. However, since
these trees have only so far considered object construction,
there is still the need to integrate “regular” method calls
that potentially affect the state of an object but do not
necessarily contribute to object construction. An approach
for this integration is to view the regular methods as be-
ing object-delivering as well: each method can be assumed
to take the actual target object as an argument and to de-
liver the possibly modified object as return value1. In terms

Ctrllr.reconfigure(Config)

Controller Controller(Config)

Config

Config(int,int)

Controller.getConfig()

Controller.connect()

Controller.disconnect()

Controller.retrieve(int)

Config.getPort()

Config.getSignalCount()

Figure 7: extended method call dependence graph

of the method call dependence graph, additional links can
be inserted going from a class node to all method nodes
whose target object is of the class node type. Figure 7
shows the extended MCDG for the example test cluster.
This allows for a much broader variety of subgraphs and
thus method call sequences. Of course, methods which do
not return instances and do not affect the state of an ob-
ject could be eliminated from the graph if they are not cur-
rently in the focus of the test. Figure 8 shows a subgraph
of the extended MCDG. In the example of figure 8, method
Controller.connect() (that actually does not return any
value) is used to provide an instance used as target object
for the call of Controller.reconfigure(Config). This is
possible since we assume that the regular methods return
their target object argument as a return value. If a method
already has a return value, this method can appear in a
method call tree in two different situations: either an object
of the actual return type is required, or an object of the

1In some object-oriented languages, such as Modula3, the
methods of an object are actually declared with the target
object as first argument.

1928

Controller.reconfigure(Config)

Controller(Config)

Config(int,int)

Config(int,int)

Controller.connect()

Figure 8: extended method call tree

target object type of this method is required. In both cases,
the method fits according to the above assumption.

We are now able to describe the call dependences that ex-
ist among the relevant methods using an extended MCDG
without losing the ability to also have regular method calls
which do not return objects. It is possible to configure a
genetic programming system in such a way that it creates
and manipulates method call trees which are subgraphs of
the extended MCDG of a given test cluster. This configu-
ration consists of the definition of the function set (see 5.3)
and the definition of the type set (see 5.4).

A limitation of the above definition of the method call
trees is that it does not explicitly support object reuse. This
limitation will be dealt with in the following. The method
call tree of figure 8 produces two instances of type Config;
one serves as the argument for the Controller constructor,
and the other as the argument for method Controller.re-

configure(Config). If we interpret the links between the
methods in such a way that the object which is delivered
by the link destination method is actually used by the link
source method, then it is not possible for one instance to
be used as a parameter object for multiple method calls.
This case is illustrated in figure 9 (a): the parameter ob-
ject for the last method call is definitely cfg2. However, in

Config cfg1 = Config(int,int);
Controller ctrl = Controller(cfg1);
ctrl.connect();
Config cfg2 = Config(int,int);
ctrl.reconfigure();

Config cfg1 = Config(int,int);
Controller ctrl = Controller(cfg1);
ctrl.connect();
Config cfg2 = Config(int,int);
ctrl.reconfigure();

(a)

(b)

Figure 9: two ways of interpreting links: (a) strict
interpretation; (b) reuse interpretation

practice, there are cases where it is necessary to pass the
same instance to multiple method calls in order to cover
certain branches of the unit under test. For instance, in
case of pointer comparisons, e.g. if(obj1 == obj2), the
condition can only be satisfied if the actual instances repre-
sented by the formal parameters obj1 and obj2 are identical.
Therefore, we assume that a method call tree – although it
guarantees that all call dependences are satisfied – leaves
the actual relations between the methods open. This reuse

interpretation leads to an additional degree of freedom when
constructing a test program from a method call tree. In fig-
ure 9 (b), it is left open which instance is to be used for the
call of the last method.

However, at some point the decision must be made which
instance should be used. Since for a method call sequence
there can be multiple candidate parameter objects for sev-
eral method calls, many combinations of object assignments
are conceivable. Chosing the right combination can be seen
as a search problem for which an evolutionary algorithm is
employed.

