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Abstract

Applications for Wireless Sensor Networks may be de-
composed into the deployment of tasks on different sensor
nodes in the network. Task allocation algorithms assign
these tasks to specific sensor nodes in the network for
execution. Given the resource-constrained and distributed
nature of Wireless Sensor Networks (WSNs), existing static
(offline) task scheduling may not be practical. Therefore
there is a need for an adaptive task allocation scheme that
accounts for the characteristics of the WSN environment
such as unexpected communication delay and node failure.
In this paper, we focus on task allocation in WSNs which is
performed with the aim of achieving a fair energy balance
amongst the sensor nodes while minimizing delay using a
market-based architecture. In this architecture, nodes are
modeled as sellers communicating a deployment price for
a task to the consumer. To address this task allocation
problem, proposed price formulation is used as it contin-
uously adapts to changes of the availabilities of resources.
This scheme also accommodates for the node failure during
task assignment. The Centralized and distributed message
exchanged mechanisms between the nodes (sellers) and task
allocator (consumer) are proposed to determine the winner
among the sellers with the goal of reducing overhead and
energy consumption. Simulation results show that, compared
with a static scheduling scheme with an objective in energy
balancing, the proposed scheme adapts to new environmen-
tal changes and uncertain network condition more dynam-
ically and achieves a much better performance on energy
balancing.

Index Terms

Energy-Balancing, Task Allocation, Price-Based Scheme,
Market Architecture, Wireless Sensor Networks.

1. Introduction

The deployment of advanced applications for wireless
sensor networks such as habitat monitoring to healthcare
applications [1] may be decomposed into the deployment
of tasks on different nodes in the network.

Due to the resource-constrained and distributed nature
of these systems, one of the fundamental challenges in
WSNs is to achieve a fair energy balance amongst nodes
to maximize the overall network lifetime through task
allocation [2], [3]. In addition to that situations such as
unpredicted propagation delay and node failure may occur
during task assignment. Static task allocation algorithms do
not address these issues. Thus, the design of an adaptive
task assignment scheme which considers available resources
at each epoch is of essential necessity. Existing work on
static task scheduling [2]–[5] achieves the energy balancing
objective by regulating the energy consumption via Dynamic
Voltage Scaling (DVS) [6]. DVS by decreasing the CPU
speed reduces computational energy consumption; however
this results in a longer schedule length. In work by Yu and
Prassana [3], a energy balance was achieved as given each
nodes available resource, each cluster of tasks are assigned to
the sensor nodes as a whole rather than adaptively allocating
the individual task at each epoch by considering resource
availability at that epoch.

Pricing schemes for task scheduling has emerged as a
promising solution to achieve a fair energy balancing result
amongst nodes as this technique adapts to changing condi-
tions [7], [8]. Load balancing and pricing has been recently
discussed in the literature [8] for grid computing. However,
the application of the pricing schemes to WSNs with con-
sideration for limited resources,is almost unexplored.

In this paper, a price-based online solution for task alloca-
tion is proposed, one which places emphasis on a fair energy
balance among nodes in order to maximize network lifetime.
The task allocation is modeled as a market architecture. The
components of the market architecture are explained in this
paper. The consumer is modeled as an auctioneer and the
sensor nodes represent the sellers in our scheme. When a
task is to be allocated, the consumer broadcasts information
about the tasks to the sellers. Each seller calculates its cost
based on proposed price formulation to achieve the energy
balancing objective and delay constrain in a form of “price”.
Nodes with higher prices are likely to have less remaining
energy in future, so the price of node can be adjusted to
influence decision making for task assignment to that node.
In the case of an unexpected situation such as node failure
during the task assignment, this scheme would run the
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Figure 1. Market Based Architecture for Task Allocation

dynamic recovery phase. while in [9] considers only the case
that node failure happens before task assignment phase and
generated an alternative schedule. In this paper two massage
exchange methods for winner determination in each round
has been introduced; centralized, distributed scheme. The
centralized method requires a larger overhead as each seller
sends its bid to the consumer. This issue is addressed with
the distributed method where each seller delays transmitting
its message in proportion to its bid. Hence, the winning node
is the first and only node to send its bid as the losing bids
are not communicated.

This proposed scheme is a scalable and adaptive dis-
tributed task allocation solution for WSN. This scheme is
scalable as it is independent of the number of available nodes
and will adapt if the number of nodes change. As allocation
is performed real-time, each node would adaptively react to
the changes in resource availability and utilize new available
resources at each time epoch so that it is adaptive.

The remainder of this paper is organized as follows.
Section 2 presents the market architecture. The contributions
of this paper, which are proposed price-base task assignment
and recovery algorithm is introduced in Section 3. Another
contribution of this paper, the message exchange mecha-
nisms are discussed in Section 4. Section 5 shows simulation
results and performance evaluation. The conclusion of this
paper is presented in Section 6.

