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Abstract— In this paper, we study efficient data collection and
aggregation problem in wireless sensor networks. We first pro-
pose efficient distributed algorithms for data collection problem
with approximately the minimum delay, or the minimum num-
ber of messages to be sent by all wireless nodes, or the minimum
total energy consumption by all wireless nodes respectively. For
example, given an algorithmA for data collection, let̺T , ̺M , and
̺E be the approximation ratio of A in terms of time complexity,
message complexity, and energy complexity respectively. We then
show that, for data collection, there are networks ofn nodes and
maximum degree∆, such that̺M̺E = Ω(∆) for any algorithm.
In addition, we analytically proved that all our proposed methods
are either optimum or within constants factor of the optimum. We
further present the message, energy, time complexity and studied
the complexity tradeoffs for data aggregation problem.

Index Terms— Time complexity, message complexity, energy,
sensor networks, data collection, distributed algorithms.

I. I NTRODUCTION

In this paper, we study some fundamental complexity prob-
lems for data collection in wireless sensor networks. Givena
setU of wireless sensor nodes distributed in a two dimensional
or three dimensional space, we assume that a subsetV ⊆ U of
nodes produce some data,e.g., sampling temperature, moisture
and so on.Data collectionis to collect the set of data items
Ai stored in each individual nodevi ∈ V to the sink node (as-
sumingv0). We first design efficient algorithms whose com-
plexity is asymptotically same as (or within a certain factor of)
the complexity of the optimum for data collection. We further
study various complexity tradeoffs and show that our method
achieves the asymptotically optimum complexity tradeoffs. The
complexity of a problem is defined as the worst case cost (time,
message or energy) by the best algorithm.

To the best of our knowledge, we are the first to study the
tradeoffs among the message complexity, time complexity, and
energy complexity for data collection; we are the first to present
lower-bounds (and matching upper-bounds for some cases) on
the message complexity, time complexity, and energy complex-
ity for data collection in wireless networks.

The main contributions of this paper are as follows. We de-
sign algorithms whose time complexity and message complex-
ity are within constant factors of the optimum. The minimum
energy data collection can be done using minimum cost short-
est path tree. We further show that no data collection algorithm
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can achieve approximation ratio̺M for message complexity
and̺E for energy complexity with̺ M · ̺E = o(∆). We then
prove that our data collection algorithm has energy cost within
a factorO(∆) of the optimum while its time and message com-
plexity are withinO(1) of the corresponding optimum. Thus,
our method achieves the best tradeoffs among the time com-
plexity, message complexity and energy complexity.

The rest of the paper is organized as follows. In Section II,
we first present our wireless sensor network model, define the
problems to be studied in this paper, and then briefly review the
connected dominating set. We present several efficient methods
for data collection in Section IV and we study the complexity
tradeoffs of distributed data collection in Section V. Dataag-
gregation is studied in Section VI. We review the related works
in Section VII and conclude the paper in Section VIII.

II. PRELIMINARIES

A. Network Model

We assume that there areM + 1 wireless sensor nodes
U = {u0, u1, u2, · · · , uM} that are deployed in a certain ge-
ographic region, whereu0 is the sink node. Each wireless sen-
sor node corresponds to a vertex in a graphG and two vertices
are connected iff their corresponding sensor nodes can commu-
nicate directly. We assume that links are “reliable”,i.e., the
communication cost between two neighbor nodes is only1. al-
though in practice nodevi may need re-transmit several times.
In some of the results, we further assume that all sensor nodes
have a communication ranger and a fixed interference range
R = Θ(r). For simplicity, we may assume thatr = 1 such that
the communication graphG is aUnit Disk Graph(UDG).

Let h(vi, vj) be the hop number of the minimum hop path
connectingvi andvj in graphG, andD(G) be the diameter of
the graph. Here, we assume thatD(G) ≥ 2. If D(G) = 1,
then the graphG is simply a completed graph and all questions
studied in this paper can either be trivial or have been solved [8–
10]. For a graphG, we denote its maximum degree as∆(G).
When each nodevi hasni data items, we define the weighted
degree, denoted as̃dvi

(G), of a nodevi in graphG asni +∑
vj :vivj∈G nj. The maximum weighted degree of a graphG,

denoted as̃∆(G), is defined asmaxi d̃vi
(G).

