
978-1-4244-5113-5/09/$25.00 c©2009 IEEE

Scalable Emulation of TinyOS Applications in Heterogeneous Network
Scenarios

Yi-Tao Wang
Department of Computer Science

University of California, Los Angeles
yitao@cs.ucla.edu

Rajive Bagrodia
Department of Computer Science

University of California, Los Angeles
rajive@cs.ucla.edu

Abstract

Simulating the behavior of sensor applications in a
heterogeneous network or under diverse environmental
conditions is particularly challenging. In this paper,
we present the design and implementation of TiQ†,
a scalable framework that allows unmodified TinyOS
applications to be evaluated in a diverse set of op-
erating conditions, including heterogeneous networks.
We validate TiQ against MoteLab, a physical sensor
network testbed, and show that TiQ can predict the
behavior of the real network with less than 4% error.
Through several case studies, we demonstrate the key
benefits of TiQ: (1) it supports a diverse set of scenarios
involving heterogeneous networks, mobile data mules,
and multiple operating systems, (2) it scales to over a
thousand nodes and can simulate such large networks up
to 6X faster than comparable simulators, (3) it provides
a system to easily validate TinyOS applications, evaluate
network designs, and optimize design parameters (e.g.,
beacon rate) based on individual criteria, and (4) it
leverages existing physical layer models in network
simulators to provide more accurate simulations.

1. Introduction
Over the years, TinyOS has become a popular oper-

ating system for wireless sensor networks. Its compact
size, numerous features, and modular framework offer
portability, robustness, and scalability. Complex TinyOS
applications can be created where motes work collabora-
tively to monitor the environment and communicate with
base stations when interesting events occur. With large-
scale deployments of motes running such applications, it
is beneficial to first evaluate and validate their design and
performance through simulation prior to deployment.

Furthermore, sensor network developers prefer to use
emulations so that the software used for evaluation can
be easily ported with little or no modification to the
physical mote. This approach eliminates the possibility
of introducing errors while porting the code from the
testing and evaluation to the deployment phase.

†. This work was supported by the Army Research Office MURI
grant W911NF-05-1-0246.

Although numerous tools have been developed for the
study of sensor networks over the past decade, many
of these are pure simulators, such as SensorSim [1],
SWAN [2], and SENS [3], that use models to simulate
the behavior of applications. While these simulations are
scalable and sufficient to gauge performance metrics like
network delays, packet collisions, and node localization
errors, they lack the fidelity of software emulation.
Among commonly used sensor simulators, TOSSIM [4],
Avrora [5], and EmTOS [6] provide software emulation
for the latest release of TinyOS and thus allow the
actual application code to be used directly for testing &
evaluation purposes. Although these tools provide high
software emulation fidelity, they lack a diverse set of
detailed simulation models, such as the sensing channel,
battery, and clock skew, which restricts their utility in
accurate performance prediction of sensor applications.

In contrast to simulators, physical testbeds provide
high fidelity, but lack temporal and spatial scalability.
Moreover, repeating experiments in physical testbeds is
difficult because of the limited control they offer.

In this paper, we present TiQ, a simulator for sensor
networks that enhances the current state of TinyOS
emulation by meeting all of the following criteria:
• Heterogeneity: The simulator provides a diverse

set of accurate models so that TinyOS applications
can be evaluated in complex scenarios involving
heterogeneous networks, operating systems, and
conditions such as mobility. It offers an extensible
framework that can enhance the simulation with
new or emerging technologies and scenarios, such
as different models of mobility or new MAC layer
protocols.

• Fidelity: The simulator accurately captures the
behavior of sensor motes. This requirement in-
volves both software emulation and environment
modeling. While using models for sensor motes
offers better performance and allows the evaluation
of high-level network interactions, only software
emulation will allow us to evaluate the behavior
of actual TinyOS code. Moreover, the simulator
offers accurate models of sensing phenomenon that
ensure the simulation results reflect those of real-

140

TinyOS Motes

Unmodified

Application Code

HW Components

Event Queue

Event Queue

Scheduler

Event

Handlers

Sensor

Handlers

Component

Functionality

Providers

ActiveMessageC

PowerC SensorC

HilTimerMilliC

SerialActiveMessageC

Sensor

Models

Discrete Event Simulator

Figure 1. TiQ’s architecture

world deployments.
• Scalability: As use of sensor motes continues to

expand, the size of deployed sensor networks will
increase. A framework that is able to efficiently
simulate large networks for long simulation hori-
zons is necessary to meet future simulation require-
ments.

Thus, our primary goal in designing and implementing
the TiQ framework is to enhance the current state of sim-
ulators by providing accurate and scalable simulations
of complex scenarios. TiQ leverages existing models
in network simulators to provide accurate simulations
without the need to re-implement physical layer models
for stand-alone simulators. The TiQ framework and
our implementation approach can be extended to any
discrete event network simulator to provide emulation
of TinyOS applications. As we will demonstrate later in
our case studies, TiQ not only supports common sensor
networks used for environment monitoring [7], [8], but
also multi-tiered networks with mobile data mules [9]
and multiple operating systems.