An additional issue to deal with is the optimization of
numeric parameter values. Since genetic programming does
not primarily focus on parameter optimization, we optimize
the numeric parameter values separately from the trees.

In order to deal with the parameter object assignments as
well as the numeric parameters, we perform a second level
(L2) optimization for each tree individual. We use an evo-
lutionary algorithm that works on vectors of real numbers
for the L2 optimization. The following section outlines this
two-level optimization approach.

5.2 Test Case Generation Algorithm
As discussed in section 5.1, two optimization levels are

necessary: on the first level (L1), method call trees are op-
timized whereas on the second level (L2), the object assign-
ments and numeric parameter values are optimized. This
means that for each tree individual from L1, a complete op-
timization of its possible object assignments and numeric
parameters is carried out. The algorithm for the generation
of test cases has the following structure:2:

begin algorithm generateTestCases

in: class to be tested CUT

out: set of test cases T

identify test cluster TC for CUT

instrument source codes for TC

collect test goals TG for CUT

generate function set for TC

generate type set for TC

for each test goal tg in TG

modify function set for tg

create initial tree individuals TI

evaluate tree individuals TI:

for each tree individual ti in TI

specify L2 genotype for individual ti

perform L2 optimization for ti:

create initial vector individuals VI

evaluate the vector individuals VI:

for each vector individual vi in VI

create a test program out of the tree

individual and the vector individual

execute the test program, thereby

monitor execution flow

calculate fitness based on distance

end for

while termination criterion not met:

recombine and mutate individuals

evaluate offspring

2We do not specify the concrete evolutionary operators here;
this is done in the context of our experiments (section 6)

1929

end while

return fitness of best vi as fitness of ti

end for

while termination criterion not met:

recombine tree individuals

mutate tree individuals

evaluate tree individuals

end while

end for

end algorithm

Initially, the test cluster for the given class under test
is defined using static analysis. The concerned classes are
then instrumented; thereby, the test goals – in our case all
branches of the methods of the class under test – are col-
lected. We follow the goal-oriented approach and carry out
a search for a test program for each individual test goal. Be-
fore that, the function set and the type set is defined. The
function set must be modified for each test goal: it must be
ensured that the generated programs contain at least one
call of the method that contains the current test goal. For
this purpose, the type of the method call tree is defined as
the special return type τ of the method under test (see 5.3).
During individual initialization, random tree individuals are
generated. These individuals are evaluated in the following
way: At first, the tree is linearized and all points are com-
puted at which multiple candidate objects are available. For
instance, the tree individual shown in figure 8 would be lin-
earized to the sequence shown in figure 9 (b). For each point,
a gene is added to the genotype specification of the L2 in-
dividual. The number of available candidate objects defines
the value ranges for these genes. This happens also for all
numeric parameter values. For our example, the following
genotype specification S would be created3:

S = (int, int, int, int, {1, 2})
Then, the L2 optimization is performed in order to search
for vectors that correspond to the L2 genotype specification.
After creating the initial population, this population is eval-
uated by creating an executable test program based on the
tree individual and the current vector individual, executing
this program and calculating the distance of the actual ex-
ecution flow to the current test goal (the fitness function is
dealt with in section 5.5). Vector recombination and mu-
tation take place unless an ideal vector individual is found
or another termination criterion applies. The fitness of the
fittest vector individual is used as the fitness of the tree
individual upon which the L2 optimization is based. Tree
recombination and mutation take place unless an ideal in-
dividual is found (during the L2 optimization) or another
termination criterion applies.

5.3 Function Set Definition
The methods of the test cluster classes constitute the func-

tion set that is used by the genetic programming system.
The genetic programming system uses the functions from
the function set to create (tree-based) individuals. In or-
der to define a function, the name of the function, its re-
turn type, and the child types must be specified. We add
a method to the function set with the help of the extended
MCDG in the following way:

3The range int means the system-dependent range of signed
integer numbers.