Each wireless node is able to monitor the environment, and
collect some data (such as temperature). Assume that there is a
subset ofn wireless nodeV ∈ U that collected some data.A =
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{a1, a2, · · · , aN} is a totally ordered multi-set ofN elements
collected by alln nodesV . Here,N is the cardinality of setA.
Each nodevi hasni amount of raw data, denoted asAi ⊂ A.
SinceA is a multi-set, we assumeAi ∩ Aj = ∅ for i 6= j and
A =

⋃n

i=1 Ai Then〈A1, A2, · · · , An〉 is called a distribution of
A at sites ofV . We assume that one packet (i.e., message) can
contain one data itemai, the node ID, plus additional constant
number of bits,i.e., the packet size is at the order ofΘ(log n +
log U), whereU is the upper-bound on values ofai. Such a
restriction on the message size is realistic and needed, otherwise
a single convergecast would suffice to accumulate all data items
to the sink which will subsequently solve the problems easily.
We consider a TDMA MAC schedule and assume that one time-
slot duration allows transmission of exactly one packet.

If energy consumption is to be optimized, we assume that
theminimumenergy consumption by a nodeu to send data cor-
rectly to a nodev, denoted asE(u, v), is c1 ·‖u−v‖α, wherec1

(normalized to1 hereafter) andα ≥ 2 are constants depending
on the environment. We assume that each wireless sensor node
can dynamically adjust its transmission power to the minimum
needed. Additionally, for a nodevi to send a data packet to a
neighboring nodevj (with vivj ∈ G), nodevj will also spend
energy for receiving. In this paper, we assume that the receiv-
ing energy cost for a single packet is a fixed valueEr. We first
assume thatEr = 0.

For data queries in WSNs, we often need build a spanning
treeT of G first for pushing down queries and propagating back
the intermediate results. Given a treeT , let H(T ) denote the
height of the tree,i.e., the number of links of the longest path
from root to all leave nodes. The depth of a nodevi in T , de-
noted asdT (vi), is the length of the path from the root tovi.
The subtree ofT rooted at a nodevi is denoted asT (vi), the
parent node ofvi is denoted aspT (vi), and the set of children
nodes of a nodevi is denoted asChild(vi).

B. Problems and Complexities

We will mainly study the time complexity, message complex-
ity, and energy complexity of data collection in WSNs.

The complexity measures we use to evaluate the performance
of a given protocol are worst-case measures. Themessage com-
plexity (and theenergy complexity, respectively), of a protocol
is defined as the maximum number of total messages (the to-
tal energy used, respectively) by all nodes, over all inputs, i.e.,
over all possible wireless networksG of n nodes (and possibly
with additional requirement of having diameterD and/or max-
imum nodal degree∆) and all possible data distributions ofA
overV . Thetime complexityis defined as the lapsed time from
the time when the first message was sent until the last mes-
sage was received. Thelower boundon a complexity measure
(e.g., message complexity) is the minimum complexity (e.g.,
message complexity) required byall protocols that answer the
queries correctly. The approximation ratio̺T (resp. ̺M and
̺E) for an algorithm denotes the worse ratio of the time com-
plexity (resp. message complexity and energy consumption)
used by this algorithm compared to an optimal solution over all
possible problem instances.

Here we assume that TDMA MAC is used for channel usage.
Obviously, the complexity depends on the TDMA schedule pol-

icy S. LetX(vi, t) denote whether nodevi will transmit at time
slot t or not. Then a TDMA schedule policyS is to assign0 or
1 to each variableX(vi, t). A TDMA schedule should beinter-
ference free: no receiving node is within the interference range
of the other transmitting node. In other words, if the schedule
is define for treeT , for any time slott, if X(vi, t) = 1, then
X(vj , t) 6= 1 for any nodevj such thatpT (vi) is within the
interference range ofvj .