TiQ allows network designers to validate their TinyOS
applications without modification before deployment.
Our experiments show that TiQ can predict the behavior
of MoteLab [10], a physical sensor network testbed,
with less than 4% error. Thus, TiQ can provide eval-
uations of network designs comparable to a physical
testbed, without the high costs and limited control of
physical testbeds. TiQ can support networks of over a
thousand nodes and, based on our comparison against
other TinyOS emulators, perform simulations up to 6X
faster for such large networks. TiQ provides a platform
to easily evaluate and optimize a variety of parameters,
such as packet size, based on individual criteria.

2. TiQ
TiQ emulates TinyOS applications in an accurate and

scalable simulated environment. We consider TiQ to be
complementary to other TinyOS emulators and physical
testbeds that provide higher fidelity. Designers can verify

the correctness of their applications on a few motes and
may then use TiQ for large scale evaluations and/or
detailed performance prediction studies.

In the remainder of this section, we will discuss the
details of TiQ. First provide an overview of TiQ’s design.
Then we will discuss our implementation of TiQ, it’s
execution, and sensor models.

2.1. Design Overview
Our design of the TiQ framework takes advantage of

TinyOS’s structure. TinyOS is a programming frame-
work that enables an application-specific OS to be built
for each application through the use of components.
Components are abstractions of objects (i.e., timer, radio,
sensor, etc.), each providing functionality related to
its abstraction, similar to classes in Object-Oriented
Programming. All hardware resources are abstracted
as components. Each component uses and provides
the functionality of interfaces, abstractions of actions
(i.e., send, set, print, etc). When a component uses an
interface, it must define the component that provides
that interface. The design and programming model of
TinyOS is event-driven, which lends itself to emulation
in a discrete event simulator.

Figure 1 provides an abstract overview of TiQ’s
design and our integration approach. TiQ is composed of
a discrete event simulator (DES) and emulated TinyOS
motes. The DES is responsible for simulating the en-
vironment (i.e., radio, mobility, etc) and other parts of
the network that are not TinyOS motes. The emulated
motes execute unmodified TinyOS application code. The
DES initializes the motes and processes events from the
emulated TinyOS motes.

In order to emulate TinyOS, we replace a selected
set of hardware-abstracted components with custom
components that provided the same interfaces but that
functionally interact with the DES instead of physical
hardware. The TinyOS application code used in TiQ
is identical to the code deployed on physical motes.
From TinyOS’s perspective, the discrete event simulator
is just another hardware platform because TinyOS’s
component-based framework hides the implementation
of the components from each other. When the applica-
tion uses the interface of a replaced component, the in-
terface calls a Component Functionality Provider (CFP)
(Figure 1) in the simulator. The CFPs use underlying
models to simulate the desired behavior of the hardware
in the DES’s simulated environment, queueing events if
necessary.

In order to provide more accurate simulation of sensor
networks, we replace several components of interest
to sensor motes: the battery, sensor, radio, clock, and
UART serial port. Each of these components uses a
model (e.g., sensing channel) in the DES to simulate
the behavior of the corresponding hardware. The clock is

141

also replaced to offer the DES control of the simulation
time, to model clock skew and drift, and to synchronize
the executions of the simulated motes. The specific
TinyOS components for the clock, radio, UART, sensor,
and battery are shown in Figure 1. It should be noted that
there are several TinyOS components for the sensor and
battery, so we use generic TinyOS components (SensorC
and PowerC) that can perform the functionality of all the
components. Section 2.5 provides details on the specific
models that correspond to the replaced components.

For portability to various discrete event simulators,
our design does not specify the exact implementation of
the DES. However, our implementation, discussed in the
next section, can be extended to other DESs.

2.2. Implementation
Rather than build a simulator from scratch, an early

architectural decision was to leverage the capabilities
of existing network simulators. Although we chose to
use QualNet [11] due to our familiarity with it from
our previous work, SenQ [12], the TiQ framework and
our implementation approach can be similarly used
with another DES. Using QualNet in TiQ allows us
to leverage its modular framework, which simplifies
the implementation of the TiQ framework and several
sensor-specific models (i.e., clock skew, clock drift,
sensing channel, and power consumption) for TinyOS
applications.

In order to provide a high fidelity for their behav-
ior, each TinyOS mote is executed in its own thread
without preemption. Since TinyOS is known for its
small memory footprint (usually less than a few KBs),
each thread requires trivial memory overhead. As our
later tests show (section 4.2), TiQ can scale up to
a thousand TinyOS motes. Moreover, multi-threading
TiQ allows it be easily extended in future releases for
improved performance through parallel execution on
multi-core/multi-processor systems. The specifics of the
execution process is covered in Section 2.3.

In the DES, the TinyOS motes are abstracted as
simulation objects and communicate through interfaces
with the rest of the simulator, hiding the implementation
details of each node. A mote is represented as a simula-
tion object with custom event handlers and CFPs. From
the DES’s perspective, the mote is just an abstract node
that generates events. This implementation allows the
emulation of the TinyOS application to be independent
of the models used by the simulator.