• All method type nodes become functions of the func-
tion set.

• The label of a method node is directly used as function
name.

• All classes represented by the class nodes which are
connected via an out-link from the method node be-
come child types of the function represented by the
method node.

• The class represented by the class node that is con-
nected via an in-link to the method node becomes the
return type of the function. If there are multiple class
nodes connected to the method node via an in-link,
the function set entry is duplicated for each class node
and the return type is defined appropriately.

The type τ is used as return type of the STGP tree. This
type is also used for the function definition of the current
method under test. This ensures that this method is called
by the method call sequence at least once. An additional
function set entry is created for the method under test with
this particular return type. Since basic data types are dealt
with during the second optimization level, they can be ig-
nored when defining the function set. Table 1 shows the

Function Name Return Type Child Types

Controller(Config) Controller Config
Controller. reconfig-
ure(Config)

Controller Controller,
Config

Controller.getConfig() Controller Controller
Controller.getConfig() Config Controller
Controller.connect() Controller Controller
Controller.retrieve() Controller Controller
Controller.disconnect() Controller Controller
Config.Config(int,int) Config -
Config.getPort() Config Config
Config.getSignalCount() Config Config
Controller. reconfig-
ure(Config)

τ Controller,
Config

Table 1: example function set

function set for the test cluster of figure 1. It is assumed that
Controller.reconfigure(Config) is the method under test
that contains the current test goal. The first section of the
table shows the function set for class Controller. Each
method is assumed to return an instance of type Controller
and to require as a child an instance of type Controller ex-
cept the constructor. Basic data types are ignored. The pa-
rameter type Config of methods Controller(Config) and
Controller.reconfigure(Config) becomes an additional
child type of the corresponding functions. The next table
entries are the functions for class Config. The last entry is
the function representing the method under test. It has the
return type τ with which the overall tree is typed.

5.4 Type Set Definition
To account for polymorphic relationships which exist due

to inheritance relations, the STGP types used by the func-
tion set are specified in correspondance to the type hierarchy
of the test cluster classes. We use set-based typing [6, 15] to
construct polymorphic types. A set type is a type identifier

1930

which is assigned a set of type identifiers. Two types are
considered compatible if their type set intersection is non-
empty. The type set of an STGP problem consists of the
atomic type identifiers and the set types. Figure 10 shows

Controller

Object

Config

RTConfig

Figure 10: example type set

the class inheritance tree for the test cluster classes and an
additional class RTConfig which is a subclass of class Config
(the additional class is introduced for reasons of illustration).
Each class of the inheritance tree becomes an atomic type:

atomic = {Object, Controller, Config, RTConfig}
Additionally, a set type is defined for each class that pos-
sesses at least one subclass:

Object set = {Object, Controller, Config, RTConfig}
Config set = {Config, RTConfig}
Whenever a function possesses a child type for which a set
type exists, this set type is used instead of the atomic type
for child type definition. With the above inheritance tree,
the function set of table 1 would be changed in such a way
that all Config child types would be replaced by Config set

child types.

5.5 Test Program Fitness
We use a minimizing (nullifying) distance-based fitness

function in order to assess and differentiate the test pro-
grams that are generated during the evolutionary search.
This function is described in more detail in [13]. The aim
of each search is to generate a test program that covers a
particular branch of the class under test. The distance of
the actual execution flow produced by a given test program
in terms of the control flow graph to the target branch can
be measured using three different metrics:

• method call distance dMC

• control node distance (approximation level) dCN

• problem node distance (local distance) dPN

The metrics dCN and dPN are the distance metrics that
are also used for fitness evaluation in the context of pro-
cedural evolutionary testing (e.g. [14]). The metric dMC

corresponds to the number of methods that have not been
executed due to a runtime exception. In some cases, the
randomly generated input values lead to erroneous situa-
tions, e.g. when a numeric parameter value is used as an
array index and the generated value is negative. Then ex-
ecution stops at the point where the invalid access occurs.
The metric dMC tries to account for these situations. Addi-
tionally, in case of an unchecked exception, the exit node of
the method in which the exception occurres is considered to
be a subtarget of the search and the calculation of dAL and

dLD is then based on this subtarget. The fitness f of a test
program is a combination of these metrics:

f = λdMC + dAL + dLD

where λ is a scaling coefficient that is used to weigh the
method call distance higher than the other distances. The
value of λ must be chosen to be higher than the greatest
possible value for dAL. Note that in the case that explicit
exceptions are programmatically thrown in the code of the
class under test, the throwing statements also become test
goals for which test cases are sought.

