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Abstract—Compromised sensor nodes may collude to segregate
a specific region of the sensor network preventing event reporting
packets in this region from reaching the basestation. Additionally,
they can cause skepticism over all data collected. Identifying
and segregating such compromised nodes while identifying the
type of attack with a certain confidence is critical to the smooth
functioning of a sensor network. Existing work specializes in
preventing or identifying specific type of attack and lacks a
unified architecture to identify multiple attack types. Camouflage
Event Based Malicious Node Detection Architecture (CENDA) is
a proactive architecture that uses camouflage events generated
by mobile-nodes to detect malicious nodes while identifying the
type of attack. We exploit the spatial and temporal information
of camouflage event while analyzing the packets to identify
malicious activity. We simulated CENDA to compare its per-
formance with other techniques that provide protection against
individual attack types and the results show marked improvement
in malicious node detection while having significantly less false
positives. Moreover, CENDA is able to identify the type of
malicious activity and is flexible to be configured to include other
attack types in future.

I. INTRODUCTION

Sensor network finds application in different disciplines

ranging from academic research to practical on field military

interests. Provided the vast scope, securing a sensor network is

critical given the deployment scenario wherein the nodes may

be left unattended over long durations of time. The sensor

network can be under attack from different types of adver-

saries, some intentional adversary like a malicious user and

some unintentional adversary like environmental conditions.

In this paper we look at collaborative adversaries whose

goal is to segregate part of the network in order to prevent

event reporting by either dropping the packet or corrupting

it. Also, if the events are sporadic, the basestation will not

be able to differentiate between non-occurrence of event

and non-report of an event due to malicious activity. This

is important if you consider military applications such as

detecting heavy artillery movement. There have been a lot of

studies to protect the sensor network from different kinds of

adversaries trying to launch varied types of attacks. Protocols

like TinySec [1], SPIN [2], TinyPK [3], SERP [4] have been

developed to provide security and maintain integrity of the

communication data. Pirzada et al. [5] use a trust model like

a reputation scheme to identify the sinkholes and wormholes

in the network. In this scheme, they guarantee that the packet
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reaches the basestation using a trusted path, but do not detect

the malicious nodes in network.

The research so far have provided solutions which work in

an inside-out fashion, i.e. the onus of identifying such mal-

intent is left to the sensor nodes. There have been numerous

reputation based systems [6] [7] [8], which use this method-

ology attempting to solve the problem of intrusion detection

and mal-behavior of sensor node. In [9], Ngai et al. provide a

scheme to analyze packets to detect the intruder. The existing

approaches tend to prevent a specific attack type. Even an IDS

looks at identifying an intrusion without pinpointing the type

of attack. What is lacking is a proactive architecture that can

detect a malicious attack while also being able to identify the

type of attack.

The threat model considered is a collaborative attack to

segregate a region so as to disallow event packets in this region

from reaching the basestation. The adversary is a laptop class

attacker which can perform four attack types, namely sinkhole

attack, selective forwarding, wormhole and sybil attack to

achieve the same.

In this paper we look at solving the problem in an outside-

in fashion in which the onus of identifying the mal-intent of

a sensor node is left to the basestation. We present Cam-

ouflage Event Based Malicious Node detection Architecture

(CENDA), a multiphase proactive architecture in which the

basestation exploits the spatial and temporal information of

the camouflage event to detect the malicious node.

A camouflage event is a reputable event generated in

response to a basestation request. A simple solution is for

the basestation initiating a camouflage event from the node by

sending a message, but a powerful adversary can overhear the

communication and allow such event packets. The camouflage

event generator is a mobile-node which can be mounted

on robot or an unmanned aerial vehicle. This mobile-node

traverses the path decided by the basestation and generates

the camouflage events at regulated intervals of time. These

events are called camouflage events since they mimic the

real events, but are not real events in the true sense. The

nodes which are currently sensing and are in the sensing

range of the camouflage event location will detect the event

and report back to the basestation. We provide a lightweight

address encoding scheme wherein each node encodes the

relative address of the node from which it received the packet.

Additionally, each node also maintains the information about

the overheard packet transmissions by the neighbors. To cater

to memory constraints we use a variation of the bloom-filter
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[10] based information storage system. This information is

used for verification while branding a node as malicious. We

also identify the type of attack and currently can classify this

to four attack types. In future it can be expanded to include

identification of other attack types.