Data collection is an operation to collect the set ofraw
data itemsA from all sensor nodes to the sink node. It can
be done by building a spanning treeT rooted at the sinkv0,
and sending the data at every nodevi to the root node along
the unique path in the tree. Clearly, themessage complex-
ity of data collection alongT is

∑n

i=1 ni · dT (vi). The en-
ergy complexity, defined as the total energy needed by all
nodes for completing an operation, of data collection usingT is∑n

i=1[E(vi, pT (vi)) ·
∑

vj∈T (vi)
nj ].

The TDMA schedule should also bevalid in the sense that
every datum in the network will be relayed to the root. In other
words, in treeT , when nodevi sends a datum to its parent
pT (vi) at a time slott, nodepT (vi) should relay this datum
at some time-slott′ > t. The largest timeD such that there
exists a nodevi with X(vi,D) = 1 is called thetime complex-
ity of this valid schedule. TimeD is also called themark-span
of the scheduleS. Generally, a scheduleS can be defined as
assigning0 or 1 to variableX(vi, t, k): it is 1 if and only if
nodevi will relay datumak at time slott. Clearly, a schedule
S is valid for data collection ofA using treeT , iff for every
nodevi and time slott,

∑
vj∈Child(vi)

∑t−1
b=1 X(vj , b) + ni ≥

∑t

b=1 X(vi, b). Here
∑

vj∈Child(vi)

∑t−1
b=1 X(vj , b) + ni is the

total number of data items nodevi has seen so far till time slot
t and

∑t

b=1 X(vi, b) is the total number of data items that have
been relayed by nodevi so far till time slott. Then the time-
complexity optimizing data collection problem is to find a span-
ning treeT and avalid, interference-freescheduleS such that
the mark-span is minimized.

III. C ONNECTEDDOMINATING SET

A number of our methods will be based on a “good” con-
nected dominating set (CDS) that has bounded degreed and
bounded hop spanning ratio. Some definitions and properties
of CDS have been studied well in [3]. We list some of them
used in this paper and omit the proof.

Given a graphG = (V, E), let C = (VC, EC) be a con-
nected dominating set ofG whereVC is the set of dominators
and connectors andEC is the edges between dominators and
connectors. For a nodev ∈ VC, let TC be a BFS tree ofC. For
a nodev ∈ V \ VC, we define a unique dominatord(v) which
is the one having the shortest hop distance to the sinkv0.

Definition 1—Data Communication Tree (DCT):For a
graphG and its CDS, we define the data communication treeT
asT = (V, TC ∪ {vd(v) | v ∈ V \ VC}.

Theorem 1:Let G and C be a graph and its CDS respec-
tively. The DCTT has following properties:

1) ∆(TC) ≤ d.
2) For any edgee ∈ ET , let I(e) be the set of edges inTC

that have interferences withe, then|I(e)| ≤ c · d · ∆(G)
for some constantc depending onR/r.
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Lemma 2:Given agoodCDS of the graphG, data clustering
can be done in timeO(∆̃(G)).

IV. EFFICIENT DATA COLLECTION

In this section, we design efficient methods for collecting
data in wireless sensor networks.

A. Minimize Message

We first study the data collection with the minimum number
of messages. When all links are reliable, clearly, we should
collect any source data from a source nodevi to the sink node
v0 over the path with the minimum number of relay nodes,i.e.,
with minimum hop number. Thus, the following theorem is
straight forward.

Theorem 3:Data collection can be done with minimum
number of messages

∑n

i=1 ni · h(vi, v0) using a BFS tree with
rootv0 if all links are reliable.

When links are not reliable, letp(u, v) be the reliability
of link (u, v), i.e., with probability p(u, v) the packet will
be successfully transmitted over link(u, v). Assume that the
link layer reliability is used. Then clearly, the number of ex-
pected transmissions over a link(u, v) is 1/p(u, v) for a packet.
Thus, to minimize the total relays for sending a packet from
its sourcevi to the sink nodev0, the pathΠ must minimize∑

(u,v)∈Π
1

p(u,v) , which is just the least weighted path from
vi to v0 when the weight of every link(u, v) is defined as
1/p(u, v). Thus, to minimize the messages for data collection,
each data packet should be sent using the least weighted path
(where the weight of a link(u, v) is 1/p(u, v)) to the sink node.
Let p(vi, v0) be the minimum weight of such shortest path. Let
MRPT (maximum reliability path tree) be the tree rooted atv0,
formed of all these least weighted paths. Thus,

Theorem 4:Data collection can be done with minimum
number of messages

∑n

i=1 ni · p(vi, v0) using a MRPT tree
with rootv0 if a link (u, v) has a reliabilityp(u, v).