2. Market-Based Architecture for Task Alloca-
tion

In this paper, the adaptive task allocation scheme is
modeled as a competitive market.The main goal is to find
the suitable resources (cheapest sellers) to do the consumer’s
arrival task with the goal of maximizing energy balancing
among the nodes. The market architecture [10] shown in
Figure 1, comprises of a Mission Manager, service chart,

consumers and sellers. When a new application is instanti-
ated in the network, the input of that is fed into the Mission
Manager. The components of this architecture are described:

Mission manager (MM): At the mission manager, the
application level tasks are decomposed into the low-level
tasks which can be comprehensible for the sensor nodes. The
low-level tasks sequences and dependencies are represented
by a direct acyclic graph (DAG). In a DAG graph, the
vertices represent low-level tasks and the edges represent the
precedence relationship between tasks. Another functionality
of MM is to list the tasks in the queue based on their Earliest
Start Time (EST) and Latest Start Time (LST). Should
concurrent tasks exist in the list, higher priority is assigned
to tasks with larger number successors on task graph. The
manager then allocates the various task responsibilities to
the consumers.

Consumer (auctioneer): The consumer acts as an auc-
tioneer. With each task arrival, the consumer communicates
the task message as < Task, TaskSize, TaskDeadline >
to the sellers. It also assigns the task to the winning seller.
Should there be more than one consumer, the mission
manager breaks the task graph and allocates the different
set of tasks to the consumers.

Seller: The sellers are the sensor nodes. When a task
message is received from the consumer, the nodes calculate
their cost for accomplishing current task based on their
current status of energy availabilities, communication cost,
task deadline and resource release time. This winning seller
is determined via different decision making schemes which
are explained in the section 4.

Service Chart: The service chart acts as a buffer and
maintains a history of the previous winning seller’s cost
information.

3. Task Allocation

This section presents our scheme for real-time task
scheduling with objective of energy balancing and delay
minimization. Our proposed task scheduling scheme which
comprises of three phases; the listing phase, the price-based
task assignment phase and recovery phase (in case of node
failure).

3.1. Listing Phase

The listing phase is based on work in [9], [11] and
computes the task sequence provided by the DAG graph
to obtain the earliest start time (EST) and the latest start
time (LST) of each task prior to starting the task assignment
phase. Given these values, these tasks are queued into a
list. The EST and LST for a task vi can be computed
recursively by traversing the DAG downward from entry

889



node and upward from exit node respectively as follows:

EST (vi) = maxvm∈pred(vi)EST (vm + ti) (1)
LST (vi) = minvm∈succ(vi) LST (vm − ti) (2)

where pred(vi) and succ(vi) are the set of immediate
predecessors and successors of vi respectively and ti is the
execution time of the task on sensor nodes. After the listing
phase, the task graph is sequentialized into a queue and ready
for the price-based task assignment phase. The tasks are
queued for assignment to sensor nodes based on the EST.
The LST is used as the task deadline for the assignment
phase. Unlike work in [9], the EST and LST computed
in this stage may be altered in the task assignment phase
and dynamically due to packet loss or communication delay.
Should there be tasks with concurrent EST, a higher priority
is assigned to the tasks with more successors in the task
graph.

3.2. Price-Based Task Assignment Phase

This assignment phase is performed in real-time. All the
tasks that were enqueued at previous phase is consequently
dequeued and allocated to the appropriate nodes based on
our priced-based scheme. The design objective of the price-
based adaptive task scheduling scheme is to allocate the
task in real-time with current availability of resources. The
pricing scheme would continuously adapt to changes of
availability of resources. Moreover, with this method only
the price value and not the available resource amount is
communicated to the consumer, increasing the privacy of
nodes. On the other hand, the computation overhead of the
manager is reduced by distribution of some overheads to
nodes.

3.2.1. Parameters for Price Formulation. Our proposed
pricing scheme is parameterized by six variables; task size,
energy price, base price, communication cost, task deadline
and processor release time, some of which were used in [12].
• Task Size (S) which refers to expected energy required

to compute or communicate the task.
• Energy Price (EP ) is where each node generates a

so-called Energy Price per unit task based on its level
of remaining energy and is defined as:

EPj =
a

1− e−Ej/b
(3)

where E is the remaining energy of the node, a is the
scaling parameters and b is the preferred coefficient
which can appropriately represent the markup of energy
price as the energy is consumed. This price is inversely
proportional to the energy level allowing nodes with
higher energy (lower price) to be selected.

• Base Price (BP ) is defined as computational cost for
doing task j by node i which can be calculated as:
BPij = Sj × EPi

• Communications Cost (CommCost) is the cost of
migrating the output of one task on one node to another
task on an alternate node and is a function of the
distance between the nodes and the size of the data
packet Our pricing scheme determines accounts for the
communication cost when assigning tasks.