We simulated CENDA to compare its performance with [11]

[9] that provide protection against individual attack types and

is seen to show marked improvement in malicious node detec-

tion while having significantly less false positives. Moreover,

CENDA is able to identify the type of malicious activity and is

flexible enough to be configured to include other attack types.

The paper is organized as follows. We discuss our classifi-

cation of nodes and definition of metrics in Section II. Threat

model is presented in Section III. As part of the architecture,

we design the mobile route for the camouflage event generator

in Section IV. Then we present the security architecture in

Section V. Finally we present the simulation results in Section

VI, followed by the conclusions in Section VII.

II. NODE CLASSIFICATION AND METRICS DEFINITION

Let n be the number of nodes and fi is the count of the

number of nodes for which node i forwards the packet. This

parameter fi is the Forwarding Number of node i. fmean is

the mean of the forwarding number of all nodes. At network

initialization, the forwarding number of a node is set to be

inversely proportional to its distance from the basestation.

fmean =
∑n
i=1

(fi/n)

The nodes are classified as follows:

1) Regular nodes: Nodes which forward packets for two or

less nodes including itself.
Regular Nodes = {ni} ∀ i where fi ≤ 2

2) Routing nodes: Routing nodes forward packets for

greater than two nodes but less than the fmean.
Routing Nodes = {ni} ∀ i where 2 < fi < fmean

3) Backbone nodes: These are the nodes which forward

packets for greater than or equal to fmean.
Backbone Nodes = {ni} ∀ i where fi ≥ fmean

Critical Index (CI) is a per node metric, which is the

availability of sensor coverage over an area. The sensing area

is divided into m unit regions. Each node i senses over a set

of unit areas called Sensing Area. Ui is a set of unit area’s

over which node i has sensing coverage. Each unit area will

be monitored by a set of nodes called Sensing Nodes repre-

sented as Ca where a is the unit areaid. Ca is a set of node’s

which sense over the unit area a. The Coverage Inheritance
of a node i is defined as the average of Ca where area a
belongs to the set Ui.

Coverage Inheritencei =
∑
a Ca
|Ui|

Where a ∈ Ui

We compute the Critical Index of a node based on the

Forwarding Number and the Coverage Inheritance of

the node. The Critical Index of the node is represented as

follows:

CIi = α ∗ fi + β ∗ 1
Coverage Inheritencei

+ γbi

where α, β and γ are constant coefficients, bi is a boolean

variable identifying if node i is a cut-vertex. If a node is a cut-

vertex, then the importance of the node increases manifold, as

the loss of this node can partition the network and make some

nodes unable to reach the basestation.

III. THREAT MODEL

The adversary is a laptop class attacker and on capturing

a node, it has access to everything on the node. Also, the

malicious entity would want to capture the nodes such that

the minimum number of node captures result in the maximum

damage. Being a more powerful node, it is reasonable to

assume that the malicious entity can overhear communication

over a larger area compared to the sensor node and can make

informed decisions about the nodes it wants to attack. The

malicious entity captures a node and does one or more of the

following types of attacks: Sinkhole attack, Wormhole attack,

Sybil attack or Selective Forwarding attack.

The goal of the attacker is to segregate a region such that

event packets do not get reported from the region. The attacker

may allow other communication. Let x1, x2, ..., xn be the set

of n nodes. The goal of the threat model is to increase the value

of Cumulative Attack, where cumulative attack is defined

as follows:

Cumulative Attack =
∑
Cp

|p|
Where Cp − critical index of node p

The adversary wants to compromise a node and perform

attack from the list above in order to achieve the goal of

region segregation. The attacks can be composite in nature

i.e. multiple different types of attacks simultaneously.

IV. MOBILE-NODE ROUTE DESIGN

The mobile node in our scheme is the camouflage event

generator. The route followed by this node governs the location

and time of the camouflage event which in turn determines the

nodes that will detect this event. The design of an optimized

mobile node route is critical due to the following reasons:

1) A poorly designed mobile node route can cost the

network dearly in the form of event detection by unwar-

ranted nodes and having the network flooded by these

packets. This consumes energy which is a limiting factor

in sensor nodes.

2) The second reason is the wastage in time and energy of

the mobile node to follow a non-prime path.

This section introduces the design decisions in the route to

be followed by the mobile node and provides an algorithm for

the same. It includes a preliminary step of selecting the nodes

that needs to be observed.