2.3. Execution
Figure 2 shows the control flow diagram of a TinyOS

thread. As a part of the DES’s initialization, the TinyOS
mote is booted up in a thread. At this point, the DES
blocks itself and transfers control to the thread. The
TinyOS thread boots, initializing all other hardware and

Sleep Send

Packet

Get

Sensor

Write to

Serial Port

DES
Boot

TinyOS

Execution

Queue

Event

Read

Sensor

Queue

Event

Advance

Time

Time Advanced

Figure 2. The control flow of a TinyOS thread:
squares are interfaces of a replaced component,
rounded squares are CFPs, and italics are interac-
tions involving context switches

software components that it needs, and executes its tasks.
What happens when the thread uses an interface of
a replaced component is discussed in section 2.4 but
it suffices to mention here that a context switch only
occurs when the mote tries to sleep, either because
the mote has run out of tasks to execute or because
a component explicitly puts the mote to sleep. For all
other functions, the TinyOS thread retains control and
continues to execute until it reaches the condition above.
When that happens, the thread will store its global data,
unblock the DES, and block itself. Then, the DES will
boot the next node and the process repeats until all motes
are booted.

After all motes are booted, the DES advances the sim-
ulation time, loads the global data of the first available
TinyOS thread that has not executed at this simulation
time, blocks itself, and switches control to that thread.
Once again, the mote will continue to execute until it
tries to go to sleep, at which point, control is switched
back to the DES. The process repeats until the end of
the simulation.

The synchronization between TinyOS threads and the
DES is equivalent to a global synchronization at every
time step, preventing the simulation time from advancing
until all motes have executed their tasks at that time
step. This ensures that no mote can move so far ahead
in simulation time that there can be some messages from
other motes which it should have received at an earlier
simulation time.

2.4. Interactions
In previous sections, we outlined how the TinyOS

motes and the DES can communicate. Now, we discuss
the specific interactions between them (Figure 2). Note
that all interactions that start on the TinyOS side are
triggered when the application uses an interface of a
replaced component. There are three interactions that
are required for execution management of the TinyOS

142

motes:

• Boot: During the simulator’s initialization, it will
spawn a thread for each TinyOS mote. The DES
will tell the mote its ID and wait for it to finish
booting.

• Advance Time: When a mote tries to go to sleep,
either because it has done all the processing that
it can at the current time step or one of its tasks
puts it to sleep, it will tell the simulator to proceed
to the next time step by queuing an advance time
event and blocking itself. The advance time event
will be processed by the DES at the next time step.
Each mote can adjust the size of the time step that
it wants. For example, users can have temperature
sensing motes sleep for 200 ms and light sensing
motes sleep for 400 ms in the same simulation.

• Time Advanced: When the DES gets an advance
time event, it will unblock the mote that queued the
event and give it the current time. Since all process-
ing happens in zero time, a behavior common to all
discrete event simulators, the current time will not
change and the mote can simply cache this value
instead of asking the DES for it multiple times.

These three interactions are the only times that a
context switch will occur. In particular, the Advance
Time and Time Advanced interactions synchronize the
TinyOS threads at each time step (section 2.3). The rest
of the interactions are for hardware resource usage:

• Send Packet: Motes that want to transmit a packet
will queue events in the DES with the packets that
they want to send. The DES will then simulate the
transmission of the packet to other motes. When
the DES determines that the mote should receive a
packet from the MAC layer, it will pass the packet
to the corresponding TinyOS mote.

• Get Sensor Value: When a mote wants a sensor
reading, the DES will produce one using its sensing
channel model [12].

• Send Message on Serial Port: Communication over
the serial port works similarly to sending packets if
the other end is a simulated mote. However, users
can also set the other end to standard output or files,
in which case, the data message will be written
there.

2.5. Sensor Models
There are three main physical phenomenon that are

specific to sensor motes which are not modeled in
our DES, QualNet: the clock, the sensing channel, and
the battery. We added models for these based on our
previous work on SenQ [12]. One of the key functions
of sensor networks is to aggregate data (such as the
network in Section 4.1). In order to accurately match
up sensor readings for analysis, the various motes must

agree on a global time. Most simulators assume that
nodes have perfect time. However, real motes are never
perfectly synchronized with each other. Thus, we must
model clock drift to accurately simulate the behavior of
TinyOS motes.

For clock drift, we have used the model presented in
[13]:

f = fnom + ∆f0 + a× (t− t0) + ∆fn(t) + ∆fe(t)

where f is the frequency of an inaccurate clock, fnom
is the nominal frequency, t0 is the starting time, a is
the aging rate, ∆fn is the noise effect, and ∆fe is the
environmental effect. The DES keeps an accurate view
of the global time, but each mote has a different clock
skew and drift. The time is converted when it passes
between the DES and the mote according to the clock
model.

Despite the importance of the sensing channel to
sensor networks, many simulators and emulators use a
simplistic model that reports random or specific values
to the sensors. For TiQ, we have provided two extra
sensing channels: mobility and diffusive. The mobility
sensing model uses trigonometric functions to determine
when a mote is going to enter or leave the vicinity
of a sensor. The diffusive sensing model allows sensor
readings to be specified at any space-time coordinates.
For the same location, the sensor readings between two
different time coordinates will change linearly. At any
time, bilinear spine interpolation of the four corners and
specified points is used to calculated the sensor readings
of unspecified points.

