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Abstract— In this paper, we study efficient data collection and can achieve approximation rati, for message complexity
aggregation problem in wireless sensor networks. We first @-  andpy for energy complexity witho,, - o = o(A). We then
pose efficient distributed algorithms for data collection poblem prove that our data collection algorithm has energy cosiwit

with approximately the minimum delay, or the minimum num- . o .
ber of messages to be sent by all wireless nodes, or the minimu & factorO(A) of the optimum while its time and message com-

total energy consumption by all wireless nodes respectiel For ~ Plexity are withinO(1) of the corresponding optimum. Thus,
example, given an algorithm A for data collection, let o, oar, and  our method achieves the best tradeoffs among the time com-

or be the approximation ratio of A in terms of time complexity, plexity, message complexity and energy complexity.
message complexity, and energy complexity respectively. éhen g ragt of the paper is organized as follows. In Section I,

show that, for data collection, there are networks ofr nodes and ' . .
maximum degreeA, such that oxror = Q(A) for any algorithm, W€ first present our wireless sensor network model, define the

In addition, we analytically proved that all our proposed methods ~ Problems to be studied in this paper, and then briefly review t
are either optimum or within constants factor of the optimum. We  connected dominating set. We present several efficientadsth

further present the message, energy, time complexity andstlied  for data collection in Section IV and we study the complexity
the complexity tradeoffs for data aggregation problem. tradeoffs of distributed data collection in Section V. Datg

Index Terms— Time complexity, message complexity, energy, gregation is studied in Section VI. We review the relatedksor
sensor networks, data collection, distributed algorithms in Section VIl and conclude the paper in Section VIII.

|. INTRODUCTION Il. PRELIMINARIES

In this paper, we study some fundamental complexity prol. Network Model
lems for data collection in wireless sensor networks. Gien We assume that there afd + 1 wireless sensor nodes
setU of wireless sensor nodes distributed in a two dimension@l _

. i = {ug,u1,us, - ,up } that are deployed in a certain ge-
or three dimensional space, we assume that a siibset’ of ographic region, whergy is the sink node. Each wireless sen-

nodes produce some daag, sampling temperature, MOIStUresqr node corresponds to a vertex in a grépand two vertices

an SO c(;n_. Datahcpllotic_tljonlf to collect thehset_ofkdatg teMS4re connected iff their corresponding sensor nodes can cemm
i stored in each individual node € V" to the sink node (as- picate directly. We assume that links are “reliables,, the

sumingug). We first design efficient algorithms whose COMz o mmunication cost between two neighbor nodes is onbi-
plexity is asymptotically same as (or within a certain facif though in practice node; may need re-transmit several times.
the complexity of the optimum for data collection. We fUIr[heln some of the results, we further assume that all sensorsnode
study various complexity tradeoffs and show that our methqz%ve a communication rangeand a fixed interference range
achieves the asymptotically optimum complexity tradeoftse R = O(r). For simplicity, we may assume that= 1 such that
complexity of a problem is defined as the worst case cost (tirqﬁe communication grapf¥ is aUnit Disk Grap{UDG).
message or energy) by the best algorithm. i Let h(v;,v;) be the hop number of the minimum hop path
To the best of our knowledge, we are the first to study t%nnectingui andv; in graphG, andD(G) be the diameter of
tradeoffs among the message complexity, time complexity, 3he graph. Here, '\7Ne assume tHatG) > 2. If D(G) = 1,

energy complexity for data collection; we are the first tospre then the grapk? is simply a completed graph and all questions

lower-bounds (and matching upper-bounds for some Cases)s‘t?ur'died in this paper can either be trivial or have been siqie

.the message com_ple>§ity, Fime complexity, and energy coxnplelo]_ For a graph, we denote its maximum degree A$G).
ity for data collection in wireless networks. When each node; hasn; data items, we define the weighted
The main contributions of this paper are as follows. We d%’egree denoted a;sz(G) of a nodev; in graphG asn; +

sign algorithms whose time complexity and message complr? n;. The maximum weighted degree of a graph
ity are within constant factors of the optimum. The minimurfi="7:v% ¢ "/ -

energy data collection can be done using minimum cost shdignoted af\(G), is defined asnax; dy, (G).