A. Node Selection

Simulation results indicated that it is costly to protect all

the nodes. Under attack, we need to be able to identify and

protect the nodes which are critical to the network functioning.

Hence in this step we prioritize the nodes based on their

role/importance. This importance is dictated by different fac-

tors like location, power etc. Based on the classifications and

definitions in section II, we want to select a subset of nodes

such that they satisfy the following requirements.

1) Step 1: Includes all nodes with critical index of τ .

2) Step 2: Include nodes such that we have at least a unit

coverage over the maximum possible area.

B. Route Design

M is the mobile route, L1, L2..., Ln are the locations on

route M where the event generation occur and n is the number

of stops in a mobile route. Let X be the set of all nodes and
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Algorithm 4.1 Node Selection

{CovArea} ⇐ Cm, {CN} ⇐ φ, Xn = {Nodes}
for all xi ∈ Xn and CIi > τ do

{CN} ⇐ {CN} + xi
{CovArea} ⇐ {CovArea} − Ui

end for

while {CovArea} 6= {φ} do

MCN ⇐ xi where (((xi ∈ Xn) and (xi /∈ CN ))

and xi = (max(Un − {CovArea})))

{CovArea} = {CovArea} − Ui
{CN} = {CN} +MCN

end while

return {CN}

{CN} be the set of nodes to be observed. If we know the

routing paths of the packets, we find the subset of nodes in X
which should detect the event such that all nodes in CN either

detect the event or are on the routing path of node detecting

the event. Let this subset of nodes which detect the event be

the set of privileged node represented by Xp. If we do not

know the routing paths of the packets, then the set CN is the

set of privileged node represented as Xp.

Goal: Find set of locations Ln in the field such that all

nodes in Xp are at a distance of sensing range or less from at

least one location in Ln. This is presented in Algorithm 4.2.

Algorithm 4.2 Camouflage Event Location Selection

Li ⇐ {φ}
while ({Xp} 6= {φ}) do

for all Am /∈ {Li} do

SenseCovm ⇐ Count(Distance(Xp, Am) ≤ τ)
end for

MaxCovArea = Max(SenseCovm)
{Li} = {Li} +MaxCovArea
{Xp} = {Xp} − {Node Xi Sensing MaxCovArea}

end while

In the event of having multiple mobile vehicles, the set Xp is

geographically partitioned into the number of mobile vehicles

available and the mobile route can be planned for each of

the partitions independently. The next step is to calculate the

shortest path to cover the locations in set Li. This is formulated

similar to the traditional ‘Traveling Salesman Problem’ but

with an optimization exception to allow the mobile node to

revisit any prior visited location. For this a simulated annealing

approach is used to find the shortest route.
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Fig. 1. Mobile Route

C. Mobile Route Representation

A mobile route is a directed graph, defined as a 2-tuple

(L, T ) where L is a set of locations and T is a set of time of

event occurrences. Figure 1 demonstrates a scenario containing

twelve sensor nodes and one mobile node. The mobile node

moves to location L1 and generates the event at time T1. Then

it moves to location L2 followed by to location L3 and L4

while generating the camouflage events at times T2, T3 and

T4 respectively. Let v be the speed of the mobile vehicle. The

mobile route is represented as follows:

M = (L, T ) Where ∀i, Li ∈ Am , Ti+1 > Ti, Ti+1 − Ti ≥
Li+1−Li

v

V. SECURE ARCHITECTURE

The secure architecture is a standalone module, which

consists of the following steps:

A. Camouflage Events

The events generated by the mobile nodes are called camou-

flage events. With regards to the base station, the camouflage

events possess some distinct properties which are not charac-

teristic of real world events. These properties are as follows:

1) The base station is aware of the location of the event

occurrence (L).

2) The base station knows the precise time of the occur-

rence of the event at each location (T).

3) With the knowledge of the location and time of event

occurrence, the base station knows the set of sensor

nodes that detect the event (SN).

The camouflage event is represented as (L, T, SN). For a

particular location the active nodes can vary if the nodes are

following a sleep cycle, hence at different times the set SN
can differ for the same location.

The mobile node starts the route designed by the base

station. While traversing the path, it stops at the designated lo-

cation and generates the camouflage event. The nodes sensing

the event, respond back to the base station. The sensor nodes

cannot differentiate this event from an actual event and hence

it is handled like a real world event. We need to emphasize this

because event type anonymity is crucial to this methodology.