For the battery, we have used a model that we previ-
ously published in [14] but we give a short description
here for completeness. The model takes into account
both non-linear discharge and recovery effects, which
are present in real life batteries:

C(T) =

T∫
0

I(t) dt+ 2
∞∑
m=0

T∫
0

e−β
2m2(T−t) dt

where C(t) is the capacity used after time T and I(t)
is the current drawn from the battery at time t. For the
special case of loads applied for milliseconds, which is
typically the granularity for sensor motes, we found that
the function can be approximated by a polynomial func-
tion. Thus, we can use the model at a low computational
cost.

3. Accuracy of TiQ
Since TiQ is an evaluation tool for TinyOS appli-

cations, it is important to validate it against physical
motes to ensure that the conclusions from simulations
are accurate and useful for real deployments. To validate
the accuracy of TiQ, we ran a sensor network using

143

96

97

98

99

100

2 6 10 14 18 22

Number of Motes

P
a

c
k
e

t
D

e
liv

e
ry

 R
a

ti
o

 (
%

)

MoteLab

TiQ

TOSSIM

EmTOS

Avrora

Figure 3. Reproducing the MoteLab scenario in TiQ
and various TinyOS emulators

Harvard’s MoteLab [10] and TiQ. We selected 22 ran-
dom TMote Sky motes (indoor range of approximately
100 meters) from the second floor of the facility such
that all motes were able to communicate with at least
one neighbor. We used a simple network design where
one source would periodically send a packet to the sink.
Flooding was used to route messages and CSMA was
used as the MAC protocol. Each test was repeated 20
times with random source and sink selections. After
running the tests using MoteLab, the experiment was
replicated in TiQ. The motes locations were reproduced
in TiQ. The same TinyOS applications code was used
with CSMA for the MAC protocol. The radio channel
was simulated using two-ray pathloss, radio interference,
and Ricean fading.

Figure 3 shows the packet delivery ratio (PDR) of
the experiment reported by MoteLab, TiQ, TOSSIM,
Avrora, and EmTOS. We observe that, as more nodes
are added to the network and they start to interfere with
each other, the PDR decreases. Interestingly, the results
predicted by TiQ are almost identical to those obtained
via measurements from the physical testbed. The error
between TiQ’s predictions and the real behavior from
MoteLab is less than 4%. TOSSIM has an error that is
15X that of TiQ’s while both Avrora and EmTOS have
errors that are 5X that of TiQ’s, which resulted from
abstract models used for the physical layer.

We recognize that TOSSIM, Avroroa, and EmTOS
can be extended with more models to provide similar
fidelity to that of TiQ. However, it’s more efficient
to leverage network simulators to provide simulation
fidelity without re-implementing models for stand-alone
sensor simulators. For example, the more accurate
models that were only in TiQ (e.g., two-ray pathloss
and Ricean fading) requires a layered communications
framework and support for non-uniform dynamic en-
vironments [15], [16]. These requirements are lacking
from most stand-alone simulators but are present in most
network simulators.

4. Case Studies
Simulation fidelity and flexibility are necessary to

evaluate TinyOS applications. The following case stud-
ies highlight the diverse set of sensor networks that TiQ
supports. The first case study uses TiQ to evaluate an en-
vironmental monitoring sensor network, in the presence
of clock drift. The next case study uses TiQ to evaluate
the effects of network parameters on power consumption
in a multi-tiered network with mobile data mules. The
final case study uses TiQ to model complex scenarios
involving heterogeneous nodes, networks, and operating
systems. Together, these case studies demonstrate the
ease with which TiQ can validate TinyOS applications
and evaluate a variety of networks.

4.1. Evaluating an Environment Monitoring
Network

Wireless sensor networks provide real-time data of
the environment that enable scientists to measure and
study properties that have previously been difficult to
observe. Some research groups and companies have
found interest in it and began to work on the deployment
and application in environmental and habitat monitoring
[7], [8]. For this case study, we consider a common
environment monitoring scenario in which we want to
deploy a network of Mica2 motes to determine the av-
erage sunlight a 1000m x 1000m area receives. Multiple
photo sensors route their readings to a base station that
aggregates the data. We want to determine the optimal
network size to provide the most accurate data.

Clock synchronization is essential for sensor networks
that aggregate sensor readings for analysis. Without a
global agreement on time, the data from different sensors
cannot be accurately matched up. TiQ provides a clock
model, which allows us to evaluate our application with
Flooding Time Synchronization Protocol (FTSP) [17], a
popular synchronization protocol, in the same setup as
that of a real deployment.

In FTSP, a root node is selected in the sensor network.
The root’s clock becomes the global clock, which is
periodically flooded throughout the network. Since a
node can receive the same synchronization message
multiple times from each of its one-hop neighbors, it
can estimate its clock offset and rate difference from
the root node. Linear regression over past messages can
be used to determine a node’s current clock error even
when it does not receive any synchronization messages.

