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Abstract

Certain popular wireless sensor network applications,

including disaster recovery, battlefield communication and

athlete monitoring, are characterized by extensive node

mobility, intermittent contact between nodes and a highly

dynamic network topology. Traditional routing protocols and

security schemes are designed for essentially static networks

and do not perform well in this case. This has given rise

to a new multi-hop routing paradigm, that of ”mobility-

assisted” routing in which nodes make strategic data store-

and-forward decisions on a per-hop basis. In this paper we

discuss the security challenges relevant to mobility-assisted

routing and propose a scheme to secure data communica-

tion between nodes in highly mobile sensor networks. Our

solution utilizes symmetric-key encryption to ensure data

confidentiality and varies encryption key in a verifiable,

non-forgeable manner to allow easy authentication. This

scheme also provides data freshness, semantic security and

per-hop encryption to enable secure data aggregation. To

validate our basic assumptions and fine-tune our scheme,

we collect and analyze link connectivity statistics from

a dynamic sensor network application, athlete monitoring

during a first-division university soccer club match. We

show that our scheme is well-suited for certain dynamic

environments and serves as an effective first step towards

securing communications for mobile sensor networks.

1. Introduction

Wireless sensor networks (WSNs) have evolved from tra-

ditional isolated applications (habitat monitoring, preventive

maintenance) to take on a more people-centric focus (body

sensor networks, vehicular networks) and this has led to new

challenges in network design. Securing sensor networks is a

popular research area and there is a plethora of mechanisms

which address various aspects of network vulnerability. Al-

most all these schemes, however, operate on the assumption

that sensor nodes are stationary and network topology is

static for the most part. This assumption is contrary to

certain high profile and highly dynamic applications that

include disaster recovery, healthcare, athlete monitoring and

battlefield communications where node mobility is essential

to the application.

We envisage a scenario where sensor nodes are highly

mobile within the network and only come in intermittent

contact with other nodes. Link connectivity is sparse and

routes are constantly changing. Complete paths from source

to sink do not exist most of the time. Traditional routing

mechanisms are highly inefficient when faced with unpre-

dictable route changes and network splits and joins. In the

domain of ad hoc networks, this has motivated proposals for

a new routing paradigm, that of ”mobility-assisted” routing

[1] which operates on the principle that end-to-end paths-

over-time may exist from source to destination and data can

be effectively delivered by making local store-and-forward

decisions at the nodes themselves. Messages could be sent

over one link and stored at the next hop till another link

comes up in the path and then forwarded and so on till

the destination is reached. Securing communication over this

underlying routing mechanism poses a research challenge.

A highly active zone such as a disaster recovery site

[2] is a good example of a dynamic network application:

wireless sensor devices would be worn by first responders,

firefighters, etc. to monitor their vital signs and transmit

essential information, e.g. location [3]. Sensors would also

be deployed on the injured for triage purposes. Paramedics

could carry PDAs or hand-held devices to function as mobile

base-stations. The network would be in a constant state of

flux, most nodes would not know of definite routes to the

sinks, they would transmit data to the nearest nodes in range

which would buffer and forward it on in turn.

There is a strong trend towards securing privacy in real

world applications, especially in the case of medical data.

The need for security is also apparent if one considers a

battlefield deployment where data is of critical importance

and the potential for attack on the network is far greater.

If military personnel are equipped with WSN devices on

the field to monitor condition, location or simply enable

communication, it would be reasonable to assume a high

level of activity and unpredictable link connectivity.

Athlete monitoring [4] similarly presents a highly dy-

namic network application. There have been efforts to de-

ploy miniature devices to remotely monitor sports such as

cycling [5] and rowing [6]. To motivate our security solution,
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we take up the example of a soccer game in which players

wear small wireless sensor devices. These devices, worn

on the soccer field, form a network and use multiple hops

to route vital information, such as player heart rate, body

temperature, velocity, etc. back to the base-station where it

can be viewed in real time. This data is invaluable for ath-

lete training, monitoring player performance and preventing

injury.

This scenario presents considerable security challenges.

Players would be moving very fast and there will be frequent

falls and physical contact. Network routes would last for

mere seconds before being disrupted. Per-link encryption

keys clearly cannot be used. A global key, shared by all

nodes, addresses data confidentiality, but is hard to protect

and allows nodes to impersonate as others. Implementing

pairwise keys between nodes requires a neighbour-discovery

protocol for communication and restricts the node to uni-

cast encryption and limits routing efficiency. Giving nodes

unique keys which they share with the base-station for end-

to-end encryption does not permit data aggregation and

exposes the network to battery-drain attacks.