If a malicious node can differentiate this event from a real

world event, then it can treat just these events like a well-

behaved node to escape detection. In CENDA, the onus of

detecting malicious behavior is on the basestation. The sensor

nodes only need to record overheard packet transmissions by

the neighbors.

The base station collects all the packets that were generated

and have traversed through the network. For each packet

received by the base station in response to a camouflage event,

we have two types of nodes involved. The event notifier node

which reports the occurrence of the event and the intermediate

nodes through which the packet traversed to reach the base

station. At a higher level every packet received by the base

station provides one bit information about each of the nodes

involved in the delivery of the packet.

Depending on routing, there are two distinct cases that we

consider. One in which the packet follows the same path for

a set period of time. In this case the basestation is aware of

the path the packet traverses. In the second case, instead of

following a particular route, the packet follows geographical

routing. For the basestation to know the path traversed by

the packet, the intermediate nodes need to append additional

information. In the absence of this additional information

the basestation can only make an educated guess about the

intermediate nodes using the knowledge of the location of the

nodes and their sleep cycles.
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B. Embedding Route Information

In the absence of fixed route, we device a scheme in which

the nodes append the route information to the packet before

transmitting over the next hop. This address information being

attached to the packet can be of two types.

1) Absolute address: In this case the node appends the

absolute address of the neighbor from which it received

the packet. The drawback of this scheme is the amount

of space it takes to represent the absolute node address.

2) Relative address: We take advantage of the knowledge

of the node distribution by the basestation and present a

scheme in which the nodes appends the relative address

of the neighbor node from which it received the packet.

Absolute address is suited, if the number of nodes is few,

resulting in shorter address. But the number of nodes in the

network can be large, making the absolute address of the

nodes longer. The length of the relative address is dictated

by the number of neighboring nodes. To analyze the overhead

disparity between the absolute address and relative addresses,

we ran simulations to study the distribution of the nodes based

on the following parameters- number of nodes, area of field,

type of distribution. The type of distribution can be uniform

or non-uniform. If the distribution is non-uniform, for densely

distributed areas, the nodes are programmed such that only a

set of nodes are active at a point of time. Table I displays

TABLE I
NODE DISTRIBUTION

Node Area(m2) Average Hops AAL∗ RALψ

512 1000 X 1000 8 72 32

1000 1000 X 1000 8 80 34

2000 1000 X 1000 7 77 38

3000 1000 X 1000 7 84 38

* Absolute Address Length (bits)

ψ - Relative Address Length (bits)

the comparison between the absolute address length and the

relative address length for different area sizes and different

node densities. The absolute address length is calculated as

the average number of hops multiplied by the number of bits

needed to represent the absolute address.
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Fig. 2. Relative Neighbor Address

1) Relative neighbor address: The address and representa-

tion of the neighbor A for node B is based on two factors.

The absolute nodeid of A and the number of neighbors of

node B. Each node maintains a table with two fields namely,

the nodeid and the relative address. The relative address are

assigned in the increasing order of neighbors nodeid. In Figure

2, the relative address of neighbor nodes for node B is listed

in table. We see that the relative address can be represented

using four bits while the absolute address can require up to

seven bits.

2) Encoding the path address: When a node receives a

packet it appends the relative address of the node from which

it received the packet and encrypts it after appending the

relative address before forwarding it over the next hop. If

node n received the packet from node m. The encryption is

represented as follows:

[Address||RAm|n]PKn Where A||B − Append B to A

RAm|n − Relative address of m w.r.t n

In Figure 3, the event is detected by node 35 and it is

transmitted to the basestation via nodes 23, 27, 32.
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Fig. 3. Address Encoding

Table in Figure 3 lists the relative address for the three nodes

receiving the packet. Each node before forwarding the packet

over the next hop, encodes the relative address information in

the packet as follows. Node 23 will encode the relative address

of node 35 which is 4 before transmitting to node 27. Node 27
will encode the relative address of node 23 which is 3 before

forwarding the packet to node 32 and so forth.