In our simulation, the motes start with no initial clock
skew and a clock drift of 0 to 40 µs, the reported
drift range for Mica2 motes [17]. The radio range was
about 100m and we configured a terrain of 1000m x
1000m, thus the network diameter is about ten hops,
with nodes deployed in grids of varying density. A base
station was placed at the center of the grid to receive and

144

1030

1040

1050

1060

1070

1080

40 80 120 160 200 240 280 320

Number of Nodes

A
v
g
 S

u
n
lig

h
t
R

e
a
d
in

g
 (

lu
x
)

FTSP No Synchronization

Perfect Synchronization Actual Avg Sunlight Intensity

(a) The average sensor readings received by the base station at
the end of the experiment

0

20

40

60

80

100

40 80 120 160 200 240 280 320
Number of Nodes

R
e
a
d
in

g
s
 R

e
c
e
iv

e
d
 (

%
)

FTSP No Synchronization Perfect Synchronization

(b) Percentage of sensor readings successfully received by the
base station

0

20

40

60

80

100

120

140

160

40 80 120 160 200 240 280 320
Number of Nodes

M
ill

is
e

c
o

n
d

s

avg pairwise error, ftsp max pairwise error, ftsp

avg pairwise error, no ftsp max pairwise error, no ftsp

(c) The average and maximum pairwise clock errors as the
number of nodes increases

0

50

100

150

200

250

300

350

400

450

Number of Nodes

E
x
e

u
c
ti
o

n
 T

im
e

 (
s
)

TOSSIM

TiQ

Avrora

EmTOS

(d) Time required to execute 10 simulated seconds of the
scenario in various TinyOS emulators

Figure 4. Results of the environment monitoring network simulation

aggregate sensor readings. We used the FTSP and Mul-
tihopOscilloscope application code directly supported
by the TinyOS 2.x distribution. CSMA was used as
the MAC protocol. FTSP was configured to use a
resynchronization interval of 30s and sensor readings
are taken every 120s. The simulation ran for 1 simulated
hour. A non-uniform sunlight intensity (average of 1075
lux) was applied to the field throughout the experiment.
We recorded the sensor readings at the base station under
three conditions: (1) no synchronization protocol is used
by the network, (2) FTSP is used by the network to
synchronize the clocks, and (3) the network has perfect
synchronization, which is simulated by turning off the
clock drift.

Figure 4 shows the results of our experiment. Figure
4(a) shows the average photo sensor readings when the
network has perfect synchronization (no clock drift) and
when it uses FTSP to synchronize in the presence of
clock drift. For brevity, we only show the average of all
of the photo sensor readings at the end of the simulation,

when clock errors have had the largest impact on sensor
reading fusion. The dark dotted line is the average
sunlight intensity (1075 lux) that we applied to the
terrain. From the results, we can conclude that 120 nodes
is the optimal number to deploy. However, the results
also provide unexpected insight into FTSP. Specifically,
there are three ranges of interest:
• 40-120 nodes: We observe that the average readings

from FTSP are almost identical to those of the
model that assumes perfect clock synchronization,
so the difference from the true intensity reading
is not due to any limitation of FTSP. Upon closer
inspection, we determined that the inaccuracy in the
readings and the increase in reading accuracy over
this range is due to the size of the network. That
is, as the sunlight distribution over the terrain is
non-uniform, more nodes cover more space and at a
finer granularity, which, in turn, allow us to gather a
more accurate reading of the average sunlight over
the terrain.

• 120-200 nodes: In this range, the accuracy of the

145

readings as predicted by the model with FTSP
drops dramatically. We observe that the accuracy
of the readings from the model with perfect clock
synchronization continues to increase. As the only
difference between the two network models is the
presence of FTSP, we expect that the operation of
FTSP in this range of nodes is responsible for the
increased inaccuracy. Furthermore, the accuracy of
the readings from the model with FTSP drops be-
low that of the model with no clock synchronization
protocol, so the root cause is unlikely to be simply
the failure of FTSP to synchronize the clocks.
A closer inspection of the percentage of sensor
readings successfully received by the base station
(Figure 4(b)) reveals that as the network size grows
beyond 120 nodes, FTSP floods so many synchro-
nization packets in the network that they interfere
with the transmission of the sensor reading data
packets. As a result, the base station is unable to
receive as many of the sensor reading data packets.

• 200+ nodes: Interestingly, the accuracy of the
readings from the model with FTSP level out in
this range. From Figure 4(b), we observe that the
results of the readings from this model correspond
to when the base station is almost completely
unable to receive any sensor readings for the reason
previously discussed. Closer inspection reveals that,
in this range, the base station only managed to
receive packets from its immediate neighbors and
we verified that 1035 lux is the sunlight intensity
of the area around the base station.

We also plot the average and maximum pairwise clock
errors (Figure 4(c)) in the network as a function of
increasing network size (and hence density since the
terrain area is kept constant). As expected, the pairwise
clock errors remains relatively constant around 17 µs up
to 120 nodes, where the flooded synchronization packets
do not have a large impact on network traffic. However,
the protocol starts failing at 160+ nodes. Although FTSP
is flooding the network with synchronization messages,
the network is clearly unable to handle the larger traffic
volume. As the network density increases, nodes are
not synchronized for longer periods of time and the
clock errors approach those of the model where no clock
synchronization protocol is used.

From this case study, we determine that 120 nodes
is the optimal number to deploy over the terrain using
FTSP. However, TiQ also revealed that FTSP may not
be the optimal synchronization protocol for our environ-
ment monitoring network due to its scalability problems
as previously discussed. A protocol without scalability
problems, closer to the perfect synchronization case,
could provide more accurate readings for the network.
In that case, the optimal number of nodes to deploy

becomes 160.
The purpose of this case study is to highlight the

benefits of TiQ’s evaluation framework. Although, in
retrospect, it may not be surprising that FTSP would
suffer from scalability problems because of its flooding,
TiQ allows a quantitative evaluation of its limitations,
as well as any other protocol implementations. It allows
us to not only determine the optimal number of nodes
to deploy for sensor networks, but also quantitatively
evaluate clock errors, packet reception, and other metrics
for network designs.

