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Abstract— The performance of conventional gateway access
optimization techniques deteriorate dramatically when traffic
load is dynamic. In this article, we propose a novel gateway access
algorithm called ‘Cog Gap’, which is a cognitive method and is
designed for Wireless Mesh Networks to maximize the network
utilization. The proposed Cog Gap utilizes a destination-hub
access model, where multiple gateway nodes are connected by
wired links, and packets from a source node can be sent from any
connected gateway nodes to increase transmission opportunities.
In Cog Gap, we use the Hidden Markov Model (HMM) and
the expectation maximization method to handle uncertain traffic
pattern and the loss of probing results. A traffic allocation
algorithm is then proposed to optimize dynamic multi-gateway
access. By modeling the route state determination and transition,
we transform the opportunistic gateway access problem into
a Markov decision process (MDP) problem. A heuristic and
adaptive algorithm named hindsight optimal is used in solving
MDP. Simulation results have proven that the proposed Cog Gap
algorithm can make full use of the transmission opportunities and
does not incur noticeable protocol overhead.

I. INTRODUCTION

Wireless mesh networks is a promising solution to the
“last mile access” problem and mesh routers can achieve
higher network throughput due to the existence of multiple
communication channels. In this work, we focus on building a
gateway access algorithm in wireless mesh networking system
by leveraging a cognitive and opportunistic methodology.

Two general design goals for gateway access algorithm are
network efficiency and traffic adaptivity. Because all nodes in
network tend to send packets to gateway nodes, an efficient
gateway access method should avoid the congestion [1] [8] [9]
on the gateway nodes. For networks with dynamic traffic, loads
vary on different routes. A carefully designed access method
should be able to adapt to the traffic load to opportunistically
maximize the network utilization.

We have three observations about the gateway access algo-
rithm in Wireless Mesh Networks. First, for a wireless node,
there are not much differences as far as which in gateway
node it picks to send packets when traffic is not heavy. This
is because gateway nodes are connected by wire-line or high
speed radio links and the protocol overhead is trivial and the
reassembling process at each gateway can ensure the data
integrity. As shown in Fig.1, each gateway Gwi are connected
by wired network. Data packets generated by each node vi

can be delivered to any gateway Gwj , and a reassembling

Fig. 1. Destination Hub based gateway access model

process is running on each gateway. We denote this access
mode as a “Destination Hub”, because all the gateway nodes
are connected as if they were plugged into a logical Ethernet
hub.

The next observation is that traffic patterns dominate the
throughput of gateway access [1] [8] [11]. Also, traffic patterns
are unknown in a real deployed wireless mesh network.
Optimal models such as linear programming and mixed integer
programming are not working in a bandwidth constrained
wireless network due to the big iteration overhead [18]. When
dealing with the stochastic traffic patterns and multiple routing
choices, a probing process is needed before directing traffic
onto different routes.

The last observation is that transmission opportunities vary
on different routes. It is therefore necessary for a source node
to have a mechanism to send packets by concurrently using
multiple efficient routes to maximize the throughput between
a source node and a destination node.

Base upon those three observations, we propose our ’Cog
Gap’ algorithm, which applies a cognitive route level opti-
mization to maximize the opportunities of transmitting pack-
ets among different routes to the gateways. We assume the
unknown network traffic can be modeled by observing traffic
patterns. That is, probing traffic load on different routes
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to gather information about traffic states and then making
inference with a built-in hidden Markov model. In addition, to
accurately probe network states with low cost, we employed
the proposed interference model on IEEE 802.11 DCF in
Qiu’s work [6], which has been validated and proven to be
an effective modeling technique [5].

Contributions of this study are as follows:
1) We propose a new gateway access model, called “Des-

tination Hub”. With this gateway access model, it is
possible to have more routes to reach a destination node.
In addition, this new model enables dynamic gateway
access with variable traffic patterns. We also analyze
route probing from a perspective of the optimal stopping
theory.

2) The “Cog Gap” applies the IEEE 802.11 DCF [6]
modeling to reduce the probing overhead and improve
the probing accuracy. It also takes advantages of a vali-
dated MAC layer model, and creatively adopts a hidden
Markov model (HMM) to deal with the uncertainties in
traffic patterns.

3) Our proposed gateway access algorithm is a purely de-
cision based mechanism, which has much less protocol
overhead than conventional methods. Routing decisions
are made in a decentralized manner by using the infer-
ence model of HMM and the validated MAC model.