[Addr]PK35

↓
[[Addr]PK35

||100]PK23
↓

[[[Addr]PK35
||100]PK23

||11]PK
27

↓
[[[[Addr]PK35

||100]PK23
||11]PK

27
||01]PK

32

3) Decoding the path address: When the basestation re-

ceives the packet, it knows the sender of the last hop of the

packet. In the example in Figure 3, the last hop forwarder

being node 32. The basestation also knows the neighbors of

node 32. On decoding the packet using the key specific to

node 32, the basestation knows the relative address of the node

which forwarded the packet to node 32. Looking up the table,

the basestation identifies that the packet was received from

node 27. Recursively, the basestation can trace the complete

path back to the sender. This is represented as follows:

[EncryptedAddress]PK32
=⇒ [EncryptedAddress1 || 01]
↓

[EncryptedAddress1]PK27
=⇒ [EncryptedAddress2 || 11]
↓

[EncryptedAddress2]PK23
=⇒ [EncryptedAddress3 || 100]
↓

Node35

C. Packet Meta-analysis

Let Xi be the set of packets that are generated as a result

of a camouflage event. Let Ri be the set of packets that were

received by the basestation and Li is the set of packets that

were not received.

Ri ⊆ Xi, Li ⊆ Xi, Ri + Li = Xi
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The basestation maintains records of characteristics for the

different attack types for each node. This record consists of

a set of parameters which are updated by the basestation

whenever a packet is generated for a camouflage event. As

a packet is received or not-received, the record for the nodes

gets updated accordingly.

The neighbors of each node are classified as either down-

stream neighbor or upstream neighbor. A neighbor node which

helps propagate the packet towards the basestation is a down-

stream node and the nodes in the neighborhood which are not

downstream nodes are upstream nodes. It must be noted that, a

node which is farther away from the basestation as compared

to the neighbor node can be a downstream node.

We maintain a set of four parameters for each node; packets

generated, packets received, packets lost, packets garbled.

Packets generated is a parameter which keeps track of the

packets generated by the node in response to the camouflage

event. Packet received is a parameter of the node which tally’s

the number of packets successfully received when the node

was either the source of the packet or an intermediate node

forwarding the packet. Packet lost parameter of a node tracks

the packets that were lost and is statistically determined to

see what path the packet should have taken to reach the

basestation. Using this information, the intermediate nodes are

also marked for the packet lost. The packet garbled parameter

tracks the number of packets which were successfully received,

but cannot be traced back to the source.

1) Packets Received: These are the packets which are

received by the basestation in response to a camouflage event.

We calculate the hop count and the total time elapsed between

the camouflage event and the time of reception of the packet.

This is possible because we have the temporal information

about the occurrence of the event. The basestation checks if the

number of hops and the time of delivery is within the deviance

limits for the particular node. If either of the two parameters

lie beyond the threshold limits, we do a path analysis.

If the number of hops is within the limits (called Hop-

Validity) and if the time elapsed is also within deviance (Time-

Validity), we mark the nodes packet received parameter. If

either of hop-validity or time-validity fails, we do a path

analysis for the packet. The first step in path analysis is to

do a traceback to the source. Under certain circumstances like

a wormhole attack, we will not successfully traceback to the

source. If the traceback is successful, we perform a per-hop

analysis for the packet received. In a per-hop analysis, we

consider each pair of consecutive intermediate nodes and see

if they adhere to the upstream-downstream requirement.

Let Pi be the packet sent by node Ns to report an event E.

m is the number of hops and t is the time taken by the packet

to reach the basestation. he and te are normalized expected

number of hops and time.

Hop V alidityi = m−he
he

Time V alidityi = t−te
te

If either of the two validity fails, we trace the packet back

to the source based on the encoded relative addresses. If trace

back to the source is successful, for each hop of the packet, let

node xt be the transmitter and node xr be the receiver of the

packet. Check if node xr is a downstream neighbor of node

xt. If it is not we mark node xt. If the traceback fails, mark

the packet garbled parameter similar to the way the packet lost

parameter is marked. This is presented in algorithm 5.1.

Algorithm 5.1 Node Marking

N → all nodes, Ri → received packets
Li → lost packets, xn → nodes on path of packet Pn

