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Abstract

The main purpose of wireless sensor networks (WSNs)
is to obtain information about their environment. However,
WSNs often produce imprecise and incorrect sensor data,
e.g. because of sensor failure or unreliable radio commu-
nication. We propose a system for WSN applications that
allows to assess the quality of sensor data and further allows
to fuse data based on their estimated quality. Our system
comprises local and distributed heuristics to estimate the
quality of sensor data, with a focus on data accuracy and
data consistency. In the fusion step, the most plausible value
of the measured quantity is inferred from multiple sensor
readings by use of the Dempster-Shafer theory of evidence.
Both quality assessment and data fusion are carried out
within the network and thus do not rely on a powerful sink
node. We demonstrate the effectiveness of our system by
means of a wireless game controller for the game Pong,
built from multiple sensor nodes. The controller can detect
and reject incorrect sensor readings and thus improve the
player’s control over the in-game paddle.

1. Introduction

Wireless sensor networks are comprised of cheap, small,
resource constrained sensor nodes that communicate using
radio transceivers [1]. The sensor nodes, which typically run
on batteries, are equipped with sensors to collect informa-
tion about their environment. A variety of applications has
emerged, as diverse as volcano monitoring, health monitor-
ing, or fence monitoring.

Most WSN applications have in common that they depend
on high quality data being reported by the sensor nodes.
Incorrect, outdated, or incomplete data may have serious
consequences in WSNss, like e.g. triggering an action based
on incorrect data obtained from the network. However,
low data quality is prevalent in WSNs. It occurs in many
forms (such as spurious readings, faulty data on component
failure, or lost data) and has many different causes (such
as imprecision inherent to the sampling process, unstable
voltage supply, or unreliable wireless communication.)

Previous approaches to the data quality problem often
focus on only one facet of quality (e.g. detection of outliers),
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or rely on a central node for processing and cleaning [2],
[3]. To solve this, we are developing an extensible system
that allows to assess the quality of sensor data and allows to
fuse data based on their quality. The system is designed to
perform all quality assessment and data fusion tasks within
the network and thus does not rely on a powerful sink node.

Our system consists of two major components: A set of
heuristics and an inference engine. Both local and distributed
heuristics are used to estimate the quality of either an
individual sensor reading or a stream of samples. Heuristics
are weighted to account for an application’s individual
data quality requirements. The development of application-
specific heuristics is encouraged by providing an API.

The inference engine allows to fuse several correlated
sensor readings by use of the Dempster-Shafer theory of
evidence, a mathematical theory for reasoning in situations
of uncertain knowledge [4], [5]. Since the theory does not
follow a strict probabilistic interpretation [6], our system
does not rely on large data sets to derive a priori dis-
tributions, like Bayesian approaches do. In contrast, the
most likely value of the measured quantity is inferred from
a number of correlated samples based on their estimated
quality.

We have implemented the system on the ScatterWeb
MSB430 sensor node platform [7]. Our initial experimental
evaluation shows that our system effectively increases the
data quality in the presence of errors. For demonstration
purposes, we have built a wireless game controller for the
game Pong. The use of our system improves the playability,
because incorrect sensor data are detected and rejected.

2. Data Quality

The term “data quality” is used with different meanings
in WSN literature. We have identified four core components
of data quality, on which our system is based:

e Accuracy: The accuracy of a single sample reflects the
numerical difference between the sample and the true
value of the measurand. This explicitly includes errors
introduced at sensor level. Intermediate processing such
as aggregation may introduce further inaccuracy.

« Consistency: If a single sample or a stream is com-
pliant with a user-defined model, it is consistent. The
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Figure 1: Data Flow (The shown heuristics are exemplary.)

model, which is dependent on the specific application,
may incorporate data from multiple sensor nodes.

o Timeliness: The fimeliness of data denotes if data is
being received by a sink or actuator node in time.
Timeliness is mainly affected by unreliable radio com-
munication and network latency.

o Completeness: Completeness is a property of a stream;
it reflects if a node has taken a sufficient number of
samples to reconstruct the measurand, or if a node has
successfully received a sufficient fraction of a stream
from the network. Completeness is affected by sensor
hardware, the chosen sampling rate, and unreliable
radio communication.

Note that perfect accuracy and a correct model would
always imply consistency. However, we have found consis-
tency checks useful in the case of systematic error at sensor
level, which may remain undiscovered by accuracy-related
heuristics.