4.2. Scalability
Figure 4(d) compares the performance of TiQ with

TOSSIM, Avrora, and EmTOS as measured by their
execution time as a function of the number of sensor
motes for 10 simulated seconds. We used the scenario
from section 4.1 and the same TinyOS application sim-
ulated under perfect synchronization conditions. From
the results, we observe performance improvements of
almost 6X for 1000 motes and 10 simulated seconds. It
should be noted that EmTOS is designed for small scale
networks and could not scale beyond 200 nodes [6].

These results demonstrate that TiQ is able to provide
high fidelity emulation of realistic TinyOS applications
with low overhead for each mote. TiQ’s accuracy and
scalability makes it a beneficial framework for evaluat-
ing large sensor networks.

4.3. Evaluating Multi-Tiered Networks
Power is a limitation of most wireless sensor networks

and replacing the batteries for all the motes in a large
sensor network is costly. A number of researchers have
proposed mobility as a method of extending the life-
time of sensor networks. Mobile elements, data mules,
traverse the network and collect data from the sensor
nodes and forwards it to an AP. The use of data mules
avoids the communication cost of a multi-hop network.
Furthermore, the sensor nodes no longer need to form
a completely connected network and it can be deployed
with focus on the sensing aspects.

To illustrate TiQ’s capability to evaluate heteroge-
neous networks, we use the multi-tiered scenario from
[9] shown in Figure 5(a). In this scenario, we need
to gather temperature readings from sensor motes that
are deployed on each row of grapes. As the workers,
carrying specialized devices, slowly work their way
through the vineyard, they act as data mules to gather
readings from the motes.

200 motes are deployed in four rows over a 700m
x 700m terrain and gather readings every second. Three
data mules go down the rows at 1 km/h (working speed).
Each reading is only 1 byte. The simulation ends when
all the data mules walk to the other end of the row and
back.

146

Data Mule 2

Data Mule 1

Data Mule 3

(a) The multi-tiered network: sensor
motes are distributed on four rows of
grapes and workers act as data mules

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

100 200 300 400 500 600 700
Beacon Interval (ms)

R
e
a
d

in
g

s
 G

a
th

e
re

d
 (

%
)

(b) The percentage of the overall sensor
readings delivered to the data mule

0

50

100

150

200

250

300

12 14 16 18 20 22 24 26 28 30 32
Minimum Readings Buffered

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 (

m
J
)

300 ms

400 ms

500 ms

600 ms

(c) The average energy consumption of
a mote at various beacon intervals

Figure 5. Evaluation of the multi-tiered network

In this example, the structure of the network is set,
but we can use TiQ to find the desirable values for
network parameters, which are, in this case: (1) the
beacon rate for the data mules and (2) the buffer size:
the minimum number of readings for a mote to buffer
before downloading to a data mule when one is in range.
The first parameter is how often the data mule beacons
to let the motes know that it is in range. A small beacon
interval reduces the time motes have to transmit to the
data mule. A large interval increases the probability that
motes won’t detect the mule as soon as it comes into
range. The second parameter, buffer size, effects the
energy consumption and lifetime of the mote. Sending a
reading to the mule immediately would result in a large
number of transmissions and high energy consumption.
In other words, this parameter denotes the number of
readings per packet assuming no data padding.

Figure 5(b) shows the percentage of sensor readings
gathered by all the motes during the simulation that
were transmitted to a data mule as a function of the
data mule’s beacon rate. As previously discussed, larger
intervals provide more time for the motes to transmit
their readings to the data mule, which explains the
increase from 100ms to 500ms. After 500ms, the motes
won’t detect the mule as soon as it is in range and
transmission time is wasted.

Figure 5(c) shows the average energy consumption
of a mote as a function of the minimum number of
readings the mote buffers before sending to the data
mule at various beacon intervals. We observe that the
minimum energy consumption for all of the beacon
intervals is around 20-22 readings. Energy consumption
decreases up to this point because of energy savings
from less transmissions. However, after this point, en-
ergy consumption increases because of the higher cost
for retransmission and the higher occurrence of data
mules moving out of range before a transmission is
finished.

These two graphs show that there is a tradeoff be-
tween the energy consumption and the readings gathered
by the data mules. More readings transmitted to the data

TinyOS node SOS node Gateway 802.11

Base Station

Figure 6. An 802.11 network and sensor network
with multiple operating systems (SOS and TinyOS)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80

Simulation Time (s)

P
a
c
k
e
t
D

e
liv

e
ry

 R
a
ti
o

Figure 7. Percentage of packets successfully deliv-
ered for the heterogeneous network

mule requires more energy consumption and vise versa.
Using these results from TiQ, it is up to the network
designers to decide the most desirable parameter values
based on their criteria for optimal energy consumption
and readings gathered.

The purpose of this case study is to bring out a few
key points of TiQ. First, TiQ can simulate multi-tiered
networks involving mobile components. Second, TiQ
can be used to easily evaluate the effects of parameters
on the network so that designers can pick their optimal
values based on individual criteria.

