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ABSTRACT 
 

This paper describes a novel force-driven 
evolutionary approach for solving multi-objective 3D 
deployment problems in differentiated wireless sensor 
networks (WSNs). WSN is a wireless network 
consisting of spatially distributed autonomous sensors 
to monitor physical or environmental conditions. 
Deciding the location of sensor to be deployed on a 
terrain with the consideration of different criteria is an 
important issue for the design of wireless sensor 
network. A multi-objective genetic algorithm with a 
force-driven method is proposed to solve 3D 
differentiated WSN deployment problems with the 
objectives of the coverage of sensors, satisfaction of 
detection levels, and energy conservation. The 
preliminary experimental results demonstrated that the 
proposed approach is capable of obtaining a set of 
non-dominated solutions for multi-objective 3D 
differentiated WSN deployment problems.  
 
1. INTRODUCTION 
 

A wireless sensor network (WSN) is a wireless 
network consisting of spatially distributed autonomous 
sensors to monitor physical or environmental 
conditions. Sensor nodes of a WSN are deployed over 
a region to sense events on geographical areas and 
transmit collected data to a sink node for further 
operations. Depending on the requirements, sensors 
could be deployed in diverse scenarios [4,9]. Therefore, 
deciding the location of sensor to be deployed on a 
terrain is an important issue. Several different 
objectives should be considered and fulfilled in the 
design phase of WSNs, such as the coverage and 

accuracy, reaction time and survivability of the sensor 
network. However, these objectives may be in conflict 
with one another and of different importance to 
mission planners [10].  

Coverage is one of the fundamental issue in the 
deployment of WSNs. WSNs have to maintain 
sufficient coverage quality in order to capture the 
timely changing targets [13]. For enhanced coverage, a 
large number of sensors are typically deployed in the 
sensor field and, if the coverage areas of multiple 
sensors overlap, they may all report a target in their 
respective zones [3].  

Differentiated sensor network deployment, which 
considers the satisfaction of detection levels in 
different geographical characteristics, is also an 
important issue [1]. In some specially designated WSN 
applications, such as underwater sensor deployment, 
mudflows and landslide monitoring, depending on the 
event's location, the supervised area may require 
different detection levels. Therefore, the sensing 
requirements of these applications are not uniformly 
distributed within the area. As a result, the deployment 
strategy of WSN should take into consideration the 
geographical characteristics of the monitored events.  

Energy conservation for the lifetime of sensors is 
another rising issue [5]. Due to the limited energy 
resource in each sensor node, utilizing sensors in an 
efficient manner so as to increase the lifetime of the 
network is an important task in the design phase of 
WSNs. There are two different approaches: scheduling 
and adjusting methods, to the problem of conserving 
energy in sensor networks. We focus on adjusting the 
sensing range of each sensor in order to reduce the 
overlaps among sensing ranges while keep the 
detection ability above a predefined detection level.  

In this paper, a 3D differentiated WSN deployment 
problem is formulated into a multi-objective 
optimization problem. Three objectives are to be 
optimized: maximizing coverage of sensors, satisfying 
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the required probability of detection level, and 
minimizing the detection power by adjustable sensing 
range. A multi-objective genetic algorithm (MOGA) 
framework with a novel force-driven method is 
proposed to solve these problems.  
 
2. RELATED WORK 
 
2.1. WSN Deployment Problem 
 

Coverage issue is one of the most important tasks in 
WSN. The ultimate goal is to have each location in the 
physical space of interest within the sensing range of at 
least one sensor. However, due to the number of 
sensors is limited, complete coverage cannot be 
guaranteed. Therefore, many approaches are proposed 
to deal with the 2D coverage problem [7, 10]. Recently, 
Oktug et al. [9] proposed an approach to solve 
coverage problem by simulating sensor deployment 
strategies on a 3D terrain model and to find answers to 
questions that how many sensors are needed to cover a 
specified 3D terrain at a specified coverage percentage.  

