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Abstract—Broadcast communication prevails for data dissem-
ination and resource discovery. In mission-critical applications,
extensive information sharing and coordination endow broadcast
with new features: a large number of active broadcast sources,
probabilistic broadcast reception and high receiving rate. We
identify this type of broadcast traffic as 𝐴𝑆𝑃𝐵𝑐𝑎𝑠𝑡 traffic. Many
efforts have been made to authenticate broadcast source and
prevent content modification in a light-weighted way using one-
way hash chain (TESLA). However, they do not scale to a large
number of senders. In addition, authentication delay increases
under packet losses and probabilistic broadcast. The longer
authentication is postponed, the longer packets are buffered,
which poses a memory-based denial-of-service (DoS) threat. In
this paper, we will present an efficient authentication protocol
for 𝐴𝑆𝑃𝐵𝑐𝑎𝑠𝑡 traffic, called 𝐶ℎ𝑎𝑖𝑛𝐹𝑎𝑟𝑚. We propose an algo-
rithm for parameter configuration to satisfy both memory and
delay requirements with maximal resilience against compromise.
Simulation results agree with our analysis and show distinct
performance improvement.

I. INTRODUCTION

Broadcast is heavily utilized in data dissemination and
resource discovery, like command delivery, multiparty tele-
conference, and alert announcement. Extensive information
sharing and coordination endow broadcast with new properties
in today’s mission-critical applications, which are identifies
as High-rate Any Source Probabilistic Broadcast (𝐴𝑆𝑃𝐵𝑐𝑎𝑠𝑡
for short). The number of active broadcast sources is large
in closely collaborative environment since every person and
every device are willing and able to contribute collectively.
They continuously broadcast to provide real-time monitoring
and timely resource discovery. In order to cope with problems
of broadcast storm, mobility and diverse interests, flooding
is superseded by advanced protocols, such as gossip [1][2],
mobility-assisted information diffusion [3], rendezvous-point
store and query [4][5]. In these schemes, deterministic broad-
cast becomes probabilistic. Sources talk to a small subset
of nodes each time. The contact set is randomly determined
and varies with time. This uncertainty of contact set may
result from errorness of wireless reception, link break due to
movement, network partition and application choice in favor of
randomness and robustness against a single point of failure or
attacks. In summary, 𝐴𝑆𝑃𝐵𝐶𝑎𝑠𝑡 has the following attributes:
(1) any node could broadcast; (2) packets reception from a
source is probabilistic; (3) packet reception rate per node is
high due to integrated traffic from all sources.

There is an emerging need to secure communication in
mobile wireless networks for mission-critical applications,

such as military operation, emergency response and disaster
recovery. Attackers may intend to modify or forge broadcast
messages so as to force unnecessary or incorrect operations.
Therefore, it is indispensable to authenticate broadcast traffic,
verifying both source identity and content integrity. Never-
theless, providing broadcast authentication in mobile wireless
networks is not a trivial task. The challenges come from
the limited resources of wireless devices, including memory,
bandwidth, CPU power and battery. Public-key based authen-
tication, designed for high-end workstations, incurs heavy
computation and memory overhead during the processes of
signature generation and validation. In resource-constrained
devices, the usual processing time for a public key signature
is seconds or tens of milliseconds. Thereby, public-key based
authentication cannot sustain high traffic rate and is vulnerable
to DoS attacks on energy, CPU and memory resources. On the
contrary, one-way hash function excels in low computational
overhead. One of the most popular protocols is TESLA [6].
TESLA and its variations have been widely used in context
of data streaming and sensor networks [7][8]. Authentication
keys are organized in one-way hash chains. Delayed key dis-
closure closely mimics the authentication semantics of public-
key cryptography. One distinctive hash chain is associated
with a single identity to authenticate both source identity and
content integrity. TESLA is featured with low communication
and computation overhead, scalability to a large number of
receivers and tolerance to packet loss. However, TESLA and
its variations are not flexible in coordinated environment
with probabilistic broadcast and high-mobility, because (1)
despite its scalability to a large number of receivers, it is not
scalable to a large number of senders in terms of memory
spaces devoted to store chain commitment for each source; (2)
authentication delay peaks during deterministic packet losses
(such as long-term network partition and broadcast source
failure), which fails to deliver keys and delays acceptance of
time-critical information; (3) 𝐴𝑆𝑃𝐵𝑐𝑎𝑠𝑡 exacerbates authen-
tication delay further. In TESLA, packets cannot be verified
until the source sends authentication keys piggybacked in data
packets at later intervals. However, source talks to a random
subset of nodes each time and only the nodes being contacted
can obtain authentication keys timely. Therefore, packet au-
thentication at noncontact nodes, representing a large body, is
postponed and buffer space is consumed to store received and
yet unverifiable packets. This delay poses memory-based DoS
attacks, lowers data dissemination rate and decreases system
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responsiveness. Though a separate key broadcast procedure
helps push keys fast, it may cause bandwidth contention and
complicate protocol management.

In order to lower computational overhead and sustain high
data rate in ASPBcast traffic, we adopt TESLA as a building
block. But, we overcome the discussed inefficiency, which
is due to the fact that one hash chain is exclusively owned
by one identity. TESLA commitment information for each
source must be stored network-wide. A source has to release
authentication keys reliably and timely in order to boost
its packet authentication at receivers; nobody else can help.
Herein, we propose a better way to define the relationship
between hash chain and identity. The resulting authentication
protocol is 𝐶ℎ𝑎𝑖𝑛𝐹𝑎𝑟𝑚, which largely utilizes the merit of
hash chain sharing. The amount of hash chain commitment
information stored per node is far less than the number of
nodes in the network; and nodes sharing the same hash
chain can speedup verification of each others’ packets via
data packets. In summary, 𝐶ℎ𝑎𝑖𝑛𝐹𝑎𝑟𝑚 has the following
advantages: (1) It is scalable to a large number of senders;
(2) It reduces packet authentication delay in deterministic path
failure and 𝐴𝑆𝑃𝐵𝑐𝑎𝑠𝑡 traffic.

The rest of the paper is organized as follows. Section II
describes the network and attacker models, and formalizes
the broadcast authentication problem. After a brief review
of TESLA as background in Section III, we motivate our
ideas and present ChainFarm protocol in Section IV. Section
V shows how to configure system parameters to tradeoff
conflicting requirements. Section VI discusses the practical
issues of 𝐶ℎ𝑎𝑖𝑛𝐹𝑎𝑟𝑚 and extensions. Section VII evaluates
performance of ChainFarm. Following an examination of
related work in Section VIII, we conclude in Section IX.