Require: Pi ∈ Ri
if ((HopV alidityi) || (TimeV alidityi)) fails then

Initiate Source Traceback

while (ni 6= Ns) || (TracebackAdd! = φ) do

p = NumNeighbors(ni)
RelAddLen = sizeofbitlength(binary(p))
RelAdd = RelAddLength LSB of TracebackAdd
ni = Lookup → RelAdd(ni)
TracebackAdd = TracebackAdd− RelAdd

end while

if Source Traceback == SUCCESS then

for all (Node n ∈ xn) do

if n ∈ path of Pi then

if xr is downstream neighbor of xt then

xt → SuspectNode
end if

end if

end for

else

Intermediate Node Identification

(Node n ∈ xn) → Path of Pi
Mark PacketGarbled(n)

end if

end if

Require: Pi ∈ Li
Intermediate Node Identification

for all (Node n ∈ xn) → Path of Pi do

Mark PacketLost(n)
end for

Marked Node Analysis

for all (Node n ∈ N) do

if PktLost(n) ≥ 1 then

u ∈ UpstreamNeighbor(n)
if PktLost(n) >

∑
PktLost(u) then

n ⇒ suspectnode
end if

end if

if PktGarbled(n) ≥ 1 then

u ∈ UpstreamNeighbor(n)
if PktGarbled(n) >

∑
PktGarbled(u) then

n ⇒ suspectnode
end if

end if

end for

We populate the table over a period of time and perform

a short term analysis and a long term analysis. Each of these

analysis caters to a particular type of attack. The short term

analysis is needed to identify wormhole, sybil and sinkhole

attacks while a long term analysis is performed to identify a se-

lective forwarding attack. The long term analysis has sufficient

information that helps us to differentiate between the sinkhole

and selective forwarding attacks. Also, it helps us differentiate

between a dead node and a malicious node performing a

selective forwarding attack. The reasoning behind this is the

fact that to identify a selective forwarding attack, we need to

gather information over longer durations as compared to other

attack types.

2) Packets Lost: With the knowledge of the occurrence of

the events, the basestation expects a set of packets from a

group of nodes. If there is malicious activity, there may be

loss of packets. For each packet lost the basestation is able

to traceback the packet loss to within a subset of nodes. This

is depicted in Algorithm 5.1. To pinpoint the node which was

responsible for the packet loss from within the subset of nodes,

we have each node maintaining a simple but efficient data

structure which works on the principle of bloom filter and

stores overheard packet transmissions.

Each node maintains multiple counting bloom filters. These
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bloom filters are used to mark the overheard packet infor-

mation during different intervals of time. The basestation can

query the neighboring nodes to check if they overheard the

packet transmission by the node over a particular interval

of time. As for the response to the query, the architecture

provides two options. One, the queried node responds back

to the basestation with its bloom filter representation and the

basestation processes it to decipher the information. In the

second case, the node processes the bloom filter data and

replies back with only the required information.

The two methods have their own advantages and disad-

vantages. In the first method where the sensor node returns

the entire bloom filter as a response, the basestation might

be saved from making repeated queries to the same node

about its different neighbors. Another significant advantage

of this method is the discreteness with regards to the node

under observation. The drawback is the increased packet size.

In the second method, the communication cost is less, but

the basestation will need to query the node about a specific

neighbor and cannot be discrete like in the first method. Hence

there is loss of anonymity and it can be qualifying factor in

certain military applications.

Bloom Filter implementation: Each node has multiple

counting bloom filter. The nodes overhear the packet trans-

missions of their neighbors and mark information into the

counting bloom filter using the relative address of the neighbor.

The number of bloom filters maintained by each node will

decide the granularity of the information stored. For example,

information maintained in a single bloom filter over a period of

time t will give us less accurate description of events compared

to 10 bloom filters maintained by the node for each of t/10
time intervals.

D. Attack Fingerprinting

Different attack types possess some distinct characteristics

and based on the detection model, these characteristics can

be represented as a blueprint to identify the attack. In this

section we model the attacks based on the these characteristics

possessed by each attack type.

Sybil attack: The basis of sybil attack depends on two

factors- The ease of acquiring different identities and the

amount of damage a node can inflict by acquiring the identity.

The second factor about the amount of damage is prevalent in

systems with peer-managed reputation systems. In our system

which is based on the nodes response to the real-world-like

camouflage events, a node will not be able to tarnish the

reputation of another node since the neighborhood of the nodes

is set and the peers are not required to maintain reputation.

Consider the scenario in which a group of nodes collaborate

with malicious intent, they still will be identified by the

outermost ring of malicious node’s neighbors. The control of

managing the reputation lies with the basestation.

Let it be feasible for the node to assume different identities.

Since, the neighborhood for each node is set, it can only

assume an identity of a node within the neighborhood. There

will be two or more nodes with the same identity in the

neighborhood. In this scenario, the node assuming the identity

is the attacker and the node whose identity is assumed is the

victim. When a packet is received, the attacker can choose to

forward the packet or drop the packet with the victims identity.

