
978-1-4244-5113-5/09/$25.00 c©2009 IEEE

DiffUser: Differentiated User Access Control on Smartphones

Xudong Ni, Zhimin Yang, Xiaole Bai, Adam C. Champion, and Dong Xuan

Department of Computer Science and Engineering
The Ohio State University

Columbus,Ohio,USA
{nxd,yangz,baixia,champion,xuan}@cse.ohio-state.edu

Abstract

Smartphones have been widely used in recent years due
to their capabilities of supporting many applications from
simple Short Message Service messages to complicated
Location-based services. It is challenging for smartphones
to enable their end users to manage all applications in
all possible use cases to protect privacy or sensitive data.
However, the security model for smartphone users is still a
two-state model in which they can do anything or absolutely
nothing, and it is no longer suitable. In this paper, we
propose DiffUser, a differentiated user access control model
to enhance smartphone security and user privacy. DiffUser
classifies smartphone users based on certain sets of user
access privileges. We implement a prototype of DiffUser on
real-world T-Mobile G1 smartphones. The evaluation results
show that our system is lightweight and flexible.

1. Introduction

Recently, smartphones are becoming increasingly popular
and the number thereof has increased greatly in the past
few years. A report from Canalys [1] shows that, despite
the worldwide economic downturn, global shipments of
smartphones hit a new peak of just under 40 million units
in the third quarter of 2008 and smartphones represent
around 13% of the total mobile phone market. Several
companies such as Nokia, Microsoft, and Apple, and Google
develop various smartphone operating systems (OSes) such
as Symbian OS, Windows Mobile, iPhone OS, and Android,
respectively. It is likely that smartphones will have a strong
presence in the future mobile phone market.

1.1. Motivation

Smartphones’ processing capability exceeds that of “reg-
ular” mobile phones and it continues to grow. For example,
today’s iPhone has much greater processing capability than
an IBM PC did in 1981 [2]. In addition, smartphones are
often equipped with additional functionality such as GPS
systems, cameras, Wi-Fi, FM radios, Bluetooth, and various

sensors. They can support many new applications such as
Internet services, photography applications, and location-
based services. Consider the Android operating system.
Although it was released less than two years ago, there
are thousands of applications on the Android Market [3].
Smartphones are used pervasively in our daily lives.

This poses a challenge for smartphone systems. How can
they enable smartphone owners to manage all applications
installed thereon in all possible use cases, thereby protecting
privacy and sensitive data? The following examples illustrate
this challenge and existing limitations in such state-of-the-art
systems.

– Example 1. Many enterprises distribute company-
owned smartphones to their employees for business use,
on which critical applications are installed to facilitate
corporate operations and workflows [4]. Usually, only a
device administrator should be able to install or uninstall
applications. He would like to prohibit an employee from
(1) uninstalling these critical applications, (2) installing ma-
licious applications (either intentionally or unintentionally),
or (3) installing non-work-related applications. This use case
demands that smartphone OSes differentiate between ad-
ministrative and normal users. However, current smartphone
OSes do not provide such functionality, as they do not
differentiate among users.

– Example 2. Since smartphones are becoming popular,
children commonly have access to them. Consider parents
who want to control their children’s smartphone use. They
do not want their children to spend too much time playing
games or accessing the Internet and they want to block
inappropriate content. Thus they need means to control
their children’s smartphone access aand determine what
applications their children can run and how long they can
they run them, among other things.

– Example 3. Many people lend their mobile phones to
someone else—a friend, a coworker, or even a stranger. In
most cases, the owner wants to limit phone usage to specific
functions or applications such as making calls. The mobile
phone borrower should not be able to access the owner’s
private information (e.g., contacts, pictures, multimedia, etc.)
stored in the phone.

1012

There are other situations in which a smartphone owner
needs to customize access rights for a specific user. In
summary, although there are many demands for smartphone
security models, current smartphone OSes have no mecha-
nisms to support these demands, not to mention user access
control. To our knowledge, all existing smartphones are
designed for a single user.