In summary, we propose a new framework on gateway
access in wireless mesh network, which takes advantage of
varying network traffic for transmission opportunity. Con-
sidering the partially known characteristics of the network
traffic, we make our decisions on a MDP (Markov Decision
Process) model. The opportunistic transmissions, however, will
successfully utilize the throughput gap and add beliefs of our
MDP model as observation results.

The rest of the paper is organized as follows. In Section
II, related work on gateway access algorithms are introduced,
followed by the system model and problem formation in
Section III. Next, in Section IV, we propose a model driven
method on route level probing. In Section V, we propose a
MDP based approach on gateway access problem. We further
describe on our cognitive routing method in Section VI, and
present the simulation results in Section VII. Last, we conclude
our work and future directions in Section VIII.

II. RELATED WORK

Gateway nodes provide seamless interconnections between
wireless nodes and wired routers. They have great impact
on the performance of a heterogeneous network. Accessing
algorithms to maximize the utilization of the gateway nodes
have been extensively studied recently [1] [11] [12]. Those
traditional methods assumes network traffic is known before-
hand, and gateway nodes can be placed everywhere in the
network region as needed, which is normally not the case in
real deployments.

Scheduling wireless data in transmitting queue is discussed
in multi-carrier wireless data systems [12]. Because differ-
ent carriers have different transmitting rates, a scheduling

algorithm is needed in order to enhance the performance of
wireless access point. Most, if not all, scheduling algorithms
are unable to optimize dynamic traffic in multi-hop wireless
networks where traffic pattern is unknown.

Multipath algorithms are primarily used to recover route
failures in self-organizing networks. Recently, the algorithms
are also applied in traffic engineering to balance traffic load
among multiple routes toward the same destination [15] [16].
In gateway accessing mechanisms, however, multiple routes
towards the same destination node could still lead to conges-
tion, and make the performance even worse.

Congestion aware routing protocols could effectively avoid
congestion on routes toward the gateway nodes, such as
the models proposed in [3] [5] [6]. In congestion aware
approaches, predictable performance and load balancing can
be achieved, but such approaches do not have feedback or
traffic modeling mechanisms, which result in its incapabilities
of handling dynamic traffic.

Cognitive methods are widely employed in exploring chan-
nel states [19] [20], but it heavily relies on the probed results
across multiple channels. We believe that cognitive methods
are also useful in packet routing in wireless networks. T.
salonidis et al [3] propose a method to identify high throughput
path in 802.11 meshed networks. With a probing mechanism
to collect information on packet loss rate and channel busy
time, link level throughput can be evaluated and extended to
the route level.

Opportunistic access methods, although having been widely
used in MAC layer, can still be applied in routing layer.
Opportunistic routing protocols was first proposed by Biswas
and Morris [21] to effectively exploit the network diversity
among users. That paradigm needs to have many nodes to
cooperate during routing process, and the scheduling efficiency
largely depends on network traffic and the network topologies.

Transmission opportunities change dynamically on different
routes. Selecting a number of wrong paths will largely increase
the delay and seriously affect the system performance due to
the feedback latency [22]. Therefore, transmission scheduling
and rescheduling should quickly adapt to the route probing
results. Indeed, we need to strike a balance between probing
cost and its accuracy. We keep all these challenges in mind in
the process of building our gateway access algorithm.

III. SYSTEM MODEL AND PROBLEM DESCRIPTION

In this section, we introduce the gateway access model
and route probing model. In our ”destination-hub” based
network, gateway access problem is transformed into a MDP
problem, where states of different routes are modeled, and
state transitions are executed according to evaluated reward
functions.

A. Gateway Access Model

Network Model: We suppose there is a gateway set Ω =
{Gw1, Gw2, ..., Gwk}, where gateway nodes are connected
via wired network. We further assume that, the communication
cost between gateway nodes can be omitted. Nodes deployed
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in network form a node set V , and for a given node vi ∈ V ,
there exists at least one route to gateway nodes. The route
set Φ(vi), consisting of k routes from vi to gateway can be
denoted as Φ(vi) = {R1

i ,R2
i , ...,Rk

i }. In MAC layer, we use
IEEE 802.11 DCF as the MAC protocol, and the RTS/CTS
interference model is applied in our network model. We also
assume that, routing messages are completely known to each
node, as many proposals have pointed out [23] [24].