B. Minimize Energy

We then study the data collection with the minimum energy
cost. Apparently, for any element, it should follow the min-
imum energy cost path from its origin to the sink nodev0 in
order to minimize the energy consumption. So minimizing the
energy is equivalent to the problem of finding the shortest paths
from the sink to all nodes (where the link cost is the its energy
cost now), which clearly can be done in timeO(m + n log n)
for a communication graph ofn nodes andm links. We call the
tree formed by minimum energy path from the root to all nodes
as theminimum energy path tree (MEPT). Let E(vi, v0) be the
energy cost of the path fromvi to v0 with the minimum energy
cost. Thus, we have

Theorem 5:Data collection can be done with minimum en-
ergy cost

∑n

i=1 ni ·E(vi, v0) using a MEPT tree with rootv0 if
a link (u, v) has an energy costE(u, v).
Clearly, when links are not reliable, we have to take into ac-
count the energy cost in retransmissions. In other words, we
need useE(u, v)/p(u, v) as the expected energy cost of a link
(u, v). Obviously, the least cost path based routing is also op-
timum for minimizing the total energy cost of data collection if
the receiving energy costEr > 0.

C. Minimize Time Delay

Then we study the time complexity of data collection. Notice
that, the transmissions of nearby nodes should be in different
time slots to avoid the interferences. We assume that all links
are reliable hereafter.

Algorithm 1 presents our efficient data collection method
based on a good CDSC. The constructed CDS has a degree
at most a constantd, and similar to Theorem 1, all nodes in
CDS can be scheduled to transmit once in constantβ = Θ(d)
time-slots without causing interferences to other nodes inCDS.
We takeβ time-slots as oneround.

First, the data elements from each dominatee node (a node
not in C) are collected to the corresponding dominator node in
the CDSC. Here the dominatee nodes that are one-hop away
from the sink nodev0 will directly send the data tov0. Notice
that this can be done in time-slotsO(∆̃(G)) by Lemma 2.

Now we only consider the dominator nodes and the breadth-
first-search spanning treeTC of nodes in CDS rooted at the sink
v0. Every edge in the treeTC will be scheduled exactly once
in each round. For simplicity, we do not schedule sending an
element more than once in the same round. At every round,
nodes in CDS push one data item to its parent node until all
data are received byv0.

Algorithm 1 Efficient Data Collection Using CDS
Input : A CDS C with bounded degreed, treeTC.

1: Every nodevi sends its data to its dominator noded(vi).
2: for t = 1 to N do
3: for each nodevi ∈ VC do
4: If nodevi has data not forwarded to its parent node in

TC, nodevi sends a new data to its parent in roundt.

Theorem 6:Given a connected wireless networkG, data col-
lection can be done in timeΘ(N) with Θ(

∑n

i=1 nih(vi, v0))
messages.

Proof: For proof, please refer to [3].

V. COMPLEXITY TRADEOFFS FORDATA COLLECTION

One may want to design a universal data collection method
whose time-complexity, message-complexity and energy-
complexity are all within constant factors of the optimum. Ob-
serve that Algorithm 1 is a constant approximation for both
time-complexity and message-complexity. However, it is not
a constant approximation for energy-complexity. Considerthe
following line network example:n+1 nodes are uniformly dis-
tributed in a line segment[0, r]; Sinkv0 is the leftmost node and
nodevi is at positioni · r/n and has one data item. Here we
assumer = 1. See Figure 1 for illustration. Assume the energy
cost for a linkuv is ‖uv‖2. Then the minimum cost data col-
lection is to let nodevi send all its data to nodevi−1. The total
energy cost is

∑n

i=1 i · 1
n2 ≃ 1/2. While the energy cost of col-

lecting data via CDS is
∑n

i=1(
i
n
)2 ≃ n/6. On the other hand,

the total number of messages of the minimum-energy data col-
lection scheme isn(n − 1)/2 and the time slots used by this
scheme is alsoΘ(n2); both of which areΘ(n) times of the cor-
responding minimum.
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r = 1

1/n

v0 v2 v3v1 vn

v0 v2 v3v1 vn

v0 v2 v3v1 vn

(c)

(a)

(b)

Fig. 1. Example: (a) a line network withn+1 nodes; (b) the minimum energy
data collection tree; (c) the data collection tree via CDS, wherev0 is the only
dominator.