In our scheme, every device in the network essentially

uses symmetric key cryptography with time-varying keys

from a one-way key-chain to enable per-hop encryption

of data. Encrypting the data ensures confidentiality and

the inherent one-way structure of the key-chain enables

authentication: new keys can be verified by receivers as

to their source on the basis of older ones in the chain, but

cannot be forged. Encrypting on per-hop basis allows nodes

to verify and aggregate incoming data thereby limiting

attacks and reducing wireless overhead. Additionally, by

exploiting the limited-broadcast nature of sensor networks,

our security scheme can be easily adapted to support more

advanced mobility-assisted routing mechanisms [7] such as

controlled flooding, single-copy [8], spraying techniques [9]

[10], etc.

The contributions of this paper are:

• we list operating assumptions a security scheme for dy-

namic wireless sensor networks must take into account

and support them with experimental results from a real

soccer match deployment

• we propose a scheme to enable secure communication

of data as an ambitious first step

• we demonstrate how our scheme can be tuned as per

application scenario using link-connectivity statistics

The rest of the paper is organized as follows: Section

2 details our soccer match deployment, the threat model,

solution requirements and summarizes previous work from

literature. We discuss our security solution in Section 3. In

Section 4, we analyze link connectivity statistics to show

how the scheme can be configured for different mobility

characteristics. We conclude in Section 5 with ideas for

future work.

2. Problem Overview and Related Work

This section discusses the setup for soccer player monitor-

ing, preliminary results, outlines the threat model, solution

requirements and summarizes related work from the litera-

ture.

2.1. Experimental Setup

We attached MicaZ motes using arm-straps to players

from the University of New South Wales Football Club

(UNSWFC) first division mens soccer team during a pre-

season trial match. The goal was to collect link connectivity

statistics to enable off-line application modeling (in our case,

soccer player monitoring). The game was played on a field

measuring 90m x 45m. Fig.1 and Table 2.1 depict player

positions. Eight base stations are mounted around the field

at regular intervals to act as sinks for the data.
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Figure 1: Player positions on the soccer field

Motes worn by the players acted as beacons and broadcast

their unique ID and a sequence number at the highest

available power level (1mW) once per second. A base-

station synchronized the entire network before game com-

mencement and, to prevent packet collisions, each mote

was assigned a unique 90 ms slot per second for data

transmission.
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Mote ID Position

B1 - B8 Base Stations

1 Centre Attacker

2 Back

3 Centre Midfield A

4 Left Back

5 Midfield

6 Left Wing

7 Right Wing

8 Centre Midfield B

9 Striker

10 Centre Back

11 Goal Keeper

Table 1: Table 1: Player Positions and Mote Numbers

Packet receipt was noted and time-stamped by all motes

and base-stations within range. From these results, we

compiled a record of node ‘encounters’, a time-line of

which mote can be heard at what time and by which entity.

Readings were collected over a 20 minute period (limited by

MicaZ onboard memory). The results of this experiment are

available for online viewing in a dynamic Java applet at [11].

We acknowledge that repeat trials will yield a different set

of results but that, over time, key characteristics and trends

can be identified, measured and anticipated.We present some

initial findings:

The number of neighbouring players reachable by a

certain player varies sharply over a given period of time.

We plot in Fig.2 the neighbour count for Node 10 (Centre

Back) over a period of 600 seconds and observe a high level

of variation.

The encounter duration between two nodes can be

defined as the maximal number of consecutive packets

transmitted by one node and received by the other. This

is equivalent to the time a pair of nodes are ‘connected’

(since each node transmits one packet per second). We plot

encounter duration over all pairs of nodes in Fig.3 and note

that almost 70% of encounter durations last 3 seconds or

less. These figures clearly indicate that the network is in a

constant state of flux. This is expected: sensor devices have

primitive radios, they are small and lightweight so as not to

restrict movement and the players move at great speed, there

are frequent falls, physical contact and sudden changes in

body orientation, all of which have a highly disruptive effect

on connectivity.

2.2. Operating Assumptions and Threat Model

We assume a simplistic one-step data transmission process

whereby a node simply broadcasts data in its allotted time-

slot. To keep communication minimal, there is no handshak-

ing or negotiation process with other nodes in the vicinity.

We format the packet structure in such a way that the

message can be processed by any of the other receivers in
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Figure 2: Number of Neighbours for Node 10 (Centre Back)
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Figure 3: Encounter Duration over All Pairs of Nodes

range. Such an approach allows for a transmitting node to

utilize multiple paths to the destination and facilitates data

aggregation and prioritization.