6. EXPERIMENTS
In this section, we first describe our test environment in

short. Afterwards, we present the results of experiments
with 4 test objects that demonstrate the efficacy of the ap-
proach.

6.1 Test Environment
We implemented our approach with the help of two evo-

lutionary frameworks: we used ECJ (evolutionary computa-
tion in Java) provided by Luke [15, 6] for the generation of
the method call trees (L1 optimization), and the GEATbx
(genetic and evolutionary algorithms toolbox) provided by
Pohlheim [3] for parameter object assignment and numeric
parameter optimization (L2 optimization). For parsing and
instrumenting the Java source code, we employed the Open-
Java system provided by Tatsubori et al. [10].

For the experiments, the GP system ECJ was configured
as follows: population: 1 subpopulation, 10 individuals;
initialization: half/full; selection: tournament; recombina-
tion: subtree crossover; mutation: demotion and promotion
[2], point mutation; termination: at least after 10 gener-
ations. For L2 optimization, GEATbx was configured as
follows: population: 4 subpopulations, 10 individuals each;
initialization: random values; selection: stochastic universal
sampling; recombination: discrete recombination; mutation:
real mutation; reinsertion: elitest with generation gap 0.9;
termination: if average best fitness over 15 generations does
not improve or after 50 generations. While the settings for
GEATbx are based on experience with parameter optimiza-
tion, the settings for ECJ are rather arbitrary.

6.2 Test Objects and Experimental Results
We carried out 4 preliminary experiments in order to val-

idate our approach. Of course, much more experimenta-
tion is necessary for a comprehensive validation. Table 2
show the test objects we used and summarizes their com-
plexity characteristics. The last two columns show the re-
sults of the experiments averaged over five runs. Stack

and BitSet are taken from the java.util package (JDK
1.3), BoolStack and ObjectVector are taken from package
org.apache.xml.utils which is part of Xalan 2.7.0. The
selection of the classes focused on different complexity is-
sues. Column LOC shows the lines of code, column Max
CYC shows McCabe’s cyclomatic complexity of the most
complex method, column #M shows the number of meth-
ods, column #T shows the number of targets (branches)
which must be covered by test cases, column Cov. shows the
achieved degree of branch coverage, and column Exe. shows
the number of test program generated during the search.
Full coverage was achieved for all of the test objects. The

1931

Test Object LOC CYC #M #T Cov. Exe.
Stack 142 2 6 10 100% 2671
BitSet 569 11 13 73 100% 5127
BoolStack 200 2 13 16 100% 9393
ObjectVector 429 4 21 52 100% 14330

Table 2: test objects

results are promising and encourage further research and
more continuative experimentation.

7. CONCLUSION AND FUTURE WORK
This paper described an approach to automatically gener-

ating test cases for structure-oriented unit testing of object-
oriented software. Strongly-typed genetic programming was
employed for the generation of method call sequences which
form the basis of the test cases. Feasibility of the method
call sequences is preserved throughout the search process.
No fixing of individuals after having applied genetic opera-
tors or the use of penalty functions when calculating the fit-
ness is required as it is with previous approaches in this area.
We described how to define the function set and the type set
of an STGP algorithm: the function set was derived from
the signatures of the methods of the test cluster classes; the
type set was derived from the inheritance relations of the
test cluster classes. We used set-based typing in order to
realize polymorphism. Our distance-based fitness function
rates the test programs according to their distance to the
given test goal. Thereby, it takes runtime exceptions into
account. In first experiments, the approach proved success-
ful and produced test cases leading to full branch coverage
for four test objects completely automatically.