Consider any data collecting algorithmA. Let ̺M and̺E

be the approximation ratio for the message-complexity and
energy-complexity of algorithmA. We show that there are
graphs ofn nodes such that̺M · ̺E = Ω(n).

Lemma 7:Assume the energy cost for supporting a linkuv
is ‖uv‖2. For any data collection algorithmA, there are graphs
of n nodes, such that̺M · ̺E = Ω(n).

Proof: For proof, please refer to [3].
Notice that we generally assumed that the energy cost for

supporting a linkuv is ‖uv‖α. Then we can show that
(̺M )α−1̺E ≥ nα−1

2α−1 . Notice that since̺ E ≥ 1 andα ≥ 2,

we have(̺M )α−1(̺E)α−1 ≥ (̺M )α−1̺E ≥ nα−1

2α−1 . Conse-
quently,̺M · ̺E ≥ n/2 still holds.

When we also take the maximum degree∆ into account, the
above lemma implies the following corollary (the proof is es-
sentially same).

Corollary 8: For any data collection algorithmA, there are
graphs ofn nodes with maximum degree∆, such that̺ M ·̺E =
Ω(∆).

The above lemma also implies that for any data collection
algorithmA, ̺M · ̺E · ̺T = Ω(∆), where̺T is the approxi-
mation on the time-complexity by algorithmA. We then show
that for Algorithm 1,̺ E = O(∆(G)).

Lemma 9:Algorithm 1 is ̺E = O(∆(G))-approximation
for energy cost.

Proof: For proof, please refer to [3].
Consequently, we know that Algorithm 1 is asymptotically

optimum if we want to optimize the time-complexity, message-
complexity and energy-cost-complexity simultaneously. On the
other hand, the minimum energy data-collection based on min-
imum energy path tree (MEPT) has delay that is at mostO(∆4)
times of the optimum.

Lemma 10:Data collection using MEPT is̺E =
O(∆(G)4)-approximation for time complexity.

Proof: For proof, please refer to [3].

VI. DATA AGGREGATION

We consider the case when the data aggregation is distribu-
tive. In other words, given any nodev and its set of children
nodesu1, u2, · · · , ud, whered is the number of children nodes
of v in a data aggregation tree, the data produced by nodev has
size same as the size of each of the individual node. Typical

examples of such aggregation aremin, max, average, or vari-
ance. In data aggregation, if one node send information twice,
it can always save the first transmission. Hence, the data aggre-
gation should be done using a tree.

A. Message, Energy, and Time Complexity

Message Complexity: The total message complexity for
data aggregation using any treeT is Θ(n), wheren is the num-
ber of nodes of the network. The lower bound on the message
complexityn is obvious since every nodev needs send at least
once. The upper bound is alson because we can do the data
aggregation using any spanning tree and every node only needs
to send once.

Energy Complexity: For distributive aggregation, it seems
that we need use some data aggregation tree that is energy effi-
cient since each node needs to send at least once. So the main
question now is to construct a tree such that the total cost of
all links are minimized. This clearly is the minimum spanning
tree, where the link cost of any linkuv is the energy cost of
sending a unit amount of data over the linkuv, which can be
computed in polynomial time.

Time Complexity: We will show that the time complexity
for such kind of data aggregation is of the orderΘ(H +∆(G)),
whereH is the height of the BFS tree rooted at the sink node
v0. Notice that for a BFS tree for a graphG, its heightH is
Θ(D(G)), thus the time complexity is of the order ofΘ(D +
∆(G)) too. Algorithm 2 illustrates our method.

Theorem 11:Data aggregation can be done inΘ(D + ∆)
time withn messages.

Proof: For proof, please refer to [3].
If there are more than one aggregation functions, we can deliver
the messages one by one. We call this as sequential aggregation.