3. System Design

We assume that a network that uses our system is or-
ganized in clusters and sampling proceeds in rounds. One
sensor node in each cluster is chosen to be the cluster head.
Figure 1 shows the flow of data: In each round, every sensor
node takes a sample and uses heuristics to estimate the
sample’s quality with respect to accuracy, consistency, and
completeness. It then sends the result to its cluster head, as
shown in Fig. 1a. In this example, three of the system’s built-
in heuristics are used, denoted by rectangles. The result is a
tuple containing a sample value s and a quality estimation q.
The cluster head may use heuristics to re-evaluate the quality
of received data to reflect timeliness and completeness. It
then fuses the samples received from the nodes in its cluster
and sends the fusion result to a sink node, along with a
measure of conflict K, as explained in Sec. 3.2. This process
is shown in Fig. 1b.

3.1. Heuristics
A heuristic estimates the quality of a sample or a stream

with respect to one or more of the above mentioned com-
ponents of data quality. We use heuristics because the

true value of the measurand is not known in general, and
thus the accuracy of a sample can only be estimated. In
our system, heuristics are functions that map an array of
samples on a value of the interval [0,1], where a value
of 0 denotes the lowest quality and a value of 1 denotes
the highest quality. The parameter array represents the most
recent sensor readings. As shown in Fig. 1, heuristics are
evaluated for every sample that is taken or received from
the network. The influence of each heuristic can be set
by the application programmer to reflect the application’s
individual data quality requirements. The minimal value
returned by all heuristics determines the data quality.

Our system includes a range of built-in heuristics, such
as a voltage monitor, which checks the battery voltage, or a
distributed outlier detection. However, the use of application-
specific heuristics is encouraged by providing an APIL.

3.2. Inference Engine

The cluster head fuses samples received from other nodes
in the cluster by use of the Dempster-Shafer theory of
evidence. This is a mathematical theory that allows to infer
the most plausible proposition of a set of propositions from
a given set of evidences.

The theory provides a mathematical description of ev-
idence as well as a rule for combination of evidence,
called Dempster’s rule of combination. A key feature is that
each evidence has an associated reliability that reflects its
trustworthiness. In the fusion step, the cluster head considers
each received sample to be a piece of evidence supporting
one of the possible true values of the measured quantity.
The sample’s quality is used as its reliability. By the use of
Dempster’s rule of combination, the most plausible value of
the measured quantity is found. The application of the rule
also yields the quality of the result, as well as a measure
of conflict K. The latter describes the level of contradiction
between the evidences, a useful information for applications
that take action based on the fused data.

3.3. Initial Evaluation

For our initial evaluation, we have used four sensor
nodes attached to a board to measure the board’s tilt angle
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Figure 2: Root Mean Square Error of the Measured Angle

around the y-axis by using the sensors’ on-board three-axis
accelerometers. Two of the four nodes had been slightly
twisted and thus measured an incorrect angle. Figure 2
shows the root mean square error between the true tilt
angle and the angle determined with different approaches.
Our fusion scheme, shown in darkest gray fill, in most
cases outperforms both, the simple average approach and
the weighted average approach, in which each sample is
weighted by its estimated quality.

4. Demo: Wireless Game Controller

We demonstrate our system by means of a wireless game
controller for the game Pong. The controller consists of three
ScatterWeb MSB430 sensor nodes attached to a board, as
shown in Fig. 3a. The game GUI, shown in Fig. 3b, is
displayed on a laptop. By changing the controller’s tilt, a
player can control his in-game paddle. The other paddle is
controlled by the computer.

The three sensor nodes on the controller as well as a
fourth sensor node attached to the laptop form a cluster.
Each controller node periodically sends tilt information that
is acquired with the on-board accelerometer, along with an
estimation of the quality of the tilt information. The sensor
node attached to the laptop acts as the cluster head; it fuses
all measurements with respect to their quality and sends the
result to the laptop, where the tilt is used to determine the
position of the player’s paddle. The use of our system for
the game controller improves playability in the presence of
errors. To demonstrate this, the GUI also shows a player’s
“ghost paddle” (gray paddle on the left side in Fig. 3b),
which is controlled using the raw sensor data. While the
ghost paddle reacts to sensor errors by moving around
uncontrollably, the paddle controlled with the system (shown
in white on the left side in Fig. 3b) behaves as intended,
because erroneous measurements are successfully detected
and rejected.

The demo requires a laptop, the wireless game controller,
and a cluster head node, all of which we will provide.
A desk for the laptop is needed with a close-by power
outlet. The sensor nodes will communicate at a frequency
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Figure 3: Wireless Game Controller for Pong

of 809.5 MHz, but can be reprogrammed to use another
frequency if required. The setup time is about five minutes.

5. Conclusion

In this paper, we have outlined our system for quality-
based data fusion in WSNs. It is centered around a set
of heuristics and an inference engine that is based on the
Dempster-Shafer theory of evidence. We demonstrate the
effectiveness of the system by means of a wireless game
controller.

Future work includes research of appropriate algorithms
to build clusters and select cluster heads, as well as an in-
depth evaluation.
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