Different applications require different degrees of 
sensing coverage. While some applications may 
require a complete coverage in a region, others may 
only need a high percentage of coverage. Such WSN is 
called differentiated WSN [1]. Take underwater sensor 
deployment [2] as an example, sensor field of 
underwater is characterized by the geographical 
irregularity of the sensed events because some area 
may be inaccessible or the event area may not be 
uniformly distributed. To efficiently monitor such area 
with differentiated detection levels, fulfillment of 
detection levels in different area is the major concerns 
instead of maximizing the coverage of sensors [11]. 
Aitsaadi et al. [1] proposed a probabilistic event 
detection model. In this model, each grid point has a 
required minimum probability detection threshold.  A 
tabu search method is proposed to solve this 
differentiated WSN deployment problem. 

In recent years, utilizing limited energy efficiently 
in a wireless sensor network has become an important 
issue. Several techniques, such as scheduling models 
and sleep models [4, 8, 12], have been proposed to 
extend the lifetime of WSNs.  
 
2.2. Multi-objective Evolutionary Optimization 
 

Assume the multi-objective functions are to be 
minimized. Mathematically, multi-objective 
optimization problems (MOOPs) can be represented as 
the following vector mathematical programming 
problems  

1 2( ) { ( ), ( ), ..., ( )}iMinimize F Y F Y F Y F Y= , (1)
where Y denotes a solution and Fi(Y) is generally a 
nonlinear objective function. Pareto dominance 
relationship and some related terminologies are 
introduced below. When the following inequalities 
hold between two solutions Y1 and Y2, Y2 is a non-
dominated solution and is said to dominate Y1 (Y2 

Y1): 
).()(:)()(: 2121 YFYFjYFYFi jjii >∃∧≥∀  (2)

When the following inequality hold between two 
solutions Y1 and Y2, Y2 is said to weakly dominate Y1 
(Y2 Y1): 

).()(: 21 YFYFi ii ≥∀
 

(3)
A feasible solution Y* is said to be a Pareto-optimal 
solution if and only if there does not exist a feasible 
solution Y where Y dominates Y*. 

By making use of Pareto dominance relationship, 
multi-objective evolutionary algorithms (MOEAs) [6] 
are capable of performing the fitness assignment of 
multiple objectives without using relative preferences 
of multiple objectives.  

 

 
3. PROBLEM STATEMENT 
 
3.1. Notations 
 

In order to formulate problems, the following 
notations are introduced:  

• i : sensor index, i = 1,2,3,…,N.  

• j : grid point index, j = 1,2,3,…,M.  

• k : sensing range index, k = 1,2,3,…,K.  

 
3.2. Environment 
 

We assume that N sensors s1,s2,…, sN are deployed 
to cover the sensor field. Let the sensor field T consist 

Figure 1. Terrain with different required 
detection levels: decreasing linear, normal, 
Poisson, and exponential distributions. 
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of nx, ny, and nz grid points p1,p2,…, pM in the x, y, and 
z dimensions, respectively [3]. Each sensor has an 
initial sensor energy E and has the capability to adjust 
its sensor range. Sensing range options are r1,r2,…, rK, 
corresponding to energy consumptions of e1,e2,…, eK 
and detection error ranges f1,f2,…, fK (fk < rk) [4]. We 
assume that each grid point pj in sensor field is 
associated a required minimum probability detection 
level, denoted t(pj). 

 
3.3. Mathematical Formation of 3D 
Deployment Problem 
 
3.3.1. Maximization of Coverage.  

In many WSN applications, the main task is the 
surveillance of certain geographical areas [9]. Target 
location can be simplified considerably if the sensors 
are placed in such a way that every grid point in the 
sensor field is covered by sensors [3]. Assume that 
sensor si is deployed at grid point. For any grid point pj, 
the Euclidean distance between sensor si and grid point 
pj is denoted as  

222 )z(z)y(y)x(x)p,d(s jijijiji −+−+−= (4)

, where xi, xj, yi, yj, zi and zj are coordinate location 
values. The following equation shows a binary 
coverage model expressing the coverage cb(si, pj) of a 
grid point pj by sensor si.  