147

4.4. Evaluating Heterogeneous Operating Sys-
tems

TiQ’s modular design also allows the underlying
network simulator to be extended to support emulation
of other operating systems in conjunction with TinyOS
emulation. To demonstrate the benefits of multiple oper-
ating system support, we extended our implementation
of TiQ with SOS [18] emulation from our previous work
on SenQ [12].

With emulation of both SOS and TinyOS, TiQ can be
used to evaluate scenarios similar to the one shown in
Figure 6. In the scenario, we want to deploy a network of
500 TinyOS sensor motes to replace a deployed network
of 500 aging SOS motes that are part of a heterogeneous
network with 50 IP nodes. The SOS motes route sensor
readings to gateway nodes which then processes them
and routes the results to a central station using 802.11
radios, the IP protocol, AODV for routing, and UDP for
end-to-end communication. In this scenario, we need to
ensure that the TinyOS motes can co-exist with SOS
motes and take over their functionality as the SOS motes
gradually die off.

In this hybrid network, the sensor network is emulated
and the IP network is simulated. The gateways are
modeled as nodes with two network interfaces (TiQ can
also model a gateway as a high end node with an 802.11
interface connected with a sensor mote over a serial port
connection). In our experiments, 500 SOS motes, 500
TinyOS motes, and 50 IP nodes are randomly distributed
over a 1000m x 1000m terrain. The SOS motes run the
Surge application and the TinyOS motes run the equiv-
alent MultihopOscilloscope application. The routing in
both applications was modified to use tree routing with
multiple trees rooted at 20 gateways. The TinyOS motes
all boot up at 30 simulation seconds and the SOS motes
die off at random times between 40 and 60 simulation
seconds.

Figure 7 shows the results of this experiment. We
observed that the percentage of successful packet de-
liveries increased after the TinyOS motes are booted.
Closer inspection revealed that using 500 motes fails to
cover such a large area. After the TinyOS motes were
booted, many isolated SOS motes were able to route
sensor readings to a gateway. As the SOS motes died off,
many TinyOS motes were isolated and no longer able
to route packets to a gateway. These results demonstrate
two points: (1) the TinyOS application is coded correctly
in that they cooperate with deployed SOS motes to route
sensor readings and (2) about 25% of the motes are
isolated and cannot route their readings to a gateway.

This case study demonstrates how TiQ can be used
to evaluate designs in complex scenarios involving het-
erogeneous operating systems, nodes, and networks. In
principle, is scenario could have been evaluated using

a physical testbed, but that would have been costly on
such a large scale. Thus, TiQ provides the flexibility of a
physical testbed, by allowing users to simulate complex
scenarios, without the scalability and cost limitations.

5. Related Work
Existing work in the simulation and emulation of

sensor networks can be categorized into four classes:
(1) pure network simulators modified to support sensor
networks, by adding sensor-specific models, emulation
of sensor applications, etc., (2) simulators built from
scratch, (3) emulators for sensor applications enhanced
with network models, and (4) emulators at the instruc-
tion cycle granularity.

Most earlier sensor simulators belonged to the first
category, in which sensor models were added to popular
network simulators. The popular network simulators
used are ns-2 [16], GloMoSim [15], and QualNet [11].
SensorSim [1] extends ns-2 with models for the sens-
ing channel and power consumption. TOSSF [19] uses
scripts and source-to-source compilers to translate the
TinyOS code from nesC into C++. TOSSF’s approach
modifies the original application code to a larger extent
than that of TiQ and offers more possibilities for the in-
troduction of bugs not present in the original application.
TiQ replaces a few hardware-abstracted components in
TinyOS to integrate the application with the DES. The
remainder of the code that executes in TiQ is identical
to that which runs on sensor motes. SenQ [12] extends
QualNet to emulate the SOS [18] operating system.

The second class, simulators that are built from
scratch, focus on scalability rather than offering detailed
models. SENS [3] is a component-based architecture for
modeling sensor applications and the network environ-
ment. SWAN [2] also focuses on providing large scale
simulations. Both of these simulators lack the accurate
models offered by TiQ and uses models to simulate
applications, which have the same drawbacks as the first
category above.

The most prevalent evaluation tools for sensor ap-
plications belong to the third class, in which sensor
emulators are enhanced with network models. TOSSIM
[4] comes with the TinyOS distribution and provides
a rudimentary simulation of the physical environment.
EmStar [20] takes a similar approach to TOSSIM but
targets higher end sensor motes. EmTOS [6] extends
EmStar with TinyOS emulation. All these emulators
use highly abstract models, especially for the wireless
channel, can lead to inaccuracies in the predicted per-
formance and behavior of simulated sensor networks
[12]. Given the significant amount of effort that has
already been invested in network simulators, it appears
to be more beneficial to integrate this capability directly
within sensor emulators. The TiQ framework allows the
integration of emerging network simulators like ns-3 into

148

existing sensor emulators, and we hope that this work
suggests an approach in that direction.