Corollary 12: k sequential data aggregations can be done in
O(D + ∆ + k) time withkn messages.

B. Complexity Tradeoffs

Again, we may want to design a data aggregation method that
has constant approximation ratios for message complexity,time
complexity, and energy complexity. First, aggregation based on
MST (that is energy optimum for aggregation) is not efficient
for time complexity.

Lemma 13:The minimum energy data aggregation based on
MST is̺T = Ω(min( n

∆ ,
√

n∆))-approximation for time com-
plexity. On the other hand,̺T = O( n

∆).
Proof: For proof, please refer to [3].

Observe that our method (Algorithm 2) has constant ratio for
both message complexity and time complexity. However, it is
not always energy efficient due to the following lemma.

Lemma 14:Algorithm 2 is̺E = O(∆(G))-approximation
for energy cost.

Proof: For proof, please refer to [3].
Although our method is not energy efficient in the worst case

(with approximation ratio up toΘ(∆)), we show that it is the
best we can do if we want to achieveΘ(1) ratio in delay. Again,
given a data aggregation methodA, let ̺E , ̺T and̺M be the
approximation ratios ofA over all networks withn nodes and
maximum degree∆. We prove the following lemma.
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Algorithm 2 Efficient Data Aggregation Using CDS
Input : A CDSC with bounded degreed, a distributive function
f and corresponding functionh.

1: for each dominator nodevi do
2: For the set of dominatee nodes of the nodevi, we build a

minimum spanning tree (MST) rooted atvi, where the
link weight is the energy cost for supporting the link
communication. The data elements from all these dom-
inatee nodes are thenaggregatedto the corresponding
dominator nodevi along the minimum spanning tree
of these dominatee nodes. In other words, any node
vk will computeh(f(Ak), xk,1, xk,2, · · · , xk,dk

) where
xk,j , for j ∈ [1, dk], is the aggregated value nodevk re-
ceived from itsjth child in the minimum spanning tree
anddk is the number of children of nodevk in the MST
of all dominatee nodes ofvi. Notice that this aggregation
can be done in time-slotsΘ(∆(G)).

3: Now we only consider the dominator nodes and the
breadth-first-search spanning treeTC of nodes in CDS
rooted at the sinkv0.

4: for t = 1 to H do
5: for each nodevi ∈ VC do
6: If node vi has received aggregated data from all its

children nodes inTC, it sends the aggregated data (us-
ing its own data and all aggregated data from its chil-
dren) to its parent node in roundt.

2rn
∆

2r
∆

r r

v0 vnv∆v2v1 v∆/2
(c)

(a)

(b)

v0 vnv2v1 v∆/2 v∆

v0 vnv∆v2v1 v∆/2

Fig. 2. Example: (a) the line network withn + 1 nodes; (b) the minimum
energy data aggregation tree; (c) the treeTC.

Lemma 15:For any data aggregation algorithmA, there are
graphs ofn nodes with maximum degree∆, such that̺ T ·̺E =
Ω(∆).

Proof: For proof, please refer to [3].

C. Minimizing the maximum energy consumption by a node

We assume that all nodes have the same amount of data
to be aggregated and the aggregation functionf satisfies that
f(a1, a2, · · · , ap) has size as the maximum size ofai, i.e., the
aggregated data can be represented by a single packet if eachof
the input data items is represented by a single packet. In this
subsection, we then study how to design efficient method for
minimizing the maximum energy consumption for data aggre-
gation. We first assume that the energy consumption for send-
ing a single data packet over all linksvivj ∈ G is the same
(sayE) or within a small constant factorµ of each other (i.e.,
E(vivj) ≤ µE(vp, vq) for all links vivj andvpvq). Observe

that this is often the case in practice. We also assume that every
node hasP original data packets to be aggregated. For a data
aggregation treeT and an internal nodevi, the energy cost is
(Er ·dvi

(T )+E) ·P , whereEr is the energy cost for receiving
a data packet, andE is the energy cost for sending a packet.
To minimize the maximum energy cost of nodesvi in T , it is
equivalent to minimizedvi

(T ), i.e., the maximum node degree
of T . Then it is easy to show the following lemma.