est path tree. We further show that no data collection algori Each wireless node is able to monitor the environment, and
collect some data (such as temperature). Assume that thare i
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{a1,a2, - ,an} is a totally ordered multi-set oWV elements icy S. Let X (v;,t) denote whether node will transmit at time
collected by alln nodesV. Here,N is the cardinality of sel.  slot¢ or not. Then a TDMA schedule policy is to assigro or
Each node); hasn; amount of raw data, denoted ds C A. 1 to each variabl& (v;,t). A TDMA schedule should biater-
SinceA is a multi-set, we assumé; N A; = () fori # j and ference freeno receiving node is within the interference range
A=J", A;Then(A;, Ay, --- , A,)is called adistribution of of the other transmitting node. In other words, if the schedu
A at sites oflV. We assume that one packee( message) can is define for tre€l’, for any time slot, if X (v;,t) = 1, then
contain one data item;, the node ID, plus additional constantX (v;,¢) # 1 for any nodev; such thatpr(v;) is within the
number of bitsj.e, the packet size is at the order®flogn + interference range afj.

logU), whereU is the upper-bound on values @f. Such a  Data collection is an operation to collect the set cdw
restriction on the message size is realistic and needeghywige data itemsA from all sensor nodes to the sink node. It can
a single convergecast would suffice to accumulate all datasit be done by building a spanning tréerooted at the sinky,

to the sink which will subsequently solve the problems gasiland sending the data at every nageto the root node along
We consider a TDMA MAC schedule and assume that one tintéte unique path in the tree. Clearly, theessage complex-
slot duration allows transmission of exactly one packet. ity of data collection alond is >~ | n; - dr(v;). Theen-

If energy consumption is to be optimized, we assume thaitgy complexity, defined as the total energy needed by all
theminimumenergy consumption by a nodeo send data cor- nodes for completing an operation, of data collection uginsg
rectly to a node, denoted a®(u, v), iscy - [[u—v||*, wherec;  >_7" HE Wi, pr(vi)) - 30 em(oy) Ml
(normalized tal hereafter) and: > 2 are constants depending The TDMA schedule should also balid in the sense that
on the environment. We assume that each wireless sensor nedery datum in the network will be relayed to the root. In othe
can dynamically adjust its transmission power to the mimmuwords, in treeT’, when nodev; sends a datum to its parent
needed. Additionally, for a node to send a data packet to apr(v;) at a time slott, nodepr(v;) should relay this datum
neighboring node; (with v;v; € G), nodev; will also spend at some time-slot’ > ¢. The largest timeD such that there
energy for receiving. In this paper, we assume that thevecegxists a node; with X (v;, D) = 1 is called theime complex-
ing energy cost for a single packet is a fixed valtje We first ity of this valid schedule. Tim® is also called thenark-span
assume thak),. = 0. of the scheduleS. Generally, a schedul can be defined as

For data queries in WSNs, we often need build a spanniagsigning0 or 1 to variable X (v;, ¢, k): it is 1 if and only if
treeT of G first for pushing down queries and propagating bagkodev; will relay datumay, at time slott. Clearly, a schedule
the intermediate results. Given a tr€elet H(T') denote the S is valid for data collection ofd using tree7’, iff for every
height of the treei.e., the number of links of the longest pathnodev; and time slot, >, chia(w,) thl X(vj,b) +ny >
from root to all leave nodes. The depth of a negén 7', de- ZZ L X (v, b). Herezv CChild(o) Z X (vj,b) 4 n; is the
noted asir(v;), is the length of the path from the root 9.  otal number of data items nod;é has seen so far till ime slot

The subtree off” rooted at a node; is denoted ag'(v;), the  ; andS™! X (u;,b) is the total number of data items that have
parent node of; is denoted agr(v;), and the set of children peen relayed by node so far till time slott. Then the time-

nodes of a node; is denoted a€’hild (v; ). complexity optimizing data collection problem is to find asp
ning tree7” and avalid, interference-freescheduleS such that
B. Problems and Comp|exities the mark-span is minimized.
We will mainly study the time complexity, message complex-
ity, and energy complexity of data collection in WSNSs. I1l. CONNECTEDDOMINATING SET