Dropping the packet does not do any damage. Suppose the

packet is forwarded by the attacker node posing as the victim.

The node has to encrypt the packet with the unique private key

of the victim node while including the information about the

relative address of the node from which it received the packet.

The malicious node can choose to forward the packet after

appending garbage or without modifying the packet and the

intermediate nodes will not be able to deduce that the packet

is corrupted. The basestation on receiving the packet initiates

the traceback process and will not be able to trace the path

back to the originating node since all the relevant information

is not included in the packet. In our methodology, the sybil

attack possesses characteristics similar to wormhole attack in

which case, the non-verification of the traceback path to the

originating node indicates the presence of malicious activity.

Sinkhole attack: This attack can be easily launched by a

node by indicating a low cost path availability through it

and then dropping the packets. In sinkhole attacks, the node

advertises a low cost path to the basestation and may or may

not evince itself to be within the neighborhood of a larger

number of nodes than it actually is. The basestation knows

the location and neighborhood information of all the nodes

and can track the loss of packets to within a few hops of this

malicious node. This attack type can be identified by analyzing

the packets lost and then verified by querying the the bloom

filters of neighborhood nodes in the identified region.

s

1

2

43

6

5

Worm Hole

BS

Fig. 4. Wormhole

Wormhole attack: We described earlier about how the

intermediate node cannot thwart being identified in case of

wormhole attacks. Successfully tracing back to the source

under wormhole attack: Consider the scenario in Figure 4

wherein the source node s sends packet to the basestation.

The nodes 3 and 4 collaborate to launch a wormhole attack.

In this case, the node 4 will fake a relative address of a

neighbor before forwarding the packet since it cannot specify

that it received the packet from node 3. For the basestation

to be able to traceback to the source, it needs to satisfy

the following. There needs to exist a valid path from node

4 to source with n + 1 number of hops where n is the

number of hops from node 3 to the source. Let there exist

a path P satisfying this condition. Next, it needs to satisfy

the per-hop condition such that relative addresses encoded

in the packet from source to node 3 using the private keys

of the intermediate nodes matches that of a new path from

node 4 to the source increases exponentially with each hop.

Also, the effectiveness of a wormhole attack depends on how

farther away the traffic is re-routed in the network, thereby

increasing the resource consumption in the network. If it needs

to satisfy the first condition i.e. to maintain the hop count, then

the collaborating attacking nodes within the network cannot
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Fig. 5. Sinkhole Detection Rate
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Fig. 6. Sinkhole False Positive
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Fig. 7. Sinkhole False Negative
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Fig. 8. Selective Forwarding Detec-
tion Rate

reroute the packet across large distances. This requirement

defeats the purpose of launching a wormhole attack.

The final goal of the basestation is to identify the malicious

node irrespective of the type of attack. Identifying the type

of attack helps the basestation to garner further information

about the colluding accomplices in the attack. In the case of a

wormhole attack, there needs to be at least two collaborating

nodes or else in the case of Sybil attack, there can be one or

more compromised nodes.

VI. SIMULATION RESULTS

The simulations were performed over an area of 500x500m,

having 125 nodes. There were three varying factors in the

attacks. The number of malicious (compromised) nodes was

varied as 5% 10%, 15%, 20%. The compromised nodes were

randomly selected but the critical nodes were given a higher

priority to be under attack considering a worst-case scenario

with a sophisticated attacker. Secondly, the attack type of the

compromised nodes were again randomly assigned. The base

station gathered data over multiple runs.

The first set of simulations consisted of all the malicious

nodes launching the same type of attack. Figure 5 depicts the

detection success, when all the malicious nodes are performing

sinkhole attack. Even though when the success rate of identify-

ing the malicious node was not 100%, the subset of malicious

node which are critical were identified accurately. There are

two reasons for this, the critical nodes have connectivity to the

basestation and the camouflage events are generated to cover

the critical nodes.

The false positive rate when only considering the critical

nodes is slightly higher as compared to the false positive rate

when the entire set of malicious nodes was considered. Again,

as the number of malicious nodes increased we saw an increase

in the false positive rate. This is because we aggressively mark

a node as a suspect node to get lesser false negatives, with

assurance that the verification discards the false positives as

depicted in Figure 6. The false negative rate when considering

the critical nodes was much lower compared to the false

negative rates of the whole malicious nodes set (Figure 7).