⎩
⎨
⎧ <

=
otherwise,

)(sr),pd(sif,
),p(sc ikji

jib 0

1
 

(5)

, where rk(si) is the sensing range of the sensor si. 
The coverage rate optimization problem F1 can be 

defined by  

1
1.

M

b j
j

c (p )
Max F

M
==
∑

 (6)

, where cb(pj) is the coverage of all sensors at grid 
point pj by the Equation (5). This objective is to be 
maximized. 

 
3.3.2. Maximization of Differentiated Detection 

Levels.  
Considering differentiated detection levels, assumed 

that each grid point pj in sensor field T is associated a 
required minimum detection level t(pj).  A terrain may 
have different required detection levels, as illustrated 
in Figure 1. A good  deployment for differentiated 
WSN should satisfy the following condition: for each 
pj in T, the measured detection probability of  pj should 
be greater than or equal to t(pj) [1].  

A probabilistic detection model for sensor 
deployment [1] is adopted into our model. Assume that 

event detection probability of a sensor diminishes as its 
distance to the sensed point increases. A probabilistic 
detection model of sensors is expressed as  

( )
( )

( )

0 if

if

               

1 if

β

k

k i k i i j

λα
k i k i i j

p i j

k i k i

i k i i j

, r (s ) f (s ) d s , p

e , r (s ) f (s ) d s , p
c (s , p )

r (s ) f (s )

, r (s ) f (s ) d s , p

−
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⎪
⎪ − < <⎪= ⎨

+⎪
⎪
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(7)

, where α = d(si, pj) - (rk(si) - fk(si)), λ and β are 
parameters that measure the detection probabilities 
when an object is within a certain distance from the 
sensor, and fk(si) is the error ranges of the sensor si. 
Each sensor si has a detection probability cp(si, pj) at 
grid point pj. A grid point pj might be covered by more 
than one detection range of different sensors [8]. When 
a detection area is overlapped by multiple sensors, the 
closer are the sensors to each other, the higher is the 
detection probability of the grid points [7]. The 
conjunctive detection probability of all sensors at grid 
point pj is given by 

1

1 1 .
N

p j p i j
i

c (p ) ( c (s , p ))
=

= − −∏  
(8)

The optimization of the satisfaction required 
probability of detection level F2 is expressed by:  

1
2

1

.

M

j
j

M

j
j

DP(p )
Max F

t(p )

=

=

=
∑

∑
 (9)

0
,where .

0
j p j j

j

t(p ) if c (p ) t(p )
DP(p )

otherwise

− ≥⎧
= ⎨
⎩

 

This objective is to be maximized. 
 
3.3.3. Minimization of Energy Consumption  

In terms of energy consumption, we only consider 
the energy used in sensing, but not including the power 
consumed by radio communication and computation. 
The sensing ranges of a sensor determine the energy 
consumed by the sensor [4]. We adopted an energy 
model in our evaluation. The power consumption is 
proportional to the square of the sensing range rk [11]. 
The energy consumption model is expressed as follows:  

2)(sr)(se ikik ×= μ , (10)

where μ is an energy consumption parameter. The 
optimization of the detection power minimization with 
adjustable sensing range F3 can be formulated as  

1
3

max
1

.

N

k i
i

N

i
i

e (s )
Min F

e (s )

=

=

=
∑

∑
 (11)
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, where emax(si) is the maximum detection range of each 
sensor. This objective is to be minimized. 
 
4. FORCE-DRIVEN MULTI-OBJECTIVE 
GENETIC ALGORITHM (FD-MOGA) 
 
4.1. Chromosome Representation 
 

A chromosome has gene information for solving the 
problem in FD-MOGA. Each chromosome has fixed 
gene size, which is determined by the number of 
sensors in the WSN. Each gene has a x, y, and z 
coordinate location and a sensing range. The ranges of 
each gene of coordinate location are [0, nx], [0, ny], and 
[0, nz] in the x, y, and z dimensions. Hence these 
sensors will have coordinate values to denote their 
location. Each gene of sensing range is one of r1,r2,…, 
rK, which represent the detection ability of the sensor. 