The complexity measures we use to evaluate the performanc@ number of our methods will be based on a “good” con-
of a given protocol are worst-case measures. mhssage com- pected dominating set (CDS) that has bounded dedraed
plexity (and theenergy complexityrespectively), of a protocol bounded hop spanning ratio. Some definitions and properties
is defined as the maximum number of total messages (the &-CDS have been studied well in [3]. We list some of them
tal energy used, respectively) by all nodes, over all indlés used in this paper and omit the proof.
over all possible wireless networksof n nodes (and possibly  Given a graphG = (V, E), letC = (Vc, Ec) be a con-
with additional requirement of having diameterand/or max- nected dominating set @ wherel¢ is the set of dominators
imum nodal degre@\) and all possible data distributions df and connectors anfic is the edges between dominators and
overV. Thetime complexitys defined as the lapsed time fromconnectors. For a nodee V¢, let Tc be a BFS tree of. For
the time when the first message was sent until the last masaodev € V \ V¢, we define a unique dominatd(v) which
sage was received. Thawer boundon a complexity measure js the one having the shortest hop distance to thesjnk
(e.g, message complexity) is the minimum complexigyd, Definition 1—Data Communication Tree (DCTjor a
message complexity) required byl protocols that answer the graphG and its CDS, we define the data communication free
queries correctly. The approximation rabg (resp. oas and asT = (V,Tc U {vd(v) |v € V' \ V¢ }.

o) for an algorithm denotes the worse ratio of the time com- Theorem 1:Let G and C be a graph and its CDS respec-
plexity (resp. message complexity and energy consumptidively. The DCTT has following properties:

used by this algorithm compared to an optimal solution oitera 1) A(7T¢) < d.

possible problem instances. 2) For any edge € Er, let I(e) be the set of edges ific

Here we assume that TDMA MAC is used for channel usage. that have interferences with then|I(e)| < c¢-d - A(G)
Obviously, the complexity depends on the TDMA schedule pol-  for some constantdepending orRR /7.

978



Lemma 2:Given agoodCDS of the grapldz, data clustering C. Minimize Time Delay

can be done in ime&(A(G)). Then we study the time complexity of data collection. Notice

IV. EFFICIENT DATA COLLECTION that, the transmi_ssions. of nearby nodes should be in diffe_re
' time slots to avoid the interferences. We assume that & lin
In this section, we design efficient methods for collectingye reliable hereafter.
data in wireless sensor networks. Algorithm 1 presents our efficient data collection method
o based on a good CDS. The constructed CDS has a degree
A. Minimize Message at most a constard, and similar to Theorem 1, all nodes in
We first study the data collection with the minimum numbetDS can be scheduled to transmit once in constaat ©(d)
of messages. When all links are reliable, clearly, we shou¢he-slots without causing interferences to other nod&Dis.
collect any source data from a source negéo the sink node e take3 time-slots as onsund
vo over the path with the minimum number of relay nodes,  First, the data elements from each dominatee node (a node
with minimum hop number. Thus, the following theorem igot in C) are collected to the corresponding dominator node in
straight forward. the CDSC. Here the dominatee nodes that are one-hop away
Theorem 3:Data collection can be done with minimumgom the sink nodey, will directly send the data to,. Notice
number of messages,;”_, n; - h(vi, vo) using a BFS tree with hat this can be done in time-slaf{A(G)) by Lemma 2.
rootuy if all links are reliable. o Now we only consider the dominator nodes and the breadth-
When links are not reliable, lg(u,v) be the reliability fis¢ search spanning trée of nodes in CDS rooted at the sink
of link (u,v), i.e, with probability p(u,v) the packet will "= £yery edge in the tre@c will be scheduled exactly once
be successfully transmitted over litk, v). Assume that the ;1 aach round. For simplicity, we do not schedule sending an
link layer reliability is used. Then clearly, the number of € gjement more than once in the same round. At every round,

pected transmissions over a lifk, v) is 1/p(u, v) forapacket. o4es in CDS push one data item to its parent node until all
Thus, to minimize the total relays for sending a packet froglia are received by

its sourcev; to the sink nodey,, the pathIl must minimize

1 S .
2 (ww)ell plae)? Wh'Ch_ is just the qust Welghted path froMAjgorithm 1 Efficient Data Collection Using CDS
v; 10 vg when the weight of every linKu, v) is defined as Input: A CDS C with bounded degree, treeTc.