• Task Deadline (TD) which is the latest start time
(LST) defined in the listing phase. When two tasks are
required to be scheduling concurrently, priority is given
to the task with a closer deadline.

• Processor Release Time (RT ) is the time at which the
task execution at node would finish.

3.2.2. Energy Balancing Price Formulation. One contri-
bution of this paper is a scheme that places emphasis on
a fair energy balance amongst nodes constrained by the
application’s schedule length. Should a situation arise a
computationally expensive task is released while only nodes
with low energy are available, our scheme may wait for
another node with relatively higher amount of energy to
complete its task and assign this new task to that node to
achieve a longer network lifetime. The price for assigning
Task j to node i is:

Pij = (CommCost+BPij)

[
1 + exp

[
λ(t,DLj)
γ(t,RTi)

]]
(4)

where DL is the arriving time of the task and RT is the
release time of the processor and where

λ(t,DLj) =
{
k(t−DLj), for t > DLj (5)
ε, for t < DLj (6)

and

γ(t, RTi) =
{

(t−Rti), for t > RTi (7)
ε, for t < RTi (8)

A fairer energy balancing amongst nodes is achieved with
this price formulation. When the current time is close to
the release time of a energy processor RTi with high
energy availability, a low value would be set, increasing
the selection possibility by the task manager. The deadline
of this task to be assigned is also considered, as tasks
with urgent deadlines would be allocated to a node that is
available at a closer released time (or a node that readily
available) at the expense of an unfair energy balance.

3.3. Recovery Phase

The proposed method enables to recover from node failure
during the online task assignment phase. Previous work in
[9] only considered node failure prior to task assignment by
not selecting the node that had failed. Our recovery phase
is to first recover the tasks that had been assigned to the
failed node from its successors deployed on other nodes.
We first determine if there are any tasks on that failed node
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that need to be deployed again based on its successors. If
these tasks have no successors or no undeployed successors,
then redeployment is unnecessary. Redeployment is also
unrequired if the output of this task exists on another
node. This situation occurs when this output data had been
previously communicated to a successor task on another
node.

However, if there exists no back-up of the output of these
tasks then reassignment of these tasks onto another processor
is required. If the deadline where this output is valid has
exceeded, redeployment of this task would not be performed.
Task assignment resumes as normal with the rest of the
tasks after the recovery phase. The result of implementing a
recovery phase which checks for previously communicated
data from tasks on a failed node to avoid unnecessary task
deployment is the savings in energy and time.

Although the recovery method proposed results in a slight
increase in schedule length, simulation results shows the
significant improvement in schedule length in comparison
to rescheduling considered for static scheduling in addition
to energy consumption and balance improvements.

4. Proposed Message Exchange Methods

Another contribution in this paper are techniques to com-
municate the messages between the sellers and consumer
to determine the winner among the sellers at each round.
As shown in Figure 1, the consumer sends a Task Message
to the nodes. Each node then calculates its cost for doing
the task based on the price formulation introduced in Sec-
tion 3.2.2. The goal of the message exchange protocol is
to determine the winning seller to assign the task to. Two
schemes are discussed; centralized and distributed.

4.1. Centralized Message Exchange Method

When a new task arrives, the consumer broadcasts a
message containing the 〈TASK, TaskSize, TaskDeadline〉 to
all nodes. Each node calculates its cost (bid), and sends
their bid to the consumer (bidder). The consumer selects the
minimum bid from the bids received from all the nodes and
the task would allocate to that node. The main disadvan-
tage of this method is the overhead and the cost (energy
consumption) for sending all the prices to the consumer
when there are a lot of nodes, given that only one node will
be selected. Moreover in this method the probability that
collisions happen during message exchange is quite high.

4.2. Distributed Message Exchange Method

To reduce the communication overhead and energy con-
sumption for message exchanging, a distributed winner
determination scheme is proposed. As with the central-
ized scheme, the consumer broadcasts a message 〈TASK,

TaskSize, TaskDeadline〉 to all nodes. However, instead of
communicating its cost for accomplishing the current task
immediately, each node sets a waiting time Tw proportional
to its calculated price Pij and goes to a LISTEN mode.

Tw = `× Pij (9)

where ` is a linear coefficient. When the waiting time
is completed, the node would then send its cost to the
consumer. Then node with the lowest price will broadcast
its bid first and be selected. Upon reception of a broadcast
from a winning seller node, the remaining nodes (which
are in a LISTEN mode) would leave the competition and
avoid communicating their bids. This scheme will reduce
the amount of overhead and energy consumption for sending
non-winning messages to the consumer. Another advantage
of distributed method is that if the number of available nodes
(sellers) increases it won’t have effect on the massage over-
head and the performance of winner determination method
since eventually only one node would reply.