Lemma 16:Minimizing the maximum energy consumption
by all nodes for data aggregation is equivalent of finding a span-
ning treeT with the minimum maximum node degree inT .

Finding a spanning treeT in a general graph with minimum
degree is NP-hard problem. Recently, Blinet al. [2] proposed a
distributed method that can find a spanning tree with maximum
node degree at mostOPTree(G) + 1, whereOPTree(G) is
the smallest maximum node degree of all spanning trees forG.
In this paper, we assumed that only a subsetV ⊆ U of nodes
have data to be aggregated. Thus, we need a Steiner treeT
that minimizes the maximum node degree if a single spanning
treeT is needed for data aggregation. A polynomial time al-
gorithm that produces a Steiner treeT (spanning a subsetV of
nodes in a general graphG) with the maximum degree at most
OPTree(G, V ) + 1 is presented in [6].

Lemma 17:If a single data aggregation treeT is required
for aggregating data items from a subsetV of sensor nodes,
we can construct a treeT in polynomial time such that the
maximum energy consumed by any node inT is at most
µ · (1 + 1

OPTree(G,V ) ) times of the optimum.
In addition to only minimizing the maximum energy cost by

a node, in practice, we often need to minimize the total energy
cost while the maximum energy cost by a nodevi is at most a
valueEs(vi). We first show that this problem is NP-hard. No-
tice that for a data aggregation treeT , and a nodevi in T we
know that the energy cost of nodevi is Er · dvi

(T ) + E when
we need aggregate a single packet from each of the nodes inV .
Then requiring that the total energy cost of nodevi is at most a
valueEs(vi) is equivalent asEr · dvi

(T ) + E ≤ Es(vi), i.e.,
the node degree ofvi in T , dvi

(T ) ≤ Es(vi)−E

Er
. Thus, an up-

per bound on energy consumption is equivalent as specifying
an upper boundB(vi) = Es(vi)−E

Er
on the node degree ofvi in

the spanning tree. Then for all spanning trees meeting this de-
gree requirement for all nodesvi ∈ V , we will find a spanning
tree with the minimum total energy cost. Given a wireless net-
work G, and a degree requirement specified by a vectorB, let
MCost(G, B) be the minimum cost of all the spanning trees
in G that satisfy the degree requirementB. Based on a recent
result by [15], we can prove the following theorem.

Theorem 18:Given a degree upper boundB(vi) for each
nodevi, there is a polynomial time algorithm that can find a
data aggregation treeT such that the degreedvi

(T ) of nodevi

in T satisfies thatdvi
(T ) ≤ B(vi) + 1, and the energy cost of

T is at mostMCost(G, B).

VII. R ELATED WORK

Most existing convergecast methods [1,7,16] are based on a
tree structure and with minimum either energy or data latency
as the objective. For example, [16] first constructs a tree us-
ing greedy approach and then allocates DSSS or FHSS codes
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for its nodes to achieve collision-free, while [1, 7] uses TDMA
to avoid collisions. In [1], the authors didnot give any theo-
retical tradeoffs between energy cost and latency. Zhang and
Huang [18] proposed a hop-distance based temporal coordina-
tion heuristic for adding transmission delays to avoid collisions.
They studied the effectiveness of packet aggregation and dupli-
cation mechanisms with such convergecast framework. Ken-
nelman and Kowalski [10] proposed a randomized distributed
algorithm for convergecast that has the expected running time
O(log n) and usesO(n log n) times of minimum energy in the
worst case, wheren is the number of nodes. They also showed
the lower bound of running time of any algorithm in an arbi-
trary network isΩ(log n). However, they assume that all nodes
can dynamically adjust its transmission power from0 to any ar-
bitrary value and a data message by a node can containall data
it has collected from other nodes. In [4], Chuet al. studied
how to provide approximate and bounded-loss data collection
in sensor networks instead of accurate data. Their method used
replicated dynamic probabilistic models to minimize commu-
nication from sensor nodes to the base station.