1/p(u,v). Thus, to minimize the messages for data collection, . : .
each data packet should be sent using the least weighted pajhEVery nodey; sends its data to its dominator nad:; ).

(where the weight of a linku, v) is 1 /p(u, v)) to the sink node. > © ¢ = 10N do
- . 3. for each node; € V- do

Letp(v;, vg) be the minimum weight of such shortest path. Let . .

. S : If nodew; has data not forwarded to its parent node in
MRPT (maximum reliability path tree) be the tree rooted@t T nodew: sends a new data to its parent in rodnd
formed of all these least weighted paths. Thus, © ‘ P

Theorem 4:Data collection can be done with minimum

number of messages.. , n; - p(vi,v9) Using @ MRPT tree  Theorem 6:Given a connected wireless netwarkdata col-

with rootwy if a link (u, v) has a reliabilityp(u, v). lection can be done in tim&(N) with ©(3_"_; nih(v;, vo))
o messages.
B. Minimize Energy Proof: For proof, please refer to [3]. [ |

We then study the data collection with the minimum energy
cost. Apparently, for any element, it should follow the min-
imum energy cost path from its origin to the sink nagein
order to minimize the energy consumption. So minimizing the One may want to design a universal data collection method
energy is equivalent to the problem of finding the shorteitpa Whose time-complexity, message-complexity and energy-
from the sink to all nodes (where the link cost is the its epergomplexity are all within constant factors of the optimunb-O
cost now), which clearly can be done in tirGgm + nlogn) Serve that Algorithm 1 is a constant approximation for both
for a communication graph of nodes andn links. We call the time-complexity and message-complexity. However, it i no
tree formed by minimum energy path from the root to all nodésconstant approximation for energy-complexity. Consttier
as theminimum energy path tree (MEPTet E(v;, vo) be the following line network examplen + 1 nodes are uniformly dis-
energy cost of the path from to v, with the minimum energy tributedin aline segmefd, r]; Sinkvy is the leftmost node and
cost. Thus, we have nodew; is at position: - r/n and has one data item. Here we

Theorem 5:Data collection can be done with minimum enassume = 1. See Figure 1 for illustration. Assume the energy
ergy cost> ", n; - E(v;,v) using a MEPT tree with roat, if ~ cost for a linkuw is ||uv||?. Then the minimum cost data col-
alink (u,v) has an energy cos (u, v). lection is to let node; send all its data to nodg_;. The total
Clearly, when links are not reliable, we have to take into aenergy costi$"" , i--% ~ 1/2. While the energy cost of col-
count the energy cost in retransmissions. In other words, \eeting data via CDS i§"" , (£)? ~ n/6. On the other hand,
need use&t(u, v)/p(u,v) as the expected energy cost of a linkhe total number of messages of the minimum-energy data col-
(u,v). Obviously, the least cost path based routing is also ofection scheme isi(n — 1)/2 and the time slots used by this
timum for minimizing the total energy cost of data collectib  scheme is als®(n?); both of which ared(n) times of the cor-
the receiving energy codt,. > 0. responding minimum.

V. COMPLEXITY TRADEOFFS FORDATA COLLECTION
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r=1 | examples of such aggregation angn, max, average or vari-
1/n ance In data aggregation, if one node send information twice,
(a) ® i . . S N it can always save the first transmission. Hence, the date@agg
ool Un gation should be done using a tree.

() vy Uy U3 Un

A. Message, Energy, and Time Complexity

Message Complexity The total message complexity for
data aggregation using any tréds ©(n), wheren is the num-
ber of nodes of the network. The lower bound on the message
complexityn is obvious since every nodeneeds send at least
Fig. 1. Example: (a) a line network with+ 1 nodes; (b) the minimum energy once. The upper bound is alsobecause we can do the data
ggﬁiﬁgﬁfnon tree; (c) the data collection tree via CDBergvy is the only aggregation using any spanning tree and every node onlsneed

to send once.