The primary goal of this study is to explore the traffic diver-
sity in a dynamic network scenario. The packet reassembling
process at each gateway nodes is not the focus of our work
and is therefore not included. Routing algorithms that consider
both mobility and stability of routes towards gateways are
outside the scope of this paper.

Fig. 2. Opportunistic Transmission Model on Different Routes

Route States Probing Model: As shown in Fig. 2, at time
t, there are different transmission opportunities on each route.
The fundamental reason for the transmission opportunities is
the stochastic behavior of network traffic. In order to take
advantages of these opportunities, the source node need to
periodically probe multiple routes to the destination. Probing
process is done by sending a short probing packet and re-
ceiving correspondent ACK packet. Round trip time (RTT)
on different routes are ranked in ascending order. Suppose
k′ < k different routes have been probed for transmission, the
RTT values can be ranked as d(1) ≤ d(2) ≤ ... ≤ d(k′). We
assume for each source node, there are at least one primary
route to gateway nodes. The difference between primary and
secondary route is that transmission on secondary route should
avoid collision on primary route. We assume that, the packet
delays are mainly produced by the deferring time in MAC
layer, and round trip delay is the sum of deferring time on
each links j in route set.

Given a node vi in network, the jth route state at time t can
be denoted as S(Rj

i (t)). If S(Rj
i (t)) = 1, it means the route

Rj
i is saturated and cannot be used to transmit packets any

more. Otherwise, it means the route is unsaturated, and can
bear more packets for transmission. Because the route probing
process can only return the RTT values, we need a function to
map time delay space ~T to network congestion state S. That
is, f : ~T × ~M → S , where ~M ⊂ ~T × ~S is the mapping matrix.

Definition: Transmission GAP of a route i at time slot t
is denoted as εi(t) = g∗i − gi(t){for g∗i (t) > gi(t)}, where
g∗i (t) is the optimized fair traffic allocation on route i, and
gi(t) is the current traffic load.

Unfortunately, achieving a reasonable and accurate mapping

matrix between RTT and routes is difficult. Appealing to
model proposed in [6], we build our own mapping function,
which considers traffic state and saturated throughput (capac-
ity) on each routes.

B. Traffic Pattern and Schedule

Firstly, we assume that time t is discrete, where t ∈
{0, 1, 2, ...}. Given a node vi in network, we assume there
are totally k routes between vi and destination hub Ω. We
also assume discrete traffic types, where transmission rates
on different routes toward gateway are categorized into m
types, and ranked in descending order. That is, for i < j,
we have λi > λj , where 1 ≤ i < j ≤ m. For a traffic type
i, we assume that the arrival sequence is unknown. Ai(t) = 1
denotes the event that traffic of type i arrives at time slot t,
and we have Ai(t) ∈ {0, 1}, For all traffic types, we denote
~A(t) as the traffic pattern at time t. With the progress of t,

traffic load on various routes are dynamically changing. A
gateway access schedule π(t) is to handle ~A(t), in which the
arriving traffic loads are scheduled to different routes Rj

vi
to

fully utilize network resources. π(t) is a mapping from A(t) to
[0, 1], that is π : A(t) → [0, 1]. We denote the schedule vector
as π(t) = {π1(t), π2(t), ..., πk(t)}, and also

∑
1≤i≤k

πi(t) = 1.

C. Model the Gateway Access as MDP

We model our gateway access problem as a MDP. In a
more generalized form, a MDP can be denoted in a four
tuples 〈S, I, T,R, 〉, where S is the set of states; I is set of
available actions; T is the probability distribution on state
transitions; and R is the reward function. For simplicity,
the time step t is not presented on the four tuples. In the
following sections, we use these notions 〈S, I, T,R, 〉 instead
of 〈S(t), I(t), T (t), R(t), 〉.

State Space: The state space of MDP can be denoted as ~S,
which is a state vector of different routes. {sij}n×k denotes
the traffic load of different source, where sij denotes the traffic
load on jth route from source node vi.

Action Space: The set of actions can be denoted as I =
{0, 1}(m,k), where the elements of I , aij = 1 means traffic
type i will be transmitted on the jth route, and aij = 0 means
no traffic is directed to route j.

State Transition: The first component of state S depends
on the MAC layer protocol and traffic patterns in network,
which will be discussed in section IV.