1.2. Our Contributions

In this paper, we propose DiffUser, a diff erentiated user
access control model for smartphone systems. DiffUser
classifies smartphone users based on certain sets of user
access privileges. Our specific contributions are as follows:

– We present DiffUser on smartphones and investigate
the potential demands for differentiated users on them.
Then, we classify smartphone users based on particular user
access privileges. In addition, we propose an access control
mechanism designed for user management of smartphones.

– We implement a prototype of DiffUser on a real smart-
phone system, Android, which is an open source platform.
Although Android is based on the Linux kernel, it is a new
OS specifically designed for mobile devices. We take the
advantage of its built-in permission-based access control to
implement our prototype. However our system could also be
applied to other popular phone sytem, such as Symbian.

To our knowledge, we are the first to propose a differ-
entiated user access control system for smartphones. We
classify users into three classes: (1) administrative users,
who have complete control over smartphones; (2) normal
users, who have many smartphone privileges but cannot
install or uninstall critical system applications; and (3) and
guest users, who have very limited privileges. These three
user types can solve the problems in the above examples.

The rest of the paper is organized as follows. Section 2
describes related work. Section 3 discusses the concept of
differentiated users and our access control model. Section
4 details our prototype of DiffUser on Android. Section
5 presents evaluations and discussions. Finally, Section 6
concludes the papers.

2. Related Work

Increasingly, today’s mobile phones are smartphones.
Although there are many smartphones OSes, all of them
support only a single user, who is the smartphone owner.
This is easy to understand: mobile phones’ primary function
is telephony, which is suitable for a single user. However,
smartphones support many applications and provides pro-
gramming APIs that far exceed telephony. There is some
work related to our. VMware [5] proposes using virtual
machines to facilitate employee and personal use of smart-
phones, but their approach cannot provide fine-grained user
access control. To manage children’s use of phones, AT&T

[6] has a service called Smart Limits for Wireless that can set
monthly usage limits, time-of-day restrictions and content
filters. However, it only affects AT&T services and it cannot
manage other applications such as games or browsing the
Internet through Wi-Fi. In addition, users must pay monthly
fees and use AT&T phones.

Some work has been done on smartphone access control
[8]. But their focus is on the security of applications installed
on smartphones. The access control on whom and how to run
applications is not taken into account. Our method targets a
higher level of access control, such as who has privileges to
execute programs and how they may be executed.

Some smartphone OSes, such as Symbian OS, are spe-
cially designed for single-user mobile phones. Others such
as Windows Mobile, iPhone OS, and Android are ported
from multi-user desktop OSes such as MS Windows, OS
X, and Linux, respectively, and these smartphone OSes
lack their counterparts’ multi-user access. There is demand
for multi-user access on smartphones, but this multi-user
access is different from that of “traditional” desktop com-
puters. The single-user mobile phone OSes only have basic
functionalities such as hardware management, so they did
not require multi-user access. Desktop OSes’ multi-user
support is not applicable to smartphones, as many people
can use a traditional multi-user system for various purposes,
but only one person at a time can use a smartphone, and
usually there is only one primary user thereof. Also, unlike
these traditional systems, smartphones have no concept of
a user’s “home” directory for his file storage. Our DiffUser
system provides multi-user access for smartphones in which
only one person uses the phone at a time. We differentiate
smartphone users in order to provide security and access
control for them.

Some work has been done on mobile phone sharing. In
[9], the author did field studies reporting that there are a
variety of situtation in which people naturally share phones.
However, the author just did the survey and provides no
multi-user implementation. In [10], the author proposed
a shared mode to support impromptu sharing of mobile
phones. But this work mainly focuses on sharing media
files such as pictures or music and the implementation is
very simliar to Windows file sharing. Our work is based on
a permission security model, which is much more flexible
than their virtual file-level access system.

Above all, our DiffUser system differs from traditional
computers’ multi-user concept. In addition, it is easier to
incorporate fine-grained access control to better support
execution of smartphone applications in different modes.

3. Differentiated Users on Smartphones

In this section, we define the concept of differentiated
users on smartphones and classify them.