Energy Complexity: For distributive aggregation, it seems

Consider any data collecting algoritha Let o,; and o that we need use some data aggregation tree that is energy effi

be the approximation ratio for the message-complexity afient _since eac_h node needs to send at least once. So the main
energy-complexity of algorithmd. We show that there are que_stlon now is tq constru_ct a tree _such thf';lt_ the total cogt of
graphs ofr nodes such thaty, - o = Q(n). all links are minimized. This clearly is the minimum sparmin

Lemma 7: Assume the energy cost for supporting a link tree, .Where the link cost of any linkv is t.he energy cost of
is ||uv||2. For any data collection algorithm, there are graphs sending a unit amount of data over the link, which can be

of n nodes, such thaty; - o = Q(n). computed in polynomial time.
Proof: For proof, please refer to [3] m Time Complexity: We will show that the time complexity

Notice that we generally assumed that the energy cost 1‘8LSUCh Kind ofdgta aggregationis of the or&d%H-A(_G)),
supporting a linkuv is [[uv||*. Then we can show that W ereH is the height of the BFS tree rooted at the sink node

o1 no—1 . . vg. Notice that for a BFS tree for a gragh, its heightH is
(em)* "o 2 =T N?E'Ce that 5"1(31@’5 = iﬁ?do‘ = 2 9(D(G)), thus the time complexity is of the order 6D +
we have(or)* (er)*" > (om)" op = Fz=r. CoOnse- A(@)) too. Algorithm 2 illustrates our method.

quently,oxs - 05 = n/2 still holds. Theorem 11:Data aggregation can be done@(D + A)
When we also take the maximum degrkénto account, the time with » messages.

above lemma implies the following corollary (the proof is es Proof: For proof, please refer to [3]. m

sentially same). If there are more than one aggregation functions, we caneteli
Corollary 8: For any data collection algorithtd, there are the messages one by one. We call this as sequential aggregati

graphs of: nodes with maximum degre®, suchthabr-or = Corollary 12: k sequential data aggregations can be done in

Q(A). O(D + A + k) time with kn messages.

The above lemma also implies that for any data collection
algorithm A, ons - or - o7 = Q(A), wherepr is the approxi-

. . . . B. Complexity Tradeoffs
mation on the time-complexity by algorithp. We then show ) ] ]
that for Algorithm 1,05 = O(A(G)). Again, we may want to design a data aggregation method that

Lemma 9: Algorithm 1 is oz = O(A(G))-approximation has constant approximation ratios for message compléixitg,
for energy cost. complexity, and energy complexity. First, aggregatiorellasn
Proof: For proof, please refer to [3]. m MST (that is energy optimum for aggregation) is not efficient

Consequently, we know that Algorithm 1 is asymptoticallf°" fime complexity. . _
optimum if we want to optimize the time-complexity, message -€Mma 13:The minimum energy data aggregation based on

complexity and energy-cost-complexity simultaneouslytee  MSTiSor = Q(min(x, v nA))-apEroximation for time com-
other hand, the minimum energy data-collection based on mp{€Xity- On the other handy = O(3).

imum energy path tree (MEPT) has delay that is at noxst?) Proof: For proof, please refer to [3]. u
times of the optimum. Observe that our method (Algorithm 2) has constant ratio for

Lemma 10:Data collection using MEPT isop — both message complfe).dty and time complegity. However, it is
O(A(G)*)-approximation for time complexity. not always energy efficient due to the following lemma.

Proof: For proof, please refer to [3]. forL:rzzg?/ii:sélgorithm 2isep = O(A(G))-approximation

Proof: For proof, please refer to [3]. [ |
VI. DATA AGGREGATION Although our method is not energy efficient in the worst case
We consider the case when the data aggregation is distrifyith approximation ratio up t®(A)), we show that it is the
tive. In other words, given any nodeand its set of children bestwe can do if we want to achie@g1) ratio in delay. Again,
nodesus, uy, - - -, uq, Whered is the number of children nodesgiven a data aggregation methed let o, or andoy, be the
of v in a data aggregation tree, the data produced by nddes approximation ratios ofd over all networks withn nodes and
size same as the size of each of the individual node. Typidapximum degreé\. We prove the following lemma.
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Algorithm 2 Efficient Data Aggregation Using CDS

that this is often the case in practice. We also assume tbaj ev

Input: A CDSC with bounded degres, a distributive function node hasP original data packets to be aggregated. For a data

f and corresponding function
1. for each dominator nodeg do

aggregation tre@” and an internal node;, the energy cost is
(E.-d,,(T)+ E)- P,whereE,. is the energy cost for receiving