To significantly reduce communication cost in sensor net-
works, in-network aggregation has been studied and imple-
mented. In TAG (Tiny AGgregation service) [11], besides the
basic aggregation types (such ascount, min, max, sum, aver-
age) provided by SQL, five groups of possible sensor aggre-
gates are summarized: distributive aggregates (e.g., count, min,
max, sum), algebraic aggregates (e.g., average), holistic aggre-
gates (e.g., median), unique aggregates (e.g., count distinct),
and content-sensitive aggregates (e.g., fixed-width histograms
andwavelets). Notice that the first two groups aggregates are
very easy to achieve by a tree-based method. To overcome the
severe robustness problems of the tree approaches [11, 12, 17],
multipath routing for in-network aggregation has been proposed
[5, 14]. Then recently Manjhiet al. [13] combined the advan-
tages of the tree and multi-path approaches by running them
simultaneously in different regions of the network. In [8],
Kashyapet al. studied a randomized (gossip-based) scheme
using which all the nodes in a complete overlay network can
compute the common aggregates ofmin, max, sum, average,
andrank of their values usingO(n log log n) messages within
O(log n log log n) rounds of communication. Kempeet al. [9]
earlier presented a gossip-based method which can get the av-
erage inO(log n) rounds withO(n log n) messages.

VIII. C ONCLUSION

In this paper, we study the time complexity, message com-
plexity, and energy complexity of data collection and data
aggregation problems in wireless sensor networks. We first
present efficient algorithms that achieve asymptotically optimal
message complexity, energy complexity, and time complexity.
We then study the lower bound of the complexities for these
problems and show that our method achieves the best possible
tradeoffs among these three metrics. There are still a number of
interesting questions left for future research. One is to design
efficient algorithms when each node will produce a data stream.
The second challenge is what is the best algorithm when we do
not require that the found data item to be precise,i.e., we allow
certain relative errors, or additive errors on the found answer.
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[6] FÜRER, M., AND RAGHAVACHARI , B. Approximating the minimum-
degree steiner tree to within one of optimal. InACM SODA(1994), Inc.,
pp. 409–423.

[7] GANDHAM , S., ZHANG, Y., AND HUANG, Q. Distributed minimal time
convergecast scheduling in wireless sensor networks. InICDCS(2006).

[8] K ASHYAP, S., DEB, S., NAIDU , K. V. M., RASTOGI, R., AND SRINI -
VASAN , A. Efficient gossip-based aggregate computation. InPODS
(2006).

[9] K EMPE, D., DOBRA, A., AND GEHRKE, J. Gossip-based computation
of aggregate information. InIEEE FOCS(2003), IEEE Computer Society,
p. 482.

[10] KESSELMAN, A., AND KOWALSKI , D. R. Fast distributed algorithm
for convergecast in ad hoc geometric radio networks.J. Parallel Distrib.
Comput. 66, 4 (2006), 578–585.

[11] MADDEN, S., FRANKLIN , M. J., HELLERSTEIN, J. M., AND HONG,
W. TAG: A Tiny AGgregation service for ad-hoc sensor networks. In
Proc. 5th USENIX OSDI(Boston, MA, Dec. 2002).

[12] MADDEN, S., FRANKLIN , M. J., HELLERSTEIN, J. M., AND HONG,
W. The design of an acquisitional query processor for sensornetworks.
In ACM SIGMOD(2003).

[13] MANJHI, A., NATH , S., AND GIBBONS, P. B. Tributaries and deltas:
efficient and robust aggregation in sensor network streams.In ACM SIG-
MOD (2005).

[14] NATH , S., GIBBONS, P. B., SESHAN, S.,AND ANDERSON, Z. R. Syn-
opsis diffusion for robust aggregation in sensor networks.In ACM SenSys
(2004), pp. 250–262.

[15] SINGH, M., AND LAU , L. Approximating minimum bounded degree
spanning trees to within one of optimal. InACM STOC(2007), pp. 661–
670.

[16] UPADHYAYULA , S., ANNAMALAI , V., AND GUPTA, S. A low-latency
and energy-efficient algorithm for convergecast in wireless sensor net-
works. InIEEE GLOBECOM(2003).

[17] YAO, Y., AND GEHRKE, J. Query processing in sensor networks. In
Proc. of Conference on Innovative Data System (CIDR)(2003).

[18] ZHANG, Y., AND HUANG, Q. Coordinated Convergecast in Wireless
Sensor Networks.MILCOM 2005. IEEE.

982