Further research needs to examine and improve the local
distance functions for predicates which are specific to oject-
orientation, such as object address comparisons or type checks.
Another item for future work is the coverage of test goals
which explicitely require a runtime exception to be raised
without stopping method call sequence execution. Addi-
tionally, it must be investigated how to cover non-public
methods by using solely the public interface of a class.

8. REFERENCES
[1] W. Banzhaf, P. Nordin, R. E. Keller, and F. D.

Francone. Genetic Programming – An Introduction.
Morgan Kaufmann Publishers, San Francisco, CA,
USA, 1998.

[2] K. Chellapilla. A preliminary investigation into
evolving modular programs without subtree crossover.
In Genetic Programming 1998: Proceedings of the
Third Annual Conference, pages 23–31, 1998.

[3] Genetic and Evolutionary Algorithm Toolbox for use
with Matlab. http://www.geatbx.com.

[4] T. D. Haynes, D. A. Schoenefeld, and R. L.
Wainwright. Type inheritance in strongly typed
genetic programming. In Advances in Genetic
Programming 2, pages 359–376. MIT Press,
Cambridge, MA, USA, 1996.

[5] X. Liu, B. Wang, and H. Liu. Evolutionary search in
the context of object-oriented programs. In MIC2005:
The Sixth Metaheuristics International Conference,
September 2005.

[6] S. Luke. Issues in Scaling Genetic Programming:
Breeding Strategies, Tree Generation, and Code Bloat.
PhD thesis, Department of Computer Science,
University of Maryland, College Park, Maryland, 2000.

[7] P. McMinn. Search-based test data generation: A
survey. Journal on Software Testing, Verification and
Reliability, 14(2):105–156, June 2004.

[8] D. J. Montana. Strongly typed genetic programming.
Evolutionary Computation, 3(2):199–230, 1995.

[9] H. Sthamer, J. Wegener, and A. Baresel. Using
evolutionary testing to improve efficiency and quality
in software testing. In Proceedings of the 2nd
Asia-Pacific Conference on Software Testing Analysis
and Review (AsiaSTAR), July 2002. 22-24th July.

[10] M. Tatsubori, S. Chiba, M. Killijian, and K. Itano.
OpenJava: A class-based macro system for Java.
Lecture Notes in Computer Science 1826, Reflection
and Software Engineering, pages 117–133, 2000.

[11] P. Tonella. Evolutionary testing of classes. In ISSTA
’04: Proceedings of the 2004 ACM SIGSOFT
international symposium on Software testing and
analysis, pages 119–128, New York, NY, USA, 2004.
ACM Press.

[12] S. Wappler and F. Lammermann. Using evolutionary
algorithms for the unit testing of object-oriented
software. In GECCO ’05: Proceedings of the 2005
conference on Genetic and evolutionary computation,
pages 1053–1060, New York, NY, USA, 2005. ACM
Press.

[13] S. Wappler and J. Wegener. Evolutionary testing of
object-oriented software using a hybrid evolutionary
algorithm. In Proceedings of the Congress on
Evolutionary Computation (CEC-2006), Vancouver,
Canada, July 2006. IEEE Press. (to appear).

[14] J. Wegener, A. Baresel, and H. Sthamer. Evolutionary
test environment for automatic structural testing.
Information and Software Technology, 43(1):841–854,
2001.

[15] G. C. Wilson, A. McIntyre, and M. I. Heywood.
Resource review: Three open source systems for
evolving programs - lilgp, ecj and grammatical
evolution. Genetic Programming and Evolvable
Machines, 5(1):103–105, 2004.

[16] T. Yu. Polymorphism and genetic programming. In
Genetic Programming, Proceedings of EuroGP’2001,
volume 2038, pages 218–233. Springer-Verlag, 2001.

1932