II. PROBLEM DESCRIPTION AND ASSUMPTIONS

We use a slotted probabilistic broadcast model to simplify
the discussion of 𝐴𝑆𝑃𝐵𝑐𝑎𝑠𝑡 traffic. We consider a network
with 𝑁 nodes 𝒩 = {𝑛1, 𝑛2, . . . , 𝑛𝑁}. Time is divided into
small time slots, called round, of length 𝑇 , indexed from 1.
In each round 𝑅𝑗 (𝑗 ≥ 1), node 𝑛𝑖 selects a random subset
of nodes 𝒮𝑛𝑖

𝑅𝑗
to broadcast messages (Probabilistic reception

is modeled as probabilistic sending). 𝒮𝑛𝑖

𝑅𝑗
could be randomly

selected from a subset of nodes, uniformly from the whole
network or weighted. Fixing the size of contact subset, as
selection scope becomes larger and network topology becomes
more dynamic, 𝒮𝑛𝑖

𝑅𝑗
becomes more diversified, thus postponing

key delivery further. When ∣𝒮𝑛𝑖

𝑅𝑗
∣ = 𝑁 , it is essentially

flooding. We assume that broadcast messages from different
nodes at different time instances are independent.

Due to delayed authentication in TESLA, packets received
from source 𝑆 at node 𝐷 in round 𝑅𝑖 cannot be verified until 𝑆
sends authentication keys piggybacked in data packets to 𝐷 in
later round 𝑅𝑗 (𝑗 > 𝑖). The interval from the moment source
sending the data packet to the moment destination receiving
the key is authentication delay. The problem we want to solve
is how we can organize the relationship between hash chain

and identity for TESLA in collaborative 𝐴𝑆𝑃𝐵𝑐𝑎𝑠𝑡 environ-
ment, so that (a) broadcast authentication scales to a large
number of senders in terms of hash chain commitment storage;
(b) authentication delay is reduced, even under network path
failure, source failure or when a small number of recipients
are randomly selected by the source per round. Next, we will
clarify our network model and attacker model.

A. Network Model

Mission critical mobile ad hoc networks are composed
of thousands of heterogeneous mobile and portable devices,
spanning from low-end sensors to high-end PDAs. They are
deployed by the same administrative domain and can establish
pairwise trust relationship. They are loosely synchronized.
Mobile devices are often deployed in several phases to com-
pensate for node failure, upgrade and labor shift. Therefore,
network scale is expected to be dynamic.

B. Attack Model

Operating in open and potentially hostile environment, it
is desirable to have security barrier to prevent unauthorized
access from outside of the administrative domain and to
protect precious communication resources. Attacks can be
mitigated by access control because attackers do not know
the cryptographic information initially. However, they can
modify packets or perform DoS attacks by flooding faked
packets. Even worse, via physically capturing mobile devices,
attackers may read cryptographic information out of memory
and exaggerate their infection by replicating compromised
identities or faking new ones without physical compromise.
Under cover of faked identities, attackers can perform various
attacks, like jamming and virus infection.

III. BACKGROUND

In order to have a better understanding of 𝐶ℎ𝑎𝑖𝑛𝐹𝑎𝑟𝑚,
let us briefly review how TESLA works and elaborate its
inefficiency in authenticating 𝐴𝑆𝑃𝐵𝑐𝑎𝑠𝑡 traffic.

A one-way hash chain is a sequence of a fixed-length bit
strings 𝐾0,𝐾1, . . . ,𝐾𝑤 generated via a one-way hash function
𝐻 , wherein 𝐾𝑤 = 𝐻(𝑆),𝐾𝑤−1 = 𝐻(𝐾𝑤), . . . ,𝐾1 =
𝐻(𝐾2),𝐾0 = 𝐻(𝐾1) and 𝑆 is a bit string of arbitrary
length, called seed. A hash chain is uniquely defined by 𝑆
and 𝐻 , denoted by ⟨𝑆⟩. Any node, knowing 𝐾0, can determine
whether a particular value 𝑣 belongs to hash chain ⟨𝑆⟩ or not
by recursively applying 𝐻 over 𝑣 until a match with 𝐾0 or
a failure. 𝐾0 is named commitment key for ⟨𝑆⟩. Security of
one-way hash chain is established on the fact that it is almost
impossible to know inputs given hash results. Here is how
TESLA works:

Time
@SenderRi-1 Ri Ri+1 Ri+2Ki-1 Ki Ki+1 Ki+2Pj-3 Pj-2 Pj-1 Pj Pj+1 Pj+2 Pj+3

Fig. 1. Illustration of TESLA
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The sender splits time into even time intervals called round
and generates a one-way hash chain. A hash value is assigned
to the corresponding round, 𝐾𝑖 to round 𝑅𝑖 (1 ≤ 𝑖 ≤ 𝑤) and
𝐾𝑖 is used to sign packets generated in round 𝑅𝑖 as shown in
Figure 1. Each hash value is released 𝑑 time intervals after the
assigned round. To initialize TESLA, a receiver needs to be
loosely synchronized with the sender and know 𝑑, commitment
key 𝐾0, and 𝐻 . When sending a message 𝑃𝑗 to receivers in
round 𝑅𝑖, the sender attaches to 𝑃𝑗 a Message Authentication
Code (MAC), which is generated based on 𝐾𝑖 and packet
content. The sender also sends the most recent key it can
disclose. When receiving a message 𝑃𝑗 sent in 𝑅𝑖, the receiver
checks that the sender has not yet reached the round when it
discloses key 𝐾𝑖; otherwise, it drops 𝑃𝑗 . It then extracts the
disclosed key 𝐾𝑖−𝑑 and check its legitimacy by verifying, for
some earlier key 𝐾𝑣, (𝑣 < 𝑖− 𝑑) that 𝐾𝑣 = 𝐻𝑖−𝑑−𝑣(𝐾𝑖−𝑑).
If the released key is correct, the receiver buffers 𝑃𝑗 , removes
all the packets which were sent in and before round 𝑅𝑖−𝑑 and
accepts those with correct MAC.

In the following section, we will assume 𝑑 has value 1.
However, our scheme applies to cases when 𝑑 ≥ 1 as well.

In TESLA, a hash chain is exclusively owned by a broadcast
source. It suffers from memory and authentication delay issues
under 𝐴𝑆𝑃𝐵𝑐𝑎𝑠𝑡 traffic. First, a node needs to keep commit-
ment information for each source. In total, 𝑂(𝑁) memory is
occupied by commitment keys, thus making it unscalable to
large network size. Second, probabilistic contact by the source
prolongs authentication delay. Suppose a node is contacted
by a source in each round with probability 𝑝, authentication
is delayed by 1

𝑝 rounds on average. The smaller is 𝑝, the
worse is the delay. Third, upon network path failure or source
chunk, broadcast packets buffered at receivers may never have
a chance to be authenticated due to failure of key delivery.

IV. CHAINFARM PROTOCOL

Our work is motivated by hash chain sharing. Let us first
consider two extreme cases. One extreme is that a hash chain
⟨𝑆⟩ is shared by the whole network. Memory for hash chain
commitment is 𝑂(1). There is zero authentication delay since
nodes can use locally stored keys to authenticate packets.
However, it lacks the capability of source authentication and
any compromised node can claim to be somebody else.
Another extreme is TESLA. It supports source authentication
and full resilience against compromise because a hash chain is
uniquely owned by a sender. However, memory to store chain
commitments does not scale and authentication is deferred in
𝐴𝑃𝑆𝐵𝑐𝑎𝑠𝑡.