2:

For the set of dominatee nodes of the nogave builda @ data packet, and’ is the energy cost for sending a packet.
minimum spanning tree (MST) rooted &, where the TO Minimize the maximum energy cost of nodesn 7, it is
link weight is the energy cost for supporting the linkeduivalent to minimizel,, (T), i.e, the maximum node degree
communication. The data elements from all these dorif 7'- Then itis easy to show the following lemma. .
inatee nodes are theaggregatedto the corresponding ~L-eémma 16:Minimizing the maximum energy consumption
dominator nodev; along the minimum spanning treePY all nodes for data aggregation is equivalent of findingamnsp
of these dominatee nodes. In other words, any nofd re€Z” with the minimum maximum node degree’h

vr Will computeh(f(Ap), @x.1, Thos- -+ ap.q,) Where Flndlng a spanning tre€ in a general g_raph with minimum
w1, for j € [1,dy), is the aggregated value nodgre- d_egr_ee is NP-hard problem. Recently, Bé:rraI.[Z] prpposed_a
ceived from itsjth child in the minimum spanning treedistributed method that can find a spanning tree with maximum
andd,, is the number of children of nodg in the MST N0de degree at moslPTree(G) + 1, whereOPTree(G) is

of all dominatee nodes of. Notice that this aggregationthe smallest maximum node degree of all spanning trees for
can be done in time-sloB(A(G)). In this paper, we assumed that only a sulidet U of nodes

3: Now we only consider the dominator nodes and tnpave data to be aggregated. Thus, we need a Steinef'tree
breadth-first-search spanning trée of nodes in CDS that minimizes the maximum node degree if a single spanning

rooted at the sinky.
4. fort =1to H do

treeT" is needed for data aggregation. A polynomial time al-
gorithm that produces a Steiner trf€gspanning a subséf of
nodes in a general gragh) with the maximum degree at most

5. for each node; € V¢ do 3 .

6: If node v; has received aggregated data from all it £27ee(G, V) +1is presentedin [6]. . .
children nodes i, it sends the aggregated data (us- Lemma 17.:” a smgle data aggregation trée is required
ing its own data and all aggregated data from its chi|(9r aggregating data |tem§ from a sqb%bf sensor nodes,
dren) to its parent node in rourd we can construct a tre& in polynomial time sgch that the

maximum energy consumed by any node7his at most
. 1 (1 + oprresiavy) times of the optimum.
,,, ‘ ; ‘ In addition to only minimizing the maximum energy cost by
‘i'l J. 1 l a node, in practice, we often need to minimize the total gnerg
(2) I S ap * N ’, cost while the maximum energy cost by a nagés at most a
value E (v;). We first show that this problem is NP-hard. No-
(b) I TR oY e s tice that for a data aggregation tré¢e and a node; in 7' we
know that the energy cost of nodegis E, - d,,(T) + E when
we need aggregate a single packet from each of the nodés in
R T . R Then requiring that the total energy cost of nagés at most a
value F4(v;) is equivalent as,. - d,,, (T) + F < FEq(v;), i.e,
Fig. 2. Example: (a) the line network with + 1 nodes; (b) the minimum the node degree af, in T', d,, (T") < W Thus, an up-

energy data aggregation tree; (c) the tfee

Lemma 15:For any data aggregation algorithfy there are
graphs o nodes with maximum degre¥, such thaby-op =
Q(A).