Reward function: The reward values, as we aim to improve
network throughput, can be denoted as

R(~s,~a) = ~ε(t) · ~I(t)

which indicates the the capacity gap we are making use of.
That is, we will be rewarded as the transmission gaps on routes
are explored and used. Because it is only a one step reward,
we can extend the reward function to a finite horizon. That is,
given an initial state ~s0, the system adopt a action ~a0. After a
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horizon of H steps, the accumulated reward is given by:

WH( ~a0, ..., ~aH−1) ≡
h−1∑

k=0

R( ~sk)

where aĤ is the latest control action that impact network
throughput, and Ĥ = H − d(c∗), which is the latest control
action that affect route states and d(c∗) is the smallest probing
RTT among all observations.

IV. COG THE GAP - MODEL DRIVEN ROUTE LEVEL
PROBING

In this section, we propose a cognitive route level probing
method, which is driven by a validated modeling approach
[6] [5]. Two issues need to be solved for building a model
driven probing. The first issue is the unknown traffic pattern.
This uncertainty hinders us from exploring the ensured traffic
load on each route, hence the transmission gap. The second
issue is the inaccurate and incomplete probed RTT values.
Inaccurate RTT results is due to the fact that different routes
have difference in RTT variance. Incomplete RTT results exist
because it is wise not to frequently probe the networks to avoid
congestion.

We use the hidden Markov model (HMM) for traffic pat-
tern modeling. When the traffic patterns and distributions
are known, a fair and optimized traffic allocation method is
proposed. The RTT values under the allocated traffic pattern
are evaluated for cognition on the transmission opportunity,
that is, the capacity gap. Expectation maximization (EM)
method is used in dealing with the incomplete data, and a
Markowitz model is applied to make choices on different RTT
values. According to the returned and refined RTT values, we
evaluate the transmission gap, which is useful for the next step
MDP modeling and computation. We also discuss the mapping
function between RTT and route capacity on a validated IEEE
802.11 DCF model [5] [6].

A. Modeling Traffic Arrival Distributions

For each node in a network, the data transmission rate is
observable, while the model is not known. We use HMM to
model distributions of traffic arrival patterns. For applications
that traffic arrival rates are not known, the EM can be used
to infer a HMM heuristically [30] [31]. In order to avoid
abuse of notations, a HMM model is denoted as a tuple
< QH , TH ,ΛH ,ΠH >, where QH is a finite set of states,
and TH is the probability distribution for next state in Q,
Λ is a mapping from Q to the probability of a task arrival,
ΠH is a distribution of the uncertain initial state over QH . A
hidden state sequence < q1, q2, ..., qk > is generated by the
distribution function ΠH .

We assume that at each observation step, Xt is generated
by a K − dimensional real value hidden state Ht, and the
distribution is generated by:

P (H1:T , X1:T ) = P (H1)P (X1|H1)
T∏

t=2

P (Ht|Ht−1)P (Xt|Ht)

Due to the incomplete data of our probing results, hidden
variables exist in our model, the likelihood log function can
be formed as:

L = log P [Y |θ] = log
∑

X

P [Y, X|θ]

To derive the EM algorithm for inferring HMM parameters,
we need to compute the log probability of hidden variables and
observations:

log P (H1:T , X1:T ) = log P (H1) +
T∑

t=1
log P (X1|H1)

+
T∑

t=2
log P (Ht|Ht−1)

As the traffic patterns are k − dimensional values, the
transition probability can be computed as:

P (Ht|Ht−1) =
m∏

i=1

m∏

i=1

ΨHt,i,Ht−1,j

ij

where Ψij is the probability of transition from state i to j,

log P (Ht|Ht−1) =
k∑

i=1

k∑

j=1

log Ht,iHt−1,jΨij

Given the transition probability distributions, we can com-
pute Λ = {γ1(t), γ2(t), ..., γk(t)}, which is a belief vector,
where γi(t) is the conditional probability given decision and
observation history.

B. Traffic Allocation

We suppose that, for each source node, there is a primary
route to gateway node. This assumption is easily satisfied
because the many routing protocols for wireless networks can
provide an optimal route to destination.

The throughput of each link can be modeled according to
the conversion function, as proposed in [5]:

~g = R ·~f
where ~g is the vector of end to end throughput, ~f is the vector
of traffic demand, and R = {Rid}n×m is the routing matrix.