Considering the advantages of both extremes, a natural
solution is to support an appropriate degree of hash chain
sharing to trade memory consumption and authentication delay
with resilience against compromise. In 𝐶ℎ𝑎𝑖𝑛𝐹𝑎𝑟𝑚 protocol,
commitment information for hash chains of all senders are
predistributed to reduce trust negotiation delay in dynamic
networks and a combinatory design is applied to TESLA via
chain sharing. Various notations and symbols are summarized
in Table I.

TABLE I
NOTATIONS AND SYMBOLS

ℋ𝒞 A hash chain pool
𝑁 Total number of nodes in the network
𝑁 Maximal allowable number of nodes
𝒩 The set of nodes in the network
𝛼 Number of distinct hash chains in the system 𝛼 = ∣ℋ𝒞∣
𝛽 Number of hash chains held by each user
ℋ𝒞𝐼𝐷 A set of hash chains held by user with identity 𝐼𝐷.

∣ℋ𝒞𝐼𝐷∣ = 𝛽
𝑘𝑐(𝑥) Expected number of hash chains compromised when 𝑥

nodes are broken in
M Maximal memory size for hash chain and commitment

key storage
𝒞 Scale factor
𝐷 Expected authentication delay
𝑝 Contact probability

We assume that each node pre-stores its one-way hash
chains and all the chain commitment information for other
sources before being deployed in field. This is a valid as-
sumption in mission-critical network, such as first respon-
der systems, since all the devices are managed by a single
administrative domain or several with security negotiation.
Furthermore, because networks typically last for hours or
days, we assume that authentication keys in hash chains
are never used up using hierarchy hash chain management
scheme [9]. This avoids bootstrapping and maintenance of
hash chains with senders. Compared with online hash chain
negotiation, predistribution is more flexible in scenarios where
communication parties continuously change. We will relax
this assumption with online hash chain update in Section VI.
Different from TESLA, a hash chain pool ℋ𝒞 of 𝛼 hash
chains is constructed for the whole network and nodes store the
commitment information for all the hash chains in ℋ𝒞. Each
hash chain is shared by several sources and each source 𝑆 with
identity ID has a unique set ℋ𝒞𝐼𝐷 of 𝛽 hash chains. There
is one-to-one mapping from 𝐼𝐷 to ℋ𝒞𝐼𝐷 so that given 𝐼𝐷,
ℋ𝒞𝐼𝐷 can be automatically calculated. Because a unique set
ℋ𝒞𝐼𝐷 is assigned to each ID, source identity can be verified
and impersonation is prevented. All the hash chains have the
same releasing schedule. Message signing and verification use
all 𝛽 hash chains associated with senders’ identity. If 𝛽 is 1,
𝐶ℎ𝑎𝑖𝑛𝐹𝑎𝑟𝑚 is exactly TESLA except chain predistribution.
Now we assume cryptographic information cannot be extracted
from memory of compromised nodes. This assumption is
relaxed in Section VI. Next, we present details of ChainFarm.

A. Hash Chain Predistribution
Each node stores a combination of 𝛽 hash chains and

all the commitment keys for 𝛼 hash chains. (The actual
number of stored commitment keys is 𝛼 − 𝛽, excluding
the hash chains self-owned. However we use 𝛼 for simplic-
ity.) In order to support source authentication,

(
𝛼
𝛽

) ≥ 𝑁 .
Otherwise, some nodes must share the same combination.
First, a hash chain pool ℋ𝒞 = {⟨𝑆1⟩, ⟨𝑆2⟩, . . . , ⟨𝑆𝛼⟩} is
generated and indexed from 1 to 𝛼. A set of 𝛽 hash chains
ℋ𝒞𝐼𝐷 = {⟨𝑆𝐼𝐷

1 ⟩, ⟨𝑆𝐼𝐷
2 ⟩, . . . , ⟨𝑆𝐼𝐷

𝛽 ⟩} is assigned to the node
with identity ID. Nodes assigned with the same hash chain
⟨𝑆𝑖⟩ compose a hash chain group of ⟨𝑆𝑖⟩. Members of a group
help authenticate traffic for each other, since the data packets
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from a member contain the keys to authenticate prior data
packets from other members.1

5 46
2 3

789 10 <S1>,  <S2> <S1>,<S3><S1>,<S4><S1>,<S5><S2>,<S3><S2>,<S4><S2>,<S5><S3>,<S4><S3>,<S5><S4>,<S5> Node 3's hash chain groups<S1> Group:1,2,3,4<S4> Group:3,6, 8, 10
Fig. 2. Hash Chain Assignment

An example of a 10-user network is shown in Figure 2,
wherein 𝛼 = 5, and 𝛽 = 2. The hash chain pool consists of
5 distinct hash chains {⟨𝑆1⟩, ⟨𝑆2⟩, ⟨𝑆3⟩, ⟨𝑆4⟩, ⟨𝑆5⟩} and each
user is assigned a unique pair of hash chains and preloaded
with 5 commitment keys. For instance, node 1 and node 8
are allocated with {⟨𝑆1⟩, ⟨𝑆2⟩} and {⟨𝑆3⟩, ⟨𝑆4⟩}, separately.
The hash chain group for ⟨𝑆1⟩ and ⟨𝑆4⟩ include nodes 1, 2,
3, 4 and nodes 3, 6, 8, 10, respectively. Node 3 belongs to
both ⟨𝑆1⟩ and ⟨𝑆4⟩ groups. If any message 𝑃 from node 3 is
received, keys piggybacked in later data packets from group
members of ⟨𝑆1⟩ and ⟨𝑆4⟩ authenticate 𝑃 .

Next, we will show (a) how to allocate a hash chain
combination to a node; (b) how to allocate ID so that given
an ID, we can infer hash chain indexes in ℋ𝒞𝐼𝐷 uniquely.
With this unique binding of ID and hash chains, the source
cannot be impersonated. When receiving broadcast packets, a
receiver can immediately infer the chain indexes of the sender,
without extra two-way communication.

∙ Hash chain combination allocation: For each node, it is
allocated a combination of 𝛽 hash chains which has never
been assigned before. This assures source authentication
and all the combinations are useful.

∙ Unique binding of ID and ℋ𝒞ID: After combination
assignment, ID is set equal to the concatenation of in-
creasing order of hash chain indexes in ℋ𝒞𝐼𝐷. For exam-
ple, if node A is assigned with chains {⟨𝑆1⟩, ⟨𝑆3⟩, ⟨𝑆5⟩}
(𝛽 = 3), A’s ID is 1∣3∣5.

Algorithm 1 formalizes the above procedure to assign hash
chain combination and bind ID . This algorithm runs offline
at trust servers before devices are deployed in field.

Algorithm 1
(a) Generate a set ℋ𝒞𝒞𝒪ℳℬ including all the

(
𝛼
𝛽

)
combinations of 𝛽 hash chains from ℋ𝒞.