Proof: For proof, please refer to [3]. [ |

per bound on energy consumption is eduivalent as specifying
an upper bound(v;) = Z:L%)=E on the node degree of in

the spanning tree. Then for all spanning trees meeting s d
gree requirement for all nodes € V', we will find a spanning
tree with the minimum total energy cost. Given a wireless net
work GG, and a degree requirement specified by a veBtolet
MCost(G, B) be the minimum cost of all the spanning trees

in G that satisfy the degree requireméht Based on a recent

C. Minimizing the maximum energy consumption by a node result by [15], we can prove the following theorem.
We assume that all nodes have the same amount of datdheorem 18:Given a degree upper bourgl(v;) for each

to be

flax,az,- -

aggregated and the aggregation funcficsatisfies that nodew;, there is a polynomial time algorithm that can find a
,a,) has size as the maximum sizef i.e, the data aggregation trég such that the degreg, (T') of nodev;

aggregated data can be represented by a single packet ibeadh 7" satisfies thatl,, (7') < B(v;) + 1, and the energy cost of
the input data items is represented by a single packet. $n tfiis at mostM Cost(G, B).
subsection, we then study how to design efficient method for

minimizing the maximum energy consumption for data aggre- VII.

RELATED WORK

gation. We first assume that the energy consumption for sendMost existing convergecast methods [1, 7, 16] are based on a
ing a single data packet over all linksv; € G is the same tree structure and with minimum either energy or data latenc

(say E) or within a small constant factqr of each otheri(e.,

as the objective. For example, [16] first constructs a tree us

E(vivj) < pE(vp,v,) for all links v;v; andv,v,). Observe ing greedy approach and then allocates DSSS or FHSS codes
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for its nodes to achieve collision-free, while [1, 7] usesM®
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algorithm for convergecast that has the expected running ti der grant No. 2007AA01Z180, Hong Kong RGC HKUST 6169/07, the

O(logn) and use®)(n log n) times of minimum energy in the RGc under Grant HKBU 2104/06E, and CERG under Grant PolyU-
worst case, where is the number of nodes. They also showeg,35/07¢.

the lower bound of running time of any algorithm in an arbi-
trary network i2(log n). However, they assume that all nodes
can dynamically adjust its transmission power froto any ar-
bitrary value and a data message by a node can caaltadata

it has collected from other nodes. In [4], Cetial. studied
how to provide approximate and bounded-loss data coliectid?!
in sensor networks instead of accurate data. Their methed us
replicated dynamic probabilistic models to minimize commu 3]
nication from sensor nodes to the base station.

To significantly reduce communication cost in sensor netq]
works, in-network aggregation has been studied and imple-
mented. In TAG (Tiny AGgregation service) [11], besides thets]
basic aggregation types (such@sunt min, max sum aver-
age provided by SQL, five groups of possible sensor aggre[-e]
gates are summarized: distributive aggregages count min,
max sun), algebraic aggregates.{), average, holistic aggre-
gates €.g, mediar), unique aggregate®.g, count distinc}, Y
and content-sensitive aggregatesy( fixed-width histograms [g]
andwavelet}. Notice that the first two groups aggregates are
very easy to achieve by a tree-based method. To overcome
severe robustness problems of the tree approaches [1T]12,
multipath routing for in-network aggregation has been pezul
[5, 14]. Then recently Manjhet al. [13] combined the advan-
tages of the tree and multi-path approaches by running them
simultaneously in different regions of the network. In [8]{11]
Kashyapet al. studied a randomized (gossip-based) scheme
using which all the nodes in a complete overlay network cdte]
compute the common aggregatesidh, max, sum, average,
andrank of their values usin@ (n log log n) messages within [13]
O(log nloglogn) rounds of communication. Kemp al.[9]
earlier presented a gossip-based method which can get {he[ﬁﬁ
erage inO(logn) rounds withO(n log n) messages.

(1]

(10]

VIIl. CONCLUSION [15]

In this paper, we study the time complexity, message com-

. . . {461
plexity, and energy complexity of data collection and da

aggregation problems in wireless sensor networks. We first

present efficient algorithms that achieve asymptoticgijroal 7]

message complexity, energy complexity, and time compjexi;g)

We then study the lower bound of the complexities for these

problems and show that our method achieves the best possible

tradeoffs among these three metrics. There are still a nuaibe
interesting questions left for future research. One is wgie
efficient algorithms when each node will produce a datastrea
The second challenge is what is the best algorithm when we do
not require that the found data item to be predise,we allow
certain relative errors, or additive errors on the foundnaars
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