The next set of results comprise the malicious nodes all

performing selective forwarding attack. We present the results

when the nodes randomly dropped 30% of the packets. It was

seen that this drop percentage affected the number of rounds

of the camouflage event generator needed to make, to get

accurate results. Lower the drop percentage, higher was the

number of rounds needed by the mobile-node, but again lower

drop percentage means a less severe attack. The results are

presented in Figures 8, 9, 10 and are very similar to sinkhole.

Unlike in sinkhole, the analysis to detect selective forwarding

attack is performed over 5 rounds by the mobile-node. In other

words, it was slower to catch a malicious node performing

selective forwarding attack.

Figures 11, 12, 13 represents the detection success, false

positives and false negatives detected for the network under

sybil attack. We assumed that at a point in time, a node can

acquire the identity of another node, but does not have access

to cryptographic information of the node.

In the next simulation, all randomly selected malicious

nodes launch a wormhole attack. A wormhole attack is dif-

ferent from other attacks due to the fact that a single attack

will have at least two colluding nodes. In the attack, randomly

selected nodes collude with each other and launch the attack

by directing the traffic to the other side of the network. The

results for the wormhole attack is presented in Figures 14,

15, 16. Under the circumstance when just one of the node is

directing traffic to another part of the network, the model had

difficulty identifying the other colluding node since it was only

directing traffic to the basestation and was not doing anything

malicious per se. This is depicted in Figure 17.

The next set of simulations involved malicious nodes having

equal distribution of all the four attack types. The results

for the same are shown in Figures 18, 19, 20. In short term

analysis, i.e. when analyzing each round of camouflage event

packets, it was difficult to differentiate the sinkhole attack from

selective forwarding. Analyzing the camouflage packets over

multiple rounds produced sufficient information to demarcate

the same. The results provided in Figures 18, 19, 20 are for

five rounds of camouflage events.

The performance of CENDA is compared with the results

from CHEMAS by Xiao et al. [11] and with intruder detection

algorithm by Ngai et al. [9]. The simulation results indicate

that the performance is at par with the two methods while

having the advantage of being able to detect and differentiate

multiple attack types at the same time. The verification of

the packet transmissions from the neighbor node helps in

drastically reducing false positives in the case sinkhole and

selective forwarding attacks. Additionally, we can prevent re-

gion segregation malicious attacks. With regards to conserving

energy, based on the requirement or attack type anticipated,

the verification part of the system can be turned on/off. As a

by product, the system is able to detect any dead nodes due

to energy exhaustion or due to environmental conditions.

VII. CONCLUSIONS

CENDA is a proactive architecture to detect malicious nodes

in the sensor network. It can be used as a compliment to

an existing system and is controlled by the basestation. We

use a mobile-node based camouflage event generator scheme

854



5 10 15 20
0

20

40

60

80

100

Percentage Malicious Node

F
a
ls

e
 P

o
s
it
iv

e
 (

%
)

All Malicious Node
Critical Node

Fig. 9. Selective Forwarding False
Positive
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Fig. 10. Selective Forwarding False
Negative
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Fig. 11. Sybil False Positive
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Fig. 12. Sybil False Negative
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Fig. 13. Sybil Detection Rate
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Fig. 14. Wormhole Detection Rate
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Fig. 15. Wormhole False Positive
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Fig. 16. Wormhole False Negative
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Fig. 17. Wormhole Detection 1 of
2 Nodes
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Fig. 18. All Attacks Detection Rate
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Fig. 19. All Attacks False Positive
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Fig. 20. All Attacks False Negative

to overcome the problem of region segregation by malicious

nodes trying to prevent event reporting. This is important

in case of sporadic events wherein the basestation cannot

differentiate between non-occurrence and non-report of events.

The camouflage-event based malicious node detection system

uses a bloom-filter based verification procedure before labeling

a node malicious. We provide a node-classification scheme

based on the role/importance of the node in the network and

present a light weight path marking system using relative-

addresses to indicate the path traversed by the packet to reach

the basestation. The effectiveness of the system is examined

using simulations and the results demonstrate this. Compared

to an IDS system, we can not only detect an intrusion but

also identify the malicious nodes. Additionally, compared to

existing systems, which identify attacks of single type, we

can differentiate attack of four types and in future this can be

further enhanced to identify other attack types as well.
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