(b) For each node 𝑛 in 𝒩 {
(1) randomly remove one combination from ℋ𝒞𝒞𝒪ℳℬ

and assign it to 𝑛.
(2) Load 𝑛 with 𝛽 hash chains it has been assigned

in (1) and commitment keys of all the 𝛼 hash chains.
(3) Bind n’s ID with its hash chain combination. }

B. Broadcast Authentication
Similar to TESLA, time is divided into rounds and keys in

each hash chain are associated with the corresponding rounds.

All hash chains have the same releasing schedule. One-way
hash signature generation and validation use all the hash
chains in ℋ𝒞𝑆𝑒𝑛𝑑𝑒𝑟. When sending a message 𝑃 to receivers
in round 𝑅𝑖, the sender with ID attaches 𝛽 MACs to 𝑃 ,
one MAC for each hash chain in ℋ𝒞𝐼𝐷. It also includes the
most recent keys which it can disclose for each hash chain. A
sequence ID is included in “Msg” to prevent replaying attacks.
The message format of signed broadcast packet (SigndBrdcst)
is as follows:

𝑆𝑖𝑔𝑛𝑑𝐵𝑟𝑑𝑐𝑠𝑡 = 𝐼𝐷,𝑀𝑠𝑔,𝑀𝐴𝐶𝐿𝑖𝑠𝑡, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑑𝐾𝑒𝑦𝐿𝑖𝑠𝑡

𝑀𝐴𝐶𝐿𝑖𝑠𝑡 = 𝑀𝐴𝐶1(𝐼𝐷,𝑀𝑠𝑔), ..,𝑀𝐴𝐶𝛽(𝐼𝐷,𝑀𝑠𝑔)

When receiving a message 𝑃 sent in 𝑅𝑖 by a sender with ID,
the receiver checks that its signing keys are not disclosed yet.
It then extracts the disclosed keys for round 𝑅𝑗 (𝑗 ≤ 𝑖−𝑑), and
updates the key commitment information for the corresponding
hash chains with legitimate disclosed keys. If some signing
keys belong to hash chains owned by the receiver, it verifies the
MACs signed by those hash chains immediately. If 𝑃 has any
incorrect MAC, it is dropped; otherwise, it is stored in buffer.
Finally, the receiver checks all the buffered packets which
were sent in and before round 𝑅𝑗 . Packets with at least one
incorrect MAC are dropped; receiver accepts all packets with
𝛽 verifiable and correct MACs. Importantly, dropping false
packets with any incorrect MAC cleans the buffer effectively
and prevents buffer overflow with false packets. This is only
enabled by the collaborated and fast key delivery property of
𝐶ℎ𝑎𝑖𝑛𝐹𝑎𝑟𝑚.Ri-1 Ri Ri+1 Ri+2 Node 2S21 - <S2, S3>S3 S1 S2 S3 S2 S3

1 32 <S1> <S2><S2> <S3> <S1> <S3>
Self Auth

P1 P2 P3 P4 Auth Key
Self Auth3 - <S1, S2> 1 - <S2, S3> 1 - <S2, S3>src - <sign1, sign2>

Self Auth Self Auth
Fig. 3. Authentication via Hash Chain Sharing

The idea of decreasing authentication delay via hash chain
sharing is illustrated in Figure 3. Three nodes form a network.
Each node randomly selects another node to send a single
broadcast packet per round. Let us zoom into Node 2. Packet
reception history from round 𝑅𝑖−1 to round 𝑅𝑖+2 is labeled.
In TESLA, a node has a unique hash chain. Therefore, packets
from Node 1 can be authenticated only in later rounds when
Node 1 contacts Node 2 again. At Node 2, the authentication
delay of packets 𝑃1 and 𝑃3 is 2 and 1 interval separately.
However, using 𝐶ℎ𝑎𝑖𝑛𝐹𝑎𝑟𝑚, nodes sharing the same hash
chains can boost authentication of broadcast packets from each
other. In Figure 3, the hash chains assigned to Node 1, 2, and 3
are {⟨𝑆2⟩, ⟨𝑆3⟩}, {⟨𝑆1⟩, ⟨𝑆3⟩}, and {⟨𝑆1⟩, ⟨𝑆2⟩} separately.
𝑃1 is signed by hash chain 𝑆2 and 𝑆3. Since hash chain ⟨𝑆2⟩
is shared by Node 1 and Node 3, MACs signed by ⟨𝑆2⟩ can be
verified when packets from either node arrives; while MACs
signed by ⟨𝑆1⟩ and ⟨𝑆3⟩ can be self-authenticated by Node
2 because it owns these two chains. Authentication delay of
𝑃1, 𝑃2 and 𝑃3 is 1 interval, the optimal value.
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V. SYSTEM CONFIGURATION

In this section, we will provide general guideline to config-
ure 𝐶ℎ𝑎𝑖𝑛𝐹𝑎𝑟𝑚, considering factors of memory, computation
and communication overhead, security and delay.

A. Objectives and Their Relationship

System performance depends on the choices of 𝛼 and 𝛽.
Generally speaking, we have five performance objectives.

Objective 1 Memory Efficiency: Given a maximal network
size 𝑁 , we need to find a Hash Chain Pool ℋ𝒞 and a hash
chain allocation to restrict the memory consumption per node
𝛼+𝛽∗𝒞 within the maximal memory space of 𝑀 units and still
enable source authentication, that is

(
𝛼
𝛽

) ≥ 𝑁 . Importantly,
we use 𝑁 rather than 𝑁 to allow dynamic node addition.
A memory unit is defined as the amount of space to store
a commitment key. And the space to store a hash chain is
usually greater than 1 unit, denoted by a scale factor 𝒞. 𝒞
varies to trade computation with storage overhead. Applicable
data structures are Merkle tree [10], and multi-level Merkle
tree [7].

Objective 2 Computational Complexity: It is better to use a
small number of hash chains to sign outgoing messages and
to verify incoming messages, thus with reduced 𝛽.

Objective 3 Communication Overhead: Considering valu-
able bandwidth of wireless networks, we want smaller packet
size of fewer MACs per packet, thus with reduced 𝛽.

Objective 4 Resilience Requirement: Due to cheap manufac-
ture cost, mobile devices can be compromised and the related
hash chain information can be read out by attackers easily.
Since hash chains are shared among the hash chain group,
compromise of several nodes could release hash chains owned
by non-compromised nodes. Every compromise will possibly
trigger an identity revocation, sometimes leading to expensive
system reconfiguration. Therefore, we want to limit the impact
of compromise. One metrics to evaluate the resilience against
compromise is the percentage of broadcast sources whose
hash chain combination is still secret when attackers randomly
break into 𝑥 nodes. This percentage is

1−
(
𝑘𝑐(𝑥)

𝛽

)
/

(
𝛼

𝛽

)
(1)

, where 𝑘𝑐(𝑥) is the expected number of hash chains known
by attackers when 𝑥 nodes are broken in and

(
𝑘𝑐(𝑥)
𝛽

)
is the

average number of distinctive hash chain combinations known
to attackers when adversaries break into 𝑥 nodes.