To bootstrap trust in the network, we assume pre-

distribution of keying material before the network initializes.

We specify details in the description of our scheme.

We assume our adversary engages in eavesdropping,

packet replay, data injection and flooding attacks. Allowing

per-hop encryption limits flooding and enables nodes to

identify the attack. However, if a node is captured, crypto-

graphic keys can be extracted. In this event, confidentiality

is compromised, but, our security scheme still guarantees

authenticity of the broadcast source. We assume the net-

work can defend against signal jamming by some form of

frequency hopping or spread spectrum techniques. In this

paper we do not expressly consider more advanced attacks

such as denial-of-service, wormhole attacks, etc.
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2.3. Solution Requirements

We seek a security solution that provides the following

properties:

1) Confidentiality: Eavesdroppers cannot decipher the

data that the nodes transmit.

2) Authenticity: Nodes in the network are able to verify

the source of all messages they receive. A node should

not be able to masquerade as another.

3) Replay Protection: An attacker may capture legitimate

messages and inject them into the network at a later

time. Receivers should be able to identify and reject

captured and replayed messages.

4) Semantic Security: Encryption should sufficiently dis-

guise the content of the messages, so that an adversary

can not decipher them based on patterns in the cipher-

text.

5) Data Fusion: Allowing nodes to inspect and aggregate

whatever data they receive will significantly reduce

network traffic and cut down on power consumption

over the wireless link. Receivers would also be able

to prioritize traffic: e.g. in a disaster recovery sce-

nario, nodes would give higher priority to transmit-

ting medical alarms; nodes on the battlefield could

choose to transmit critical military intelligence over

lesser-priority data. On the soccer field, nodes could

prioritize data of certain players over others.

2.4. Prior Work

To the best of our knowledge, there is no prior scheme

that addresses the issue of security for resource-constrained

nodes in a highly dynamic wireless sensor network. A

security solution is typically implemented over an exist-

ing underlying routing mechanism; and efficient mobility-

assisted routing protocols have yet to be developed to meet

the unique operating challenges of dynamic sensor networks.

Security solutions are typically designed for stationary

networks with minimal route disruption and a fairly constant

set of neighbours. High node mobility is more characteristic

of mesh and ad hoc networks. To address routing and secu-

rity challenges, these networks typically maintain dynamic

routing tables and utilize route-discovery and synchroniza-

tion protocols. Neighbours are easily verified using digital

certificates and trusted third parties. Sensor network devices

are too resource-limited to permit easy adaptation of these

solutions: sensor nodes have radios with far less range, a

restriction on wireless usage and not enough resources to

maintain routing tables or use public-key cryptography.

Of the common security strategies, using a global key

to secure the network (as in the case of the TinySec [12]

security architecture) would facilitate mobility but such a key

is difficult to safeguard in a large deployment, and it would

allow a hijacked node to masquerade as any other. Per-

link keys are explicitly meant for static networks and would

be very inefficient. Giving all nodes individual encryption

keys which they share with the base station is not very

effective. Data aggregation would not be possible, there

would be end-to-end encryption and a resourceful adversary

could flood the network with arbitrary data. Nodes would

be unable to differentiate it from legitimate traffic and

waste precious resources in forwarding it. Pairwise keys

between nodes would work for low mobility scenarios but

a handshake process would be required for communication

and nodes would not be able to multicast data.

Of popular security mechanisms, the µTesla [13] protocol

resembles our scheme in that it assumes a time-synchronized

network and utilizes a one-way key-chain to ensure source

authenticity of data. However, µTesla is a broadcast authen-

tication protocol expressly designed to authenticate base-

station transmissions. µTesla uses time-varying keys to com-

pute message authentication codes (MACs) on the data. The

issue of confidentiality is not addressed. Whatever messages

the node receives from the base-station, it buffers till key

disclosure. The network is time-synchronized and keys are

disclosed after a delay, allowing nodes to verify the MACs.

The key in question expires after it has been disclosed

rendering it useless to an attacker.

The MiniSec [14] communication architecture utilizes

OCB encryption to provide data confidentiality and au-

thentication. MiniSec has different modes for unicast and

broadcast communication. Unicast mode assumes that each

node possesses a pair of keys for bidirectional communica-

tion with another node. For broadcast communication, the

encryption key is a global shared key. Both these strategies

are not well-suited for mobility and carry with them the

risks mentioned earlier. MiniSec also assumes network time-

synchronization. Replay attacks are detected by demarcating

network lifetime into ‘epochs’ and implementing space-

efficient Bloom filters.