1013

Differentiated users is a security model that provides
smartphone users with a predefined set of access rights for
different smartphone uses in different contexts. It replaces
the existing “all-or-nothing” mobile phone security model.

Desktop OSes’ multi-user concept is designed for com-
puter systems to be used by multiple users whose identities
are usually known. In such OSes, a group of users has
similar access rights. Though these users are members of one
group, any system user may be a member of multiple groups.
User and group management relies on these OSes’ support
of file system access privileges. Originally, mobile phone
OSes supported only a single user, but smartphone OSes
require multi-user support due to the number of applications
they support and possible use cases. DiffUser does not
port desktop OSes’ multi-user concept to smartphone OSes.
Rather, DiffUser defines several classes of users and any
smartphone user is in exactly one class. By default, DiffUser
defines a set of user access control privileges that correspond
to these classes and each user’s privileges are exactly those
of the class to which he belongs. However, DiffUser also
allows device administrators to create new classes and
modify existing classes of user access control privileges.
This model can satisfy the user demands discussed in the
Introduction.

To illustrate DiffUser in detail, consider the differences
between a a desktop OS administrator and a mobile phone
user. The administrator has complete authority over the
desktop OS, e.g., the root user in UNIX/Linux systems.
However, smartphone OSes are closely related to the in-
terests of stakeholders such as cellular service providers,
handset and OS manufacturers, enterprises, developers, and
end users. Network providers may restrict smartphones’
functionality in accord with their business interests. DiffUser
does not compromise these restrictions. Thus a smartphone
administrator has control over the device subject to these
restrictions. For instance, a cellular service provider may
disable a smartphone’s FM radio although the device’s
hardware provides this functionality. DiffUser allows the
smartphone administrator to manage the device, but he
cannot enable the FM radio.

We classify DiffUser users into several classes: adminis-
trators, normal users, guests, and other configured users.
Administrators are the smartphone owner. Normal users
have fewer access rights than the administrator and are the
primary device users. Guests have the fewest privileges.
Other configured users may be defined by administrators
and have different privileges than normal users and guests.
For example, we group a number of smartphone features
into four categories: personal information, resource access,
system settings, and applications. Personal information in-
cludes SMS messages, contact lists, etc. Resource access in-
cludes sensors and networking functionalities such as Wi-Fi,
GPS(location-based service), and Bluetooth.System settings
include the capability to install and uninstall applications, set

Figure 1. Classification of Multiple Users

the time and date, restore factory settings, etc. Applications
are self-explanatory. Figure 1 shows an example of different
smartphone users’ access rights.

4. Prototype of Differentiated User Access
Control

In this section, we present our prototype of differentiated
user access control on T-Mobile G1 smartphones, which run
the Android OS [11]. We discuss our prototype’s workflow,
access control for differentiated users, and our implementa-
tion details.

4.1. Prototype Overview

Our prototype’s workflow is as follows: When a user
powers on the smartphone, it first loads in normal user
mode with the normal user profile shown in Figure 2(a).
In this mode, the user can configure almost everything
except for some system level settings. To switch to the
administrator mode, the user must input the correct password
as shown in Figure 2(b). If the authentication succeeds,
the user will enter administrator mode with full privileges.
The administrator can define access rights for different user
classes as Figure 2(c) illustrates. The user could enter guest
mode instead of administrator mode by pressing the “Quick
Switch” button. To enter normal user mode or administrator
mode from guest mode, the user must enter the correct
password.

Our workflow includes three modules: authentication,
user profile configuration, and access control. The authenti-
cation module switches between different user modes. The
user profile configuration module allows the administrator
to define or modify other user profiles. The access control

1014

module checks different user profiles to control their access
rights.