𝑘𝑐(𝑥) = 𝛼(1− (1− 𝛽

𝛼
)𝑥) [11] (2)

Intuitively, larger 𝛼 and smaller 𝛽 improve resilience against
compromise because less information is shared.

Objective 5 Authentication Delay: Packet authentication is
delayed to the moment when all 𝛽 keys are collected. We want
to increase the degree of hash chain sharing so that members of
hash chain group could help authenticate each other’s packets,
which prefers larger 𝛽 and smaller 𝛼.

B. Parameter Configuration

It is hard to optimize all the objectives simultaneously
and users often have expected performance in mind, such as
the maximal network size and authentication delay. Hence,
we transform the configuration problem into the following
optimization problem: for a given statistical traffic model,
the maximal network size 𝑁 , expected authentication delay
𝐷 and maximal memory consumption 𝑀 , we maximize the
resilience against compromise. We only consider 𝛽 from 2
to 7 to avoid excessive communicational and computational
overhead of 𝛽 MACs. Resilience requirement in Equation (1)
is approximated by 𝛼

𝛽 to remove the effect of 𝑥, which is the
number of compromised nodes.

max 𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒 ≈ 𝛼

𝛽
𝑠.𝑡. 𝛼+ 𝛽 ∗ 𝒞 ≤ 𝑀

−→
𝐸 [𝑑𝑒𝑙𝑎𝑦] ≤ 𝐷(

𝛼

𝛽

)
≥ 𝑁

𝛽 = 2..7 (3)
Authentication delay is a function of 𝑇 , the length of rounds.

Different 𝑇 incurs different values for absolute delay. For
consistent measurement, the unit of delay is defined as rounds.

A heuristic algorithm to solve (3) is presented in Algorithm
2. We assume the expected delay −→

𝐸 [𝑑𝑒𝑙𝑎𝑦] is known under
a certain traffic model. We iterate 𝛽 from 2 to 7 and find the
corresponding 𝛼 value, reduced from the maximal 𝛼, which
is computed via the memory constraint, until the point when
the expected delay is at most 𝐷 under the condition of source
authentication. We record an 𝛼 for each 𝛽, which has the best
resilience and satisfies both delay and source authentication
requirements among all 𝛼s for a 𝛽. Finally, we locate 𝛽∗

and 𝛼∗ with maximal resilience against compromise, 𝛼
𝛽 , while

satisfying all the constraints.
Algorithm 2

for 𝛽 = 2 to 7 {
𝛼 = 𝑀 − 𝒞 ∗ 𝛽; calculate −→

𝐸 [𝑑𝑒𝑙𝑎𝑦];

while ((𝐶(𝛼, 𝛽) > 𝑁) & (
−→
𝐸 [𝑑𝑒𝑙𝑎𝑦] > 𝐷)) {

𝛼 = 𝛼− 1; calculate −→
𝐸 [𝑑𝑒𝑙𝑎𝑦]);}

if (𝐶(𝛼, 𝛽) < 𝑁 ) 𝛼 = 𝛼+ 1;
record 𝛼 for the current iteration of 𝛽;

}
pickup 𝛽∗ and corresponding 𝛼∗ so that 𝛼

𝛽 is maximized
and all the constraints in (3) are satisfied.

The challenge left is how to calculate −→
𝐸 [𝑑𝑒𝑙𝑎𝑦]. If we

have a statistical traffic model, the calculation is easy. Here
we introduce uniform-𝑝 traffic model: in each round, node 𝑛𝑖

sends a packet to random 𝑁 ⋅ 𝑝 nodes uniformly selected
from 𝒩 . 𝑝 is called contact probability. A node could be
selected multiple times by a source in a round. Put in another
way, in each round, 𝑁 ⋅ 𝑝 nodes are about to contact node
𝐴 and this random set of nodes is uniformly sampled from
𝒩 . Authentication delay for packet 𝑃 is the expected time
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when node 𝐴 collects all 𝛽 authentication keys for 𝑃 . This
key collecting problem can be approximated by the coupon
collector’s problem [12]: out of 𝛼 types of coupons, one
coupon is picked randomly at each trial. How many trials one
has to perform before picking all the 𝛽 coupons? We make the
following simplified assumptions: (1) in each trial one coupon
is independently chosen; (2) keys collected in the same round
as data packet 𝑃 counts as long as they are received after 𝑃 ;
(3) we ignore the effect of self-authentication. The expected
number of trials is

∑𝛽
𝑖=1

𝛼
𝑖 . The expected number of rounds

is calculated by dividing the expected trial number by 𝑁 ⋅𝑝 ⋅𝛽,
which is the expected number of trials per round. This yields,

𝐸[𝐷𝑒𝑙𝑎𝑦] = (

𝛽∑
𝑖=1

𝛼

𝑖
) ∗ 1

𝑁 ⋅ 𝑝 ⋅ 𝛽 (4)

The standard deviation of the authentication delay is

𝑠𝑑[𝐷𝑒𝑙𝑎𝑦] =

√√√⎷ 𝛽∑
𝑖=1

1− 𝑖/𝛼

( 𝑖
𝛼 )

2 ∗ 1

𝑁 ⋅ 𝑝 ⋅ 𝛽 (5)

Unfortunately, the standard deviation is 𝑂(𝛼). We need a
high confidence that the expected authentication delay is close
to the required value. There are two ways to increase the
confidence level. One way is to adjust the estimated delay
by half of the standard deviation

𝐸𝑢𝑝𝑝𝑒𝑟[𝑑𝑒𝑙𝑎𝑦] = 𝐸[𝐷𝑒𝑙𝑎𝑦] + 𝑠𝑑[𝐷𝑒𝑙𝑎𝑦] ⋅ 0.5 (6)

The other way is to get a stronger bound. Let random variable
X denote the number of trials for collecting each type of
coupon. We desire to find the largest value of 𝑚̂ so that

1− 𝑃𝑟[𝑋 > 𝑚̂] ≤ 𝑝𝑟𝑜𝑏 (7)

, wherein 𝑝𝑟𝑜𝑏 is the desired probability of the event that the
number of trials falls below 𝑚̂. (𝑝𝑟𝑜𝑏 is 0.8 in simulation.)
Let 𝑍𝑟

𝑖 denote the event that 𝑖𝑡ℎ key was not picked in the
first r trials. Clearly, 𝑃𝑟[𝑍𝑟

𝑖 ] = (1 − 1
𝛼 )

𝑟 and 𝑃𝑟[𝑋 > 𝑚] =
𝑃𝑟[

∪
𝑖 𝑍

𝑚
𝑖 ]. By inclusion-exclusion principle, we have

𝑃𝑟[𝑋 > 𝑚] = 𝑃𝑟[
∪
𝑖

𝑍𝑚
𝑖 ]

=

𝛽∑
𝑖=1

(−1)𝑖+1 ⋅
(
𝛽

𝑖

)
⋅ (1− 𝑖

𝛼
)𝑚 (8)

The expected delay −→
𝐸 [𝑑𝑒𝑙𝑎𝑦] in (3) takes the average of

two delays so as to get a good and yet tight expectation.