 
4.2. Fitness Assignment 
 

We use a generalized Pareto-based scale-
independent fitness function (GPSIFF) considering the 
quantitative fitness values in Pareto space for both 
dominated and non-dominated individuals. Let the 
fitness value of an individual Y be a tournament-like 
score obtained from all participant individuals by the 
following function:  

( )F Y p q c= − +  (12)

, where p is the number of individuals which can be 
dominated by the individual Y, and q is the number of 
individuals which can dominate the individual Y in the 
objective space. c is set to the number of all participant 
individuals. 
 
4.3. Genetic Operators 
 

The genetic operators used in the proposed 
approach are widely used in literature. The selection 
operator uses a binary tournament selection without 
replacement. The uniform crossover is used in FD-
MOGA. A simple mutation operator is used to alter 
genes. For each gene, randomly generate a real value 
from the range [0, 1]. If the value is smaller than the 
mutation probability pm, replace its index with a 
randomly generated integer among its possible values. 
 
4.4. Repulsion and Attraction Force Mutation 
 

To prevent sensors from overly centering in some 
positions in individuals, a force-driven method is 
introduced. The proposed force-driven method consists 

of two forces: repulsion force and attraction force.  
While the density of sensors within a certain space is 
high, a repulsion force mutation is to increase the 
degree of spread between sensors. On the contrary, 
while the density of sensors is low, an attraction force 
mutation is used to centralize sensors within a certain 
space. The procedure of repulsion and attraction force 
mutation is written as follows:  
Step 1: Space Division Divide the sensor field T into 
bnx, bny, and bnz large grid space bp1,bp2,…, bpL, 
where nx> bnx, ny> bny, and nz> bnz. 
Step 2: Position Compute the position of sensors 
within each large grid space bpl, l = 1,2,…, L. Partition 
the sensors within the large grid space bpl into a set Sl. 
Step 3: Statistics Calculate the number of sensors, bl, 
in each set Sl .  
Step 4: Repulsion Mutation If the number bl of 
sensors in a large grid space bpl is bigger than one, 
repulse the positions of sensors in Sl from their 
centroid with one grid point in every dimension, and 
increase one level of sensing range in these sensor. 
Step 5: Attraction Mutation If the number bl of 
sensors in large grid space bpl is equal to one, let the 
sensors adjacent to the large grid space bpl be attracted 
and move to the position of the sensor in Sl with one 
grid point for every dimension, and decrease one level 
of sensing range in these sensors.  
 
4.5. Procedure of FD-MOGA 
 

An elitism strategy is adopted. An elite set E with 
capacity Emax will maintain all the best non-dominated 
solutions generated so far. The procedure of FD-
MOGA is written as follows:  
Input: population size Npop, recombination probability 
pc, mutation probability pm, the number of maximum 
generations Gmax.  
Output: The optimum solutions ever found in P.  
Step 1: Initialization Randomly generate an initial 
population P of Npop individuals, and create an empty 
elite sets E.  
Step 2: Evaluation For each individual in the 
population, compute all objective function values F1, 
F2, and F3.  
Step 3: Fitness assignment Assign each individual a 
fitness value by using GPSIFF.  
Step 4: Update elitist Add the non-dominated 
individuals in E. Considering all individuals in E, 
remove the dominated ones in E. If the number of non-
dominated individuals in E is larger than Emax, 
randomly discard excess individuals.  
Step 5: Selection Select Npop - Nps individuals from the 
population to form a new population using the binary 
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tournament selection and random select Nps individuals 
from E to form a new population, where Nps = Npop×ps 
and ps is a selection proportion. If Nps is greater than 
the number NE of individuals in E, let Nps = NE..  
Step 6: Recombination Perform the uniform 
crossover operation with a recombination probability 
pc.  
Step 7: Mutation Apply the simply mutation operator 
to each gene in the individuals with a mutation 
probability pm.  
Step 8: Repulsion and Attraction Mutation Execute 
the repulsion and attraction mutation to each individual 
with two probabilities pr and pa. 
Step 9: Termination test If a stopping condition is 
satisfied, stop the algorithm. Otherwise, go to Step 2. 