3. Our Solution

Nodes use successive keys from a one-way key chain to

encrypt and transmit data. Encryption keys are varied on a

per message basis. Considering our soccer game scenario,

this would translate to a new key being used every second.

The one-way nature of the key-chain ensures that receivers

can verify new keys from older ones but are unable to forge

them.

Packet structure is depicted in Fig.4. The Data Field,

Di contains the data to be transmitted, encrypted with the

current key, ki, from the chain. This current key is then itself

encrypted with a specific older key from the chain, denoted

as the ‘epoch-key’, kE , and put into the Key Field.

To provide a common reference point for nodes in inter-

mittent contact, we divide network lifetime into epochs. For
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Figure 4: Packet Structure

each transmitting node, an epoch is characterized by specific

epoch-keys in the chain which the node uses to encrypt the

Key Field for all packets transmitted in that epoch.

A detailed description of our scheme follows. We discuss

transmitter and receiver operations individually for clarity,

but it must be kept in mind that devices in the field perform

both functions.

3.1. The Procedure

1) Key-Chain Generation: Nodes build their encryption

key-chain prior to network initialization in one of two

ways: The receiver could be supplied a seed value,

ks from which it would generate a key-chain, ks,

ks−1,...,k1, k0, where ki−1 is obtained by hashing ki

for i = 1, ..., s (using SHA1 or MD5). Alternatively,

the entire key-chain could be constructed beforehand

and pre-programmed into the device prior to deploy-

ment. This key-chain should be long enough to last

the lifetime of the network.

2) Bootstrapping Trust: To initialize trust, each node is

provided a set of keys containing the initial ‘root-key’

(k0) for every other node in the network. This can

be pre-programmed or transmitted to the node using

a secure Diffie-Hellman exchange.

3) Transmitting Data: When a node has to transmit

data in its slot, it creates a packet consisting of a

Data Field and a Key Field as mentioned earlier. The

communication process is detailed in Fig.5: data to

be sent, Di is encrypted using the current key in the

chain, ki (step 1) and passed into the Data Field.

The current key, ki, itself is then encrypted using the

epoch-key, kE (step 2) and put into the Key Field. The

packet is then transmitted to the receiver (step 3).

4) Receiving Data: The receiver decrypts the Key Field

to extract the current key, ki using the transmitter’s

epoch-key kE (step 4). To authenticate, it hashes the

current key to see if it matches an older key the

receiver might possess belonging to the transmitter’s

chain (this could even be the epoch key itself, kE).

Once verified, the receiver uses this key to decrypt

the data Di (step 5).

5) Specifying epoch-keys: We assume the network ini-

tializes at j = 0s where j is a clock keeping track

of network time. The root-key serves as the very

first epoch-key. We designate a value, n, such that

every n − th key to follow in the chain is to be the
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Figure 5: Encryption and Decryption Operations

epoch-key for a later interval. As an example, we

choose n = 100. This means that, after the root-

key k0, the second epoch-key will be k100 which

will be disseminated by the transmitter at j = 100s.

Assignation of epoch-keys is described in Fig.6: the

root-key, k0, is used to encrypt all data for the first

epoch, which spans k0 to k200 (i.e. 201 seconds).

Network receivers already possess the transmitter’s

root-key (from the Bootstrapping Trust Phase) and

can decrypt this data. We assume that the transmitter

encounters every other node in the network at least

once in the interval , 100 < j < 200. Every node will

have then received a key, ki such that 100 ≤ i ≤ 200.

The receiver can hash this key back (i− 100) number

of times to yield k100, i.e. the next epoch-key. This

new epoch-key comes into effect when j = 201. The

first epoch lasts for 201s (which can be expressed as

2n + 1) out of necessity. Following epochs last 100s

each. Again, we can assume there is high probabil-

ity (quantified in the next section) that all receivers

receive a packet from the transmitter at least once

in the interval 200 < j < 300. This will enable

them to all possess a key that can be hashed to yield

the third epoch-key k200 that comes into effect at

j = 301s. Epoch-key updates follow this basic pattern.
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However, if a node were to receive no packets from

the transmitter within an epoch, it would be unable

to decrypt future communication. This only applies to

direct communication. The node may still receive data

from the transmitter via multi-hop from other nodes.

6) Key Management: Receivers have to store and update

two keys for every node in the network, every node’s

epoch-key, kE and the last received key together with

time-stamps or count value. The epoch-key allows the

receiver to decrypt communication within the epoch.