−→
𝐸 [𝑑𝑒𝑙𝑎𝑦] = (

𝑚̂

𝑁 ⋅ 𝑝 ⋅ 𝛽 + 𝐸𝑢𝑝𝑝𝑒𝑟[𝑑𝑒𝑙𝑎𝑦])/2 (9)

VI. EXTENSION AND DISCUSSION

In this section, we will discuss online hash chain update
and several practical issues of 𝐶ℎ𝑎𝑖𝑛𝐹𝑎𝑟𝑚.

(1) Online hash chain update: ChainFarm uses hash chain
predistribution so that members of a hash chain group are
assured to own the same hash chains. We can use the multi-
level TESLA proposed in [9] to prolong hash chain lifetime.
But it is still desirable to update hash chains online when

impersonation is detected, when TESLA keys are used up,
or during system reconfiguration. A centralized approach can
be used. Whenever online update is needed, a trusted server
broadcasts signed commitment information for all hash chains
in the newly generated chain pool and sends the encrypted
hash chain combination for each node.

(2) Compromise detection: If everyone runs 𝐶ℎ𝑎𝑖𝑛𝐹𝑎𝑟𝑚
honestly, nobody can be impersonated. If cryptographic in-
formation cannot be extracted from memory of compromised
nodes, nodes other than the compromised ones cannot be
impersonated either. However, due to the nature of hash chain
sharing, several compromised nodes may collude with each
other and infer private hash chain combinations of other
uncompromised nodes. For example in Figure 3, if attackers
compromise Node 1 and 2, they know the hash chains owned
by Node 3, which are supposed to be secret. In this way,
attackers can pretend to be an existing device or even a
nonexistence device. Impersonation of nonexistent devices is
possible because system is usually designed for scalability.
Some hash chain combinations are preserved for node addi-
tion.

We use the distributed replication detection techniques
proposed in [13] to prevent replication or impersonation after
compromise. Contrary to hash chains which are shared among
several nodes, a unique private key is given to a node. Hence,
it is impossible for attackers to know other uncompromised
devices’ private keys. The identity-based public key system is
implemented to save transmission overhead for certificate or
public key, wherein one can calculate node ID’s public key
as 𝑓(𝐼𝐷). ID associated with public-key cryptography may
be different from the ID used in 𝐶ℎ𝑎𝑖𝑛𝐹𝑎𝑟𝑚. We will first
summarize how the replication detection protocol works in 4
steps and then explain how it applies for 𝐶ℎ𝑎𝑖𝑛𝐹𝑎𝑟𝑚.

1. Location Claim: Each node periodically broadcasts its
location claim composed of ID and current position along with
a public-key signature.

2. Neighborhood Forwarding A neighboring node 𝑣 has a
probability to forward a valid claim to a subset of randomly
selected 𝑔 witness locations using GPSR routing protocol [14].
A claim is valid if its signature is authentic and claimed
location is plausible (location claimer is in 𝑣’s transmission
range). Any node failing to send valid location claim is
blacklisted by its neighbors.

3. Witness Duplication Check: After a node closest to
a witness location receives a location claim, it verifies the
signature and check the ID against all the valid location
claims they have already received. Any ID with more than
two different location claims in a claim period is rendered as
a replicated identity and triggers revocation.

4. Network-wide Revocation: A network-wide broadcast
is initiated by the nodes detecting duplication. Broadcast
messages include the conflicting claims of the same ID.

Now let us analyze how this protocol helps detect com-
promise. There are three cases. (a) If attackers impersonate
a source without physical compromise, collusion for example,
attackers do not know the source’s private key. They are unable
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to generate claims with valid signature and are detected in
step 2. (b) If attackers compromise a source and replicate
its cryptographic information into several malicious devices,
it is exactly replication attack. The malicious ID is detected
in step 3. (c) If attackers only compromise a source without
replication, it is not detectable. However, attackers’ infection
is limited to the compromised node. Yet other techniques
of behavior monitoring and analysis can detect intrusion if
compromised sources act maliciously.

After detection, administrators can be notified. Any node,
which confirms the compromised identity ID, can blacklist this
ID and cut off any communication associated with it.

(3) Are the increased packet size and computational
overhead for extra signatures BAD? We believe the over-
head is acceptable. First, MAC signatures are usually gen-
erated by secure hash functions, such as SHA-1 and MD5.
Typical hash size is 16 bytes for MD5 and 20 bytes for SHA-
1, regardless of the message size. Trimming of hash value can
further reduce the hash size to 10 bytes. In 𝐶ℎ𝑎𝑖𝑛𝐹𝑎𝑟𝑚, 𝛽
is from 2 to 7. While experiments shows that 𝛽 is 2 or 3 in
normal cases, the size of extra 2(𝛽 − 1) released keys and
signatures is small, compared with the maximal packet size.
We show the typical message overhead in Table II. Second,

TABLE II
MESSAGE OVERHEAD: MAC AND KEY SIZE (BYTE)

Hash Function 𝛽 = 2 𝛽 = 3 𝛽 = 4
MD5 (16B) 32 64 96
SHA-1 (20B) 40 80 120

computation is not a problem since one-way hash computation
is light-weighted. It is better to trade computation and packet
size for reduced authentication delay and early drop of faked
packets.

(4) Is loose synchronization in TESLA hard to achieve?
It has been shown that loose synchronization can be securely
achieved in both centralized and distributed ways with high
accuracy [15][16][17].

(5) Dynamic node addition: By using the maximal network
size 𝑁 instead of 𝑁 , we can easily accommodate node
addition. After the initial node deployment, the trust server will
reserve the rest unused hash chain combinations for additional
nodes. When the new nodes arrive, they first contact the offline
trust server, loading the assigned hash chain combination and
commitment keys for all the hash chains in chain pool and
obtaining their ID. Then they can communication with other
devices in field freely.

VII. EVALUATION

We adopt uniform-𝑝 traffic model for system configuration
and protocol performance evaluation. First, we investigate the
typical network configuration under different network sizes,
contact probabilities and required authentication delay with
uniform-𝑝 traffic model. Then we evaluate 𝐶ℎ𝑎𝑖𝑛𝐹𝑎𝑟𝑚 per-
formance in terms of memory consumption, resilience against
compromise and authentication delay. Delay is measured in a

simulated environment under a more general locality-𝑝 traffic
model.

A. Configuration of 𝛼 and 𝛽

First, we show configurations of 𝛼 and 𝛽, varying contact
probability 𝑝, network size 𝑁 and authentication delay 𝐷.

In Figure 4, we show the setting of 𝛼 and 𝛽 in a network
composed of 10000 nodes. Each node has 500 units of
memory for hash chain storage and 𝒞 = 30. The expected
authentication delay is 1.67 rounds. Contact probability varies
from 0.001 to 0.015. 𝛽 is labeled in the transition points of the
curve as 𝑏. When the contact probability increases, 𝛼 increases
and 𝛽 decreases since more nodes are contacting each other
and consequently less sharing is required to achieve the same
authentication delay.