 

 
 
5. RESULT AND DISCUSSION 
 
5.1. Simulation Environment and Parameters 

 
A 3D WSN deployment benchmark generator for 

WSN environment is designed to generate different 
scale of sensor fields with different models of 
detection probability levels. A sensor field with 
50×50×50 grid points is generated. The same terrain 
with four different required minimum detection 
probability levels: decreasing linear, normal, Poisson, 
and exponential distributions, are illustrated as four 
different benchmarks. Figure 2 illustrates a terrain with 
linear decreasing levels. For the sensors of WSN, we 
assume each sensor has five adjustable sensing ranges 
6, 8, 10, 12, 14, and the detection error ranges are half 
of the sensing range of each sensor. The power 
consumption parameter μ is 1. The probabilistic 
detection model parameter β is 0.5 and the detection 
radio wave parameter λ is 0.5. 

  The parameter settings of the proposed algorithm 
are listed as follows: population size Npop=200, 

maximum number elite set of individuals Emax=10000, 
selection elite set proportion ps=0.2, division of large 
grid space 5×5×5, recombination probability pc=0.9, 
mutation probability pm=0.01, repulsion probability 
pr=0.1, attraction probability pa=0.1, the number of 
maximum generations Gmax=500 and 1000. Thirty 
independent runs are conducted for each problem. The 
number of sensor nodes to be deployed is limited to 20. 
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Figures 3-4 depict the box plots of obtained non-

dominated solutions. The results indicate that different 
detection levels pose different difficulties for FD-
MOGA. The problems with normal and Poisson 
detection levels are more difficult to find a good 
deployment plan than problems with decreasing linear 
and exponential detection levels using the same 
number of sensors. The number of sensors required for 
a terrain with normal and Poisson detection levels 
should be bigger than the same terrain with decreasing 
linear and exponential detection levels. 

A naïve MOGA without elitism and repulsion and 
attraction mutation is also implemented. The coverage 
metric C(A,B) of two solution sets A and B [6] used to 
compare the performance of two corresponding 

Figure 3. Box plots of non-dominated solutions for 
solving the 3D deployment problem with linear and 
exponential detection levels, using 20 sensors.  

Figure 4. Box plots of non-dominated solutions for 
solving the 3D deployment problem with normal and 
Poisson detection levels, using 20 sensors.  

Figure 2. A terrain with decreasing linear detection 
levels. 
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algorithms, FD-MOGA and MOGA, considering all 
the objectives.  

( ) { }.,,,
B

baBbAaBAC ∈∈
=  (13)

The value C(A, B)=1 means that all individuals in B 
are weakly dominated by A.  Figure 5 depict box plots 
of coverage metric of FD-MOGA and MOGA in 
solving the 3D deployment problems with four 
detection levels, using 20 sensors. The result 
demonstrates the effectiveness of the elitism and force-
driven mutation used in FD-MOGA.  
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6. CONCLUSION 
 

In this paper, a force-driven multi-objective 
evolutionary approach is proposed to solve 3D 
differentiated WSN deployment problems. 
Experimental results demonstrated FD-MOGA is 
capable of optimizing coverage, satisfaction of 
detection levels, and energy conservation. Moreover, 
FD-MOGA can provide mission planers a set of non-
dominated solutions for deployment of sensor nodes. 
The results also indicate that some problems with 
unusual detection levels requirements may require 
more sensor nodes for FD-MOGA than those of 
problems with usual detection levels requirements. Our 
future work will develop specialized techniques for 3D 
WSN deployment problems with unusual detection 
levels. 
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Figure 5. Box plots of coverage metric of FD-MOGA 
and MOGA for solving the 3D deployment problems 
with four detection levels, using 20 sensors. 
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