5. Simulations

Simulations has been carried out to evaluate the perfor-
mance of our schemes. Our proposed pricing scheme with
message exchange methods are compared to a static task
scheduling method. In order to have fair comparison the
same objective which is the energy balancing has been
applied for offline scheduling. Hence, the Critical Node
Path Tree (CNPT) algorithm [11] was modified to Energy
Balanced-CNPT (EB-CNPT) to schedule tasks offline with
energy balancing objective based on the information on
the available remaining energy of each node prior to task
assignment.

Simulations are performed to investigate the following
aspect:
• Performances of our scheme on energy balancing and

energy utilization.
• The effect of our adaptive scheme on scheduling length

and energy consumption over a different number of
node.

• The effect of our scheme on situations of node failure.
In this simulation, a task graph of 35 tasks,

where each task has a maximum number of 3
predecessors (numPred = 3) is assigned to 15
nodes. Each node has the following initial energies
[3.4, 2.4, 2, 3.3, 2, 2.3, 2.7, 3.2, 3.1, 2, 1.9, 2.9, 2.7, 3, 3]Joule.
Energy consumption for transmitting is based on
the MICAz mote datasheet; ESending = .017mJ ,
ERecieving(Listenmode) = .031mJ .

Comparisons on the energy balancing performance are
made between our schemes and the modified static schedul-
ing scheme (EB-CNPT). Figure 2 shows the remaining
energy at the nodes after scheduling one round of tasks,
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Figure 2. Energy Level vs Node ID

given the initial energy provided. The remaining energy for
each node appears more balanced when the pricing scheme
was used as compared to static scheduling. The reason of this
performance is that our adaptive scheme would continuously
adapt to the changes of available resource of each node, as
the price that is set for task allocation changes after each
task assignment. However, for static scheduling (EB-CNPT)
the resources availability at each node has been considered
only once, prior to task assignment with the static case.

Comparisons are also made on the scheduling length
and energy consumption of our adaptive schemes with two
message exchange methods and the EB-CNPT over an
increasing number of available nodes. For our scheme, the
scheduling length includes the time spent on communicating
messages between the consumer and seller nodes. Figure
3 shows that the scheduling length would decrease by
increasing the number of available node as the tasks may
be allocated over a larger number of nodes. The scheduling
length for real-time scheduling is higher or equivalent to
any static task scheduling due to the time taken to ex-
change messages. Among the different message exchange
mechanisms, the centralized scheme results in the lowest
scheduling length as the only additional latency is due
to the communication of messages to the consumer. The
distributed scheme results in the highest scheduling length
due to the linear waiting “back-off” time applied prior to a
seller communicating the winning bid.

As shown in Figure 4, the energy consumption of nodes
increases by increasing the available nodes due to increas-
ing the communication cost for migrating data among the
nods .The energy consumption of the adaptive schemes are
slightly lower than static task allocation method since in our
price formulation the computation cost is considered as well
as the communication cost. Among the message exchange
methods applied for adaptive scheme, the centralized method
results in the higher communication overhead and hence
the higher energy consumption; however the communica-
tion overhead has been considerably reduced in distributed

Figure 3. Scheduling Length vs Number of Nodes used

Figure 4. Energy Consumption vs Number of Nodes
used

winner determination method and it results in lower energy
consumption.

Node failure during the online task assignment phase is
simulated. For the static case, rescheduling of the whole
task graph is performed. This is compared with the adaptive
recovery phase. Node failure has been simulated to occur
at different times from the start time of task assignment.
Figure 5 shows the performance of our adaptive scheme
compared to the static case in terms of scheduling length.
Results exhibit a significantly lower schedule length and
therefore reduced energy consumption as shown in Figure
6. When node failure occurs during the early stages of task
assignment, the schedule length is almost constant as not
many tasks have been completed. When node failure occurs
during the middle phases of the task assignment, the sched-
ule length increases due to the number of uncommunicated
dependencies resulting in the rescheduling and redeployment
of many tasks. However, node failure occurs during the later
times, many of the tasks have been completed and their
dependencies have been communicated and therefore do not
need to be redeployed.
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Figure 5. Scheduling length vs Failure time

Figure 6. Energy Consumption vs Failure time

6. Conclusion

This paper has proposed online task allocation schemes
in WSNs that improves the energy balance amongst nodes
and maximizes network lifetime. The price formulation
used continuously adapts to changes of the availabilities
of resources and this scheme accommodates for the node
failure during task assignment via a recovery phase. Two
message exchanged mechanisms between the nodes and task
allocator have been proposed with the goal of reducing
energy consumption and overhead. Simulation results have
shown the performance of the proposed online schemes to
deal with uncertain situation of WSN.
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