We apply a capability-based access control model to
DiffUser instead of access control lists (ACLs) for the
following reasons:

– ACLs are unsuitable for mobile phones. While ACLs
are suitable for desktop OSes due to their file permission
systems, e.g., NTFS, ext3, etc., mobile phone OSes either
provide no such permission systems or they use abstraction
layers for data and applications that hide file permissions
from end users. For examples, Symbian OS and Windows
Mobile do not support file access control. In addition, though
Android has a Linux-based file system with native file
permissions, these have no effect on the end user’s experi-
ence. Android’s built-in application files are encapsulated as
.apk files that are stored in the /system/app directory
and owned by root. Other applications are saved in the
/data/app directory and owned by the system user.
None of these is related to end users and they cannot be
mapped to different uids as in traditional UNIX/Linux
systems. Moreover, some data are saved in SQLite [12]
database files and Android’s database implementation only
differentiates among applications.

– Smartphones usually have few users, so it is easier to
maintain user profiles as opposed to ACLs.

4.2. Prototype Implementation on Android

In this section, we present our Android prototype im-
plementation. First, we describe the end-user interface and
corresponding model. Second, we discuss the access con-
trol implementation based on Android’s built-in permission
mechanism. Finally, we analyze the relationship between
permissions and differentiated user profiles.

Android is the first free, open source, and fully cus-
tomizable mobile platform. It offers a full software stack
consisting of an operating system, middleware, and key
mobile applications as well as a rich set of APIs that allow
third-party developers to develop applications. It is based on
the Linux kernel and the system is divided into four layers:
the kernel, libraries and runtime, application framework, and
applications. Different layers are implemented in different
languages. For example, Android’s system services such as
drivers and inter-process communication are written in C or
C++, while all platform-related applications and services are
written in Java and executed by the Dalvik virtual machine.
Android’s advantage lies in its open source licensing and
extensive programming documentation. The Android SDK
provides the tools and APIs necessary to develop applica-
tions on the Android platform using Java.

Our prototype is implemented in Java with Android
SDK 1.0. The development environment is Eclipse 3.1 with
Google’s Android Developer Tools plugin. The debug tools
are Dalvik Debug Monitor Service (ddms), which manages

(a) (b)

(c)

Figure 2. A set of three interfaces: (a) Normal User
Home; (b) Login/Authentication ; and (c) User profile
Configuration

processes on the Android emulator or smartphone, and An-
droid Debug Bridge (adb), which provides a command-line
interface to programmers. The source code for our prototype
is about 72.3KB. As Android programs require configura-
tion profiles and resources, which are another 225KB, the
installed file on the phone is a 216KB Home.apk file.

Screenshots of the user interface are given in Figure 2.
We load different applications according to users’ profiles.
Our prototype includes a login Activity, a user profile con-
figuration Activity and a main Home Activity. An Activity
is the presentation layer of an Android application screen;
its “lifecycle” has four stages—start, pause, resume, and
terminate. An Activity provides event handling methods for
each of these stages that can be overridden. The user needs
to authenticate himself at the login screen to obtain ad-
ministrative privileges, including modifying system settings.
The user configuration Activity provides the interface to
determine user access rights to SMS, contacts and GPS.
These rights are stored in user profiles. We reprogram An-
droid’s native Home Activity. After the system starts up, the
Home Activity invokes the method loadapplication()
to obtain information about all applications installed on the
system, including related permissions, that is provided by
the system service PackageManagerService. We add

1015

Figure 3. Permissions Mapping

our permission checking when the Home Activity loads this
information from the service so different users in different
classes see different available applications in the Home
screen. We add a “quick switch” menu option to switch
between the administrator or normal user profile to the
guest profile. To switch between any two profiles, we invoke
loadapplication() in the overridden onRestart()
method provided by the Home Activity.

We use Android’s built-in permission-based security
model to implement access control. This model provides
fine-grained control over what operations a process can
perform, e.g., accessing the smartphone camera, location
information, etc. Permissions enforce restrictions on these
operations and grant access to particular data. As only
application developers use permissions for these purposes
(end users cannot control them), we need to map these
permissions in our prototype to users’ access rights, which
are stored in user profiles. Android provides an exhaustive
set of system permissions (over 100 of them). We only
illustrate a subset of those permissions that we map to user
access rights in Figure 3. Using the configuration Activity
shown in Figure 2(c), we can configure a specific user
profile. We use a blacklist method to control access rights,
which reduces the overhead associated with providing all
user privileges.