The final class of evaluation frameworks for sensor
networks is instruction cycle level emulators. Atemu
[21] and Avrora [5] are two examples of such emulators.
They use an emulated processor to execute applications
compiled for sensor motes. Since the code is entirely
without modification, this approach offers the highest
possible software emulation fidelity at the cost of in-
tensive computation to emulate the processor. These
emulators focus on evaluating the correctness of imple-
mentation and we consider them to be complementary
to TiQ. Designers can use these tools to verify the
instruction-level correctness of their applications before
they use TiQ to perform large scale evaluations under
deployment conditions.

6. Conclusion
In this paper, we have presented the design and imple-

mentation of the TiQ framework, which provides high
fidelity and scalable emulation of networked TinyOS
applications. Through analysis and case studies, we have
demonstrated the key benefits of TiQ over the existing
suite of emulators and simulators: (1) it allows TinyOS
applications to be emulated without modification in a
controlled and repeatable manner, (2) it can accurately
predict the behavior of physical sensor networks with
errors of less than 4%, (3) it provides an evaluation
platform for diverse scenarios that can involve het-
erogeneous networks, mobile data mules, and multiple
operating systems, (4) it supports networks of over a
thousand nodes, (5) it allows various network parame-
ters, such as beacon rate and buffer size, to be easily
evaluated and optimized prior to real deployment, and
(6) it leverages existing models in network simulators
to provide accurate simulations without the need to
re-implement physical layer models for a stand-alone
simulator.

The TiQ design and our implementation approach, in
particular the models for the sensing channel, clock, and
battery, can be used to provide TinyOS emulation to
any DES. We believe TiQ is complementary to other
TinyOS emulators (e.g., Avrora) and physical testbeds
that are designed to provide higher hardware-related
fidelity. Designers can use these other tools to verify
the correctness of their applications on a small scale
before using TiQ to evaluate specific optimizations and
modifications to their TinyOS applications and network
designs before deployment.

References
[1] S.Park et al., “Sensorsim: a simulation framework for

sensor networks,” in MSWIM ’00. New York, NY, USA:

ACM, 2000, pp. 104–111.
[2] F.Perrone et al., “Simulation modeling of large-scale

ad-hoc sensor networks,” in Simulation Interoperability
Workshop ’01, 2001.

[3] S.Sundresh et al., “Sens: A sensor, environment and
network simulator,” in ANSS ’04. Washington, DC,
USA: IEEE Computer Society, 2004, p. 221.

[4] P.Levis et al., “Tossim: accurate and scalable simulation
of entire tinyos applications,” in SenSys ’03. New York,
NY, USA: ACM, 2003, pp. 126–137.

[5] B. L.Titzer et al., “Avrora:z scalable sensor network sim-
ulation with precise timing,” in IPSN ’05. Piscataway,
NJ, USA: IEEE Press, 2005, p. 67.

[6] L.Girod et al., “A system for simulation, emulation,
and deployment of heterogeneous sensor networks,” in
SenSys ’04. New York, NY, USA: ACM, 2004, pp.
201–213.

[7] A.Mainwaring et al., “Wireless sensor networks for habi-
tat monitoring,” in WSNA ’02. New York, NY, USA:
ACM, 2002, pp. 88–97.

[8] I.Vasilescu et al., “Data collection, storage, and retrieval
with an underwater sensor network,” in SenSys ’05. New
York, NY, USA: ACM, 2005, pp. 154–165.

[9] J.Burrell et al., “Vineyard computing: Sensor networks
in agricultural production,” IEEE Pervasive Computing,
vol. 3, no. 1, pp. 38–45, 2004.

[10] MoteLab, “Harvard sensor network testbed.” [Online].
Available: http://motelab.eecs.harvard.edu/

[11] Qualnet. [Online]. Available: http://www.scalable-
networks.com

[12] M.Varshney et al., “Senq: a scalable simulation and
emulation environment for sensor networks,” in IPSN
’07. New York, NY, USA: ACM, 2007, pp. 196–205.

[13] “Stochastic model estimation of network time variance,”
white Paper, Symmetricom.

[14] M.Varshney and R.Bagrodia, “Detailed models for sensor
network simulations and their impact on network perfor-
mance,” in MSWiM ’04. New York, NY, USA: ACM,
2004, pp. 70–77.

[15] X.Zeng et al., “Glomosim: a library for parallel simu-
lation of large-scale wireless networks,” SIGSIM Simul.
Dig., vol. 28, no. 1, pp. 154–161, 1998.

[16] S.McCanne and S.Floyd, “Network simulator ns-2.”
[Online]. Available: http://ww.isi.edu/nsnam/ns

[17] M.Maróti et al., “The flooding time synchronization
protocol,” in SenSys ’04. New York, NY, USA: ACM,
2004, pp. 39–49.

[18] C.-C.Han et al., “A dynamic operating system for sensor
nodes,” in MobiSys ’05. New York, NY, USA: ACM,
2005, pp. 163–176.

[19] L. F.Perrone and D. M.Nicol, “Network modeling and
simulation: a scalable simulator for tinyos applications,”
in WSC ’02, 2002, pp. 679–687.

[20] L.Girod et al., “Emstar: A software environment for
developing and deploying heterogeneous sensor-actuator
networks,” ACM Trans. Sen. Netw., vol. 3, no. 3, p. 13,
2007.

[21] J.Polley et al., “Atemu: A fine-grained sensor network
simulator,” in SECON’04, 2004, pp. 145– 15.

149