The last received key minimizes the verification pro-

cess; the receiver does not have to hash ki all the way

back to the transmitter’s epoch key to verify it, it could

simply hash back to the more recent key, e.g. if the

receiver were in extended contact with the transmitter,

it would take only one hash operation to verify each

message received during that time.

3.2. Discussion

Our use of the key-chain is somewhat similar to µTesla in

that both schemes depend on the one-way nature of the key-

chain to provide source authentication. Time-synchronizing

the network also ensures key validity is bounded by time:

this protects against replay attacks. If an older packet is

replayed, the key for that has already expired, the verification

process will fail and the receiver discards the packet. Using

different encryption keys creates high message entropy and

provides semantic security. And the per-hop encryption

allows the benefit of data fusion.

The epoch-key itself varies over time to add an extra layer

of security to the network. If an attacker were to try to hack

the epoch-key, he would be restricted to doing so within

the window of the epoch itself, and in the next section we

describe a method for reducing epoch length to an optimal

value. And, even if he somehow procured the key, he could

decipher messages but, would not be able to generate future

keys and masquerade as the transmitter.

We note that maintaining long key-chains and key-tables

for other nodes can quickly overwhelm the memory re-

sources of the typical sensor device. For this reason, we

suggest that key-chains be kept short, and, if possible, be

coded into ROM rather than flash memory. In the case

of the soccer match, it would be feasible to use remote

programming software to re-key the network during breaks.

4. Analysis

In this section, we fine-tune the performance of our

scheme using link-connectivity statistics.

We define a receiver’s attachment probability, P, to be

the probability that the receiver can successfully decrypt

future messages from the transmitter. This success depends

on the receiver procuring at least one key per epoch. A
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Figure 7: Inter-Encounter Times over All Pairs of Nodes

receiver that typically has frequent communication with

the transmitter will consequently have a high attachment

probability.

Another strategy to increase attachment probability, P,

is to extend epoch lengths and maximize the chances of

the receiver and transmitter encountering each other. How-

ever, nodes that meet rarely within an epoch will have to

perform a larger number of verification operations on the

received message. We denote this metric as computation

cost. Smaller epochs will entail lesser computation cost in

packet verification, but the attachment probability will suffer.

Inter-encounter time can be used to compute appropriate

values of epoch length that represent a balance between

verification operations and attachment probability. Inter-

encounter time between nodes is a measure of the time

between encounters, or the maximal period of disconnec-

tivity. Revisiting our soccer game experiment, we plot the

Complementary Cumulative Distribution Function (CCDF)

for inter-encounter time over all pairs of nodes in Fig.7. The

result indicates that inter-encounter time values are surpris-

ingly low across the network. Almost 60% of encounters are

spaced 10s apart or so. The probability of inter-encounter

time being more than 100s is approximately 0.05. This

distribution clearly favors smaller epoch sizes.

Since the encryption key changes once every second,

the maximum computation a node would have to per-

form to verify a message would be if it were to receive

only the last message within an epoch. In this case it

would hash back an amount equivalent in seconds to the

epoch length. This one-to-one correspondence allows us to

plot inter-encounter time against epoch-length/maximum-

computation-cost. We invert the CCDF to yield the prob-

ability that nodes do not encounter each other and plot it

against epoch-length/maximum-computation-cost in Fig.8 in

log scale.
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The results bear out intuition: the greater the epoch length,

the higher the probability of attachment and the greater

the number of worst-case verification operations. However,

small epoch sizes yield a very high attachment probability:

an epoch length of 20s gives over a 70% chance of suc-

cessful attachment. An epoch of 30s takes the probability to

over 80%. We recall from earlier that smaller epochs provide

greater security but that could lead to nodes being isolated

from others permanently. Using link-connectivity statistics, a

network operator can tune epoch length as per requirements

to balance security and computation against probability of

disconnectivity.

5. Conclusion and Future Work

In this paper, we identified fundamental security chal-

lenges in highly dynamic wireless sensor networks and

highlighted network characteristics with results from a real

sensor network deployment, i.e. athlete monitoring during

a soccer match. We proposed a per-hop security solution

utilizing time-bound symmetric-key cryptographic mecha-

nisms to provide confidentiality, source authenticity, replay

protection, semantic security and data fusion capability.

We use link connectivity statistics to identify the optimal

epoch length that minimizes verification operations against

probability of attachment.

Our future work will focus on researching security mech-

anisms that allow greater scalability, extended network life-

time and dynamic node joining.
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