5. Evaluation and Discussion

To evaluate our system, we examine two metrics: battery
consumption and switching latency between differentiated
user modes. We use ddms, which is connected to a T-Mobile

Figure 4. Switching Latency in Different Profiles.

G1 smartphone. We use version 1.1 of the Android SDK and
the ota-radio-1_22_14_11 radio firmware.

To evaluate our prototype’s power consumption, we re-
peatedly execute a sensor-related application from our mod-
ified Home Activity in different user profiles compared with
executing the application from the original Home Activity.
Our results show that there is no measurable difference in
power consumption. We attribute this to the fact that our
code does not intercept execution of running applications.

To evaluate the switching latency between different user
profiles, we design seven of them, including uses of SMS,
contacts, and GPS. We install 50 applications from Google’s
Android Market. We record the latency of these user profiles.
The results are shown in Figure 4. The numbers “1” through
“7” correspond to revoked access to contacts only, SMS only,
GPS only, contacts and SMS only, contacts and GPS only,
SMS and GPS only, and all three features. We find that the
overall latency is not very high with a minimum of 384 ms
and a maximum of 611 ms. Thus it has minimal impact on
normal usage of the smartphone. Different user profiles have
minor switching latency differences.

In Figure 5, we install 50, 60, 70 and 80 applications
and evaluate their latency in seven user profiles. The latency
increases with the number of applications, as our program
has to load more application information. However, the more
permissions we forbid, the faster switching occurs. This is
because forbidding more permissions leads to querying and
loading fewer applications.

Although our solution can improve end user security, we
cannot fix existing security flaws in smartphone systems.
For example, if the end user has gained root access on
his Android phone, we cannot prevent him from modifying
system settings and circumventing system security.

6. Conclusion

In this paper, we present a differentiated user access
control for smartphone operating systems. Our goal is to pro-
vide end users a finer-grained control instead of an “all-or-
nothing” security model. We implemented a prototype sys-

1016

Figure 5. Switching Latency with Different Numbers of
Apps.

tem on T-Mobile G1 smartphones based on Android’s built-
in permission mechanism. Our evaluation results showed
that our system is lightweight and flexible.

References

[1] http://www.canalys.com/pr/2008/r2008112.html
[2] http://www.zdnet.com.au/news/hardware/soa/
[3] http://www.android.com/market.html
[4] S. Furnell, Securing mobile devices:technology and attitude,

Network Security, Volume 2006, Issue 8, August 2006
[5] http://www.vmware.com/technology/mobile.html
[6] http://www.wireless.att.com/learn/articles-resources/
[7] D. Muthukumaran, A. Sawani, J. Schiffman, B. M. Jung, and T.

Jaeger, Measuring integrity on mobile phone systems, in Proc.
of ACM symposium on Access Control models and technologies
(SACMAT), 2008

[8] S. M. Lee, S. B. Suh, B. Jeong, and S. Mo, A Multi-Layer
Mandatory Access Control Mechanism for Mobile Devices
Based on Virtualization, IEEE Consumer Communications and
Networking Conference (CCNC), 2008

[9] A. K. Karlson, A. J. B. Brush, and S. Schechter, Can I Borrow
Your Phone? Understanding Concerns When Sharing Mobile
Phones, in Proc. of the 26th annual SIGCHI conference on
Human factors in computing systems (CHI), 2009

[10] Y. Liu, A. Rahmati, Y. Huang, H. Jang, L. Zhong, Y. Zhang,
and S. Zhang, sShare:Supporting Impromptu Sharing of Mobile
Phones, in Proc. of the 7th Annual International Conference on
Mobile Systems, Applications and Services (MobiSys), 2009

[11] http://source.android.com/
[12] http://www.sqlite.org/
[13] W. Enck, M Ongtang, and McDaniel Understanding Android

Security, IEEE SECURITY & PRIVACY, 1540-7993, 2009

1017