In Figure 5, we study the typical configuration of 𝛼 and 𝛽
for different authentication delay requirements and network
sizes with 𝑀 = 400 and 𝒞 = 40. Network size varies
from 1000 to 10000 and expected delay changes from 1.4
to 2.0 intervals. Each upper slope in the 5 curves indicates a
change of 𝛽 from 2 to 3. When the required delay becomes
less strict, larger 𝛼 is realized. For a small network size, our
scheme prefers a small 𝛽 of 2. When the network size becomes
larger, 𝛽 increases to 3 so as to support source authentication.
Because we have a constant contact number (𝑁 ∗ 𝑝 = 50)
per round, 𝛼 and 𝛽 remain constant if they can support the
network size, depicted as the horizontal tails in each curve. In
this way, our scheme can easily accommodate node addition
without change to 𝛼 and 𝛽.

B. Memory Consumption

𝐶ℎ𝑎𝑖𝑛𝐹𝑎𝑟𝑚 protocol keeps memory consumption below
𝑀 ; while in TESLA, it is 𝑁+𝒞, with 𝑁 commitment keys and
1 hash chain. For the configuration in Figure 5, the memory
consumption for 𝐶ℎ𝑎𝑖𝑛𝐹𝑎𝑟𝑚 is below or equal to 400 units;
while in TESLA it is 1040 for 1000 nodes and 10040 for
10000 nodes. For a larger network scale, the memory saving
is more dramatic. With 𝑀 = 400 and 𝐶 = 40, 𝛽 = 3 supports
10000 nodes in Figure 5. ChainFarm can easily accommodate
50 billion nodes with 𝛽 = 7.

C. Resilience against Compromise

In Figure 6, we evaluate the resilience against compromise
by examining the percentage of affected broadcast senders,
(1− Eq.(1)), under the configuration in Figure 4. When the
contact probability increases, less sharing is required in order
to achieve the same authentication delay. This leads to better
resilience against compromise. As more collusive attackers
appear, the percentage of senders who are affected increases.
However, the increased rate is low for high contact probability.
For 𝑝 = 0.009, 10 compromised nodes only affect 0.35%
nodes; and 1.05% nodes for 𝑝 = 0.006. Abnormally, the
resilience for 𝑝 = 0.01 is worse than 𝑝 = 0.006. The reason is
that though the absolute number of affected broadcast senders
is small for 𝑝 = 0.01, the maximal allowable network size is
also smaller:

(
155
2

)
for 𝑝=0.01 v.s.

(
119
3

)
for 𝑝=0.006.
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Fig. 6. Resilience against Compromise

Unfortunately, strategic attackers may compromise 𝛼/𝛽
nodes which have distinct hash chain combinations so as
to demolish the secrecy of the whole network. However, it
takes time to compromise devices and ChainFarm optimizes
the resilience against compromise via choice of 𝛼 and 𝛽.
Upon substantial compromise, ChainFarm can reconfigure
using online hash chain update. For most cases, it is better to
trade compromise resilience for improved authentication delay
and early dropping of faked packets.

D. Authentication Delay

Now, we study how the authentication delay looks like in
simulation and what is the gap between the actual authenti-
cation delay and required one when systems are configured
under uniform-𝑝 traffic model. We test both 𝐶ℎ𝑎𝑖𝑛𝐹𝑎𝑟𝑚 and
𝑇𝐸𝑆𝐿𝐴 under a more general locality-𝑝 traffic model, which
takes the inaccuracy of traffic modeling into account.

In uniform-𝑝 traffic model, each node chooses 𝑁 ⋅𝑝 random
nodes uniformly from the whole network and sends one
packet to each of them per round. Whereas, some applications
may have locality preference, such as in wireless networks.
Therefore, we have adopted the small world model [18] in
locality-𝑝 traffic model for evaluation. For any node 𝑣 other
than 𝐴, it is chosen by node 𝐴 with probability proportional
to 𝑑(𝐴, 𝑣)−𝛾 , wherein 𝑑(𝐴, 𝑣) is the hop distance from node
𝑣 to 𝐴. The hop distance is calculated in a 2-dimensional
attribute space with nodes randomly deployed. 𝑑(𝐴, 𝑣)−𝛾 is
divided by a normalizing constant

∑
𝑣∈𝒩 ,𝑣 ∕=𝐴 𝑑(𝐴, 𝑣)

−𝛾 to
obtain a probability distribution. If 𝛾 = 0, locality-𝑝 traffic
model equals to uniform-𝑝 traffic model. Increasing 𝛾 stresses
the preference over “nearby” neighbors.

In the first set of experiments, we compare the authen-
tication delay of 𝐶ℎ𝑎𝑖𝑛𝐹𝑎𝑟𝑚 with 𝑇𝐸𝑆𝐿𝐴. The network
includes 100 (200) nodes with 𝑝 = 0.1, 𝑀 = 100 and 𝒞 = 20.
The resulting configuration is 𝛼 = 16 and 𝛽 = 2 (𝛼 = 31 and
𝛽 = 2) when the required authentication delay is 5

3 rounds.
Each simulation instance lasts for 100 rounds. It is possible
that some packets are never authenticated due to probabilistic
contacts by their sources. We have separated the number of
unauthenticated packets from average delay measurement. The
mean node degree is fixed at 9.

Figure 7 shows that the authentication delay of
𝐶ℎ𝑎𝑖𝑛𝐹𝑎𝑟𝑚 matches the required delay of 5

3 intervals,
no matter how 𝛾 changes. While for 𝑇𝐸𝑆𝐿𝐴, the delay
is much higher. It is smaller than the expected value of
10, given 𝑝 = 0.1, because packets, which are unable to

be authenticated, are counted separately. As we increase 𝛾,
the delay of 𝑇𝐸𝑆𝐿𝐴 decreases since locality increases the
contact probability over a small subset of nodes.

The same effects are observed on the number of unau-
thenticated packets in Figure 8. We believe that 𝑇𝐸𝑆𝐿𝐴
will be much worse in terms of number of unauthenticated
packets because of packet timeout policy. In our experiments,
we allow infinite waiting period till the end of simulation.
While in practice, if the packets cannot be authenticated in a
predetermined period, receivers will drop them.

In the second set of experiments, we show the impact
of contact probability on authentication delay. The network
setting is 1000 nodes with 𝑀 = 200 and 𝒞 = 30. Under
the condition that required authentication delay is 5

3 rounds,
we have plotted the average authentication delay in Figure 9,
varying the contact probability from 0.01 to 0.10 and 𝛾 from
0 to 4. Configuration of 𝛼 and 𝛽 is shown in Table III.

TABLE III
PARAMETER CONFIGURATION

Contact Probability 𝛼 𝛽 Contact Probability 𝛼 𝛽

0.01 20 3 0.06 93 2
0.02 39 3 0.07 108 2
0.03 46 2 0.08 124 2
0.04 62 2 0.09 139 2
0.05 77 2 0.10 140 2

Figure 9 proves that the actual authentication delay matches
the expected one quite well in a wide range of contact
probability except over-estimation at two extremes. For small
𝑝, gap between the actual authentication delay and required
one is 0.05, which is generally acceptable. This is caused
by the fact that we skip the effect of self-authentication in
analysis. Small 𝑝 prefers a large number of hash chains held
per node. Therefore, the self-authentication probability in-
creases, decreasing authentication delay. While for the contact
probability larger than 0.09, in theory, 𝛼 should increase as 𝑝
increases; however it is bounded by constraint of memory size
and remains the same no matter how 𝑝 increases as shown
in Table III. Therefore, we see a drop in the authentication
delay for 𝑝 = 0.10. Increased 𝛾 decreases the performance of
𝐶ℎ𝑎𝑖𝑛𝐹𝑎𝑟𝑚 protocol, but still around the required authenti-
cation delay. Remote nodes, which are occasionally contacted,
are difficult to be contacted again in future, thus increasing the
overall delay.

We also examine the authentication delay of 𝐶ℎ𝑎𝑖𝑛𝐹𝑎𝑟𝑚
and 𝑇𝐸𝑆𝐿𝐴 for different contact probabilities under packet
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Fig. 10. Authentication Delay under Packet Loss

loss in Figure 10. The same configuration as in Table III
is used. Packet loss ratio varies among 0.2, 0.1 and 0 (no
packet loss). Contact probability changes from 0.02 to 0.1 with
0.02 stepsize. Performance of 𝐶ℎ𝑎𝑖𝑛𝐴𝐹𝑎𝑟𝑚 and 𝑇𝐸𝑆𝐿𝐴
is shown in the left and right panel, respectively. As packet
loss ratio increases, authentication delay increases for both
protocols since the effective contact probability decreases
and receivers wait for longer periods for authentication keys.
However, delay performance of 𝐶ℎ𝑎𝑖𝑚𝐹𝑎𝑟𝑚 decays slowly,
still around the required authentication delay of 5/3 rounds.
This deviation from required delay is caused by inaccurate
traffic model. As we can see, authentication delay of TESLA
is generally lower than 1

𝑝 rounds because we separate unau-
thenticated packets in this measurement. The average number
of unauthenticated packets per round for TESLA is more
than 7. On contrary, it is less than 0.1 for 𝐶ℎ𝑎𝑖𝑛𝐹𝑎𝑟𝑚
under all the contact probabilities and loss ratios examined
above. We conclude that the coordinated key delivery mecha-
nism in 𝐶ℎ𝑎𝑖𝑛𝐹𝑎𝑟𝑚 makes authentication delay tolerant of
packet losses. Not shown here, another improvement is that
𝐶ℎ𝑎𝑖𝑛𝐹𝑎𝑟𝑚 enables authentication even under path or source
failure; while 𝑇𝐸𝑆𝐿𝐴 does not.

E. Minimal MAC Verification Delay

In this section, we study the minimal MAC verification
delay, which is the delay when the receiver of a packet 𝑃
receives the first authentication key, out of 𝛽 keys. If the
receiver owns a hash chain used to sign 𝑃 , this delay is 0.
Minimal MAC verification delay is an important metrics to
evaluate resilience against false packet injection attacks. It is
the upper delay bound for false packets to be cleaned out from
buffer. Short delay due to partial authentication makes more
buffer space devoted to probably authentic packets. Shown in
Figure 11, the delay for 𝐶ℎ𝑎𝑖𝑛𝐹𝑎𝑟𝑚 is below 1.5 rounds.
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Fig. 11. Minimal MAC Verification Delay

The minimal MAC verification delay for 𝑝 = 0.02 is less
than 1 round due to large degree of self-authentication as
explained in Figure 9. While, the delay for TESLA is estimated
to be 1/𝑝, from 50 to 10 rounds. In 𝐶ℎ𝑎𝑖𝑛𝐹𝑎𝑟𝑚, whenever
a false MAC signature is detected, the packet is dropped. This
early dropping mitigates memory-based DoS attacks, which
is achievable via “collaborative” key delivery mechanism in
𝐶ℎ𝑎𝑖𝑛𝐹𝑎𝑟𝑚.

VIII. RELATED WORK

Our ideas are motivated by SMOCK [11] for public-
key management, wherein a unique combination of keys is
associated with an identity, rather than one key in public
key scheme. However, public key based authentication is too
computationally heavy for broadcast authentication at mobile
devices. We are interested in light-weighted cryptographic
primitives with small authentication delay. Furthermore, no
mechanism is designed to detect compromise.

The ideas of 𝐶ℎ𝑎𝑖𝑛𝐹𝑎𝑟𝑚 to improve authentication delay
can be illuminated by Resilient Overlay Networks [19] in P2P
domain. The basic principle in RON is that nodes recover
from path outages and degraded performance by coordination
among overlaid RON nodes, besides the network routing
recovery process controlled by core routers. The overlay
coordination triggers more timely response to deal with path
outage and degraded performance. This principle promotes us
to design ChainFarm protocol to coordinate devices to recover
from path or source failure and to decrease authentication
delay in probabilistic broadcast.

[20] develops several techniques to support multiple senders
for the parameter distribution phase. However, it only assumes
a small number of senders or a few active senders staying
in the network at one time. In presence of a mass of active

272



senders, the hash chain commitments for each sender should
be unfolded, making the memory consumption unscalable for
cooperative environment. In addition, it does not consider
probabilistic broadcast. [7] proposes a variation of TESLA
to support light-weight broadcast authentication in sensor
networks. [9] proposes several variations of TESLA to sup-
port both long hash chain lifetime and short authentication
delay via multi-level TESLA to defend against replaying/DoS
attacks. The multi-level TESLA idea in [9] does not aim
at 𝐴𝑆𝑃𝐵𝑐𝑎𝑠𝑡 traffic; however, it can be integrated with
𝐶ℎ𝑎𝑖𝑛𝐹𝑎𝑟𝑚 to prolong lifetime of hash chain and shorten
length of round. [21] secures one-hop transmission against
unauthorized resource access and overhearing via symmetric
key scheme, which only fits for unicast traffic in static net-
works.

IX. CONCLUSION

In this paper, we identify an important traffic type, “High-
rate Any Source Probabilistic Broadcast”, in collaborative
environment. We propose 𝐶ℎ𝑎𝑖𝑛𝐹𝑎𝑟𝑚 protocol, which is
scalable to a large number of senders, reduces packet authen-
tication delay in deterministic network path failure and proba-
bilistic broadcasting and supports dynamic node addition. The
simulation verifies the feasibility of our scheme; and memory
and authentication delay is dramatically improved compared
with tradition TESLA.

We envision many applications for 𝐶ℎ𝑎𝑖𝑛𝐹𝑎𝑟𝑚, such as
traffic authentication, secure location services and pub-sub
systems with dynamic network topology and traffic, whose
pattern seen by each node resembles 𝐴𝑆𝑃𝐵𝑐𝑎𝑠𝑡 traffic. As
future work, we plan to test 𝐶ℎ𝑎𝑖𝑛𝐹𝑎𝑟𝑚 performance for
those applications and work on adaption issues, like distributed
online hash chain update and location-aware chain group
management to lessen the impact of compromise.
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