The problem of maximizing total end-to-end throughput
can be formulated into a stochastic non-linear optimization
problem (SNLP). Different with the model proposed in [5],
the traffic patterns are distributed over serval candidate forms.
Distributions and transitory probabilities have been computed
by HMM and EM method, which have been presented in
section IV-A.

max
∑

d

fd

subject to





Ri
~f ≤ Fi(τ), ∀i ∈ L;

Gi(τ) ≤ 0, ∀i ∈ L;
0 ≤ fd ≤ f∗d , ∀d;
0 ≤ f j

d ≤ f j∗
d , ∀j;

P d
ij → πi, ∀i, j;

0 ≤ τi ≤ 1, ∀i ∈ L;.

where τ is the traffic rate, Gi(τ) < 0 is a necessary
condition for transmission on each link, as indicated in [5].
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Algorithm Heuristic Two-stage Programming Algorithm
1: Compute First-stage Programming results, and the

allocation factor ~x
2: for i := 1 to s do do
3: Compute Second-stage Programming results, and

χs = dsυs

4: χ̃ = max χ,
∑r

s=1 psχ
s

5: end for
6: if χ̃ = χ then
7: The first-stage result
8: else
9: The second-stage result

10: end if
Fig. 3. Two-Stage Matching Algorithm Description

Fi(τ) is the maximal throughput bearable on link i ∈ L, and
L is the link set, given by [5].

We use ”two-stage” programming [34], a heuristic algorithm
for solving stochastic programming models. The goal of our
optimization model is modified as:

max[
∑

d

xd +
∑

s

∑

d

psxd(s)]

Where ps denotes the probability of each traffic pattern s, and
xd(s) denotes the allocated traffic for transmission at state s.

Let ~x be a first-stage solution, and let ~χ = ~c~x. For
scenario s, let υs be a second-stage myopic solution, and
let χs = dsυs. Let χ̃ = max{χ,

∑r
s=1 psχ

s}. If χ̃ = χ,
then return and (~x, 0, 0, ..., 0); otherwise, return (0, υ1, ..., υr)
and

∑r
s=1 psχ

s. Pseudo codes of two-stage programming are
listed in Fig. 3. For each stage, we use the iterative linear
programming method proposed in [5] to solve this problem.

C. Fully Utilizing RTT Values

In order to ”cog the gap”, there are three challenges on
route level opportunity probing. First, the observed values
through route probing are not sufficient. Frequent probing
would lead to large protocol overhead. On the other hand, long
observation time would accordingly loose opportunities for
transmission. Second, RTT values would possibly have large
variance incurred by traffic variations. Routes with smaller
RTT variance, should be preferred over the larger ones. Third,
RTT values are the sum of deferring time on each link, so
there is still a gap between the evaluated capacity and the real
value.

Fig. 4 illustrates the relationship between modules for
throughput probing.

Expectation Maximization: To address the issue of incom-
plete data, we use EM method, which works as follows. Let
y denote incomplete data consisting of values of observable
variables, and z denote the missing observations. The like-
lihood formula would be much more convenient if mixture
components that “generated” the samples were known (see
example below). The conditional distribution of the missing
data z given the observed can be expressed as:

Fig. 4. Flow Chart of the ”Cog Gap”

p(z|y, θ) =
p(y,z|θ)
p(y|θ) =

p(y|z, θ)p(z|θ)∫
p(y|ẑ, θ)p(ẑ|θ)dẑ

An EM algorithm iteratively improves an initial estimate θ0 by
constructing new estimates θ1, θ2 etc, which can be computed
according to the following equation:

θn+1 = arg max
θ
G(θ)

where G(θ) is the expected value of the log-likelihood. G is
given by

G(θ) =
∑

z

p(z|y, θn) log p(y, z|θ)

Markowitz Method: To offset the negative effects of large
variance RTT values, we use the notion “efficient frontier”
proposed by Markowitz method. The “efficient frontier” is
used to maximize the return for a given risk. It is given by an
optimal model:

max E[R] =
k∑

i=1

RiXi

k∑
i=1

k∑
j=1

σijXiXj = V

k∑
i=1

Xi = 1

The Ri is the returned rewards of RTT, as we prefer the
route with lower RTT values, the reward value can be denoted
as follows:

Ri = 1− RTTi∑
1≤j≤k RTT j

σij = cov(Xi, Xj) and V is the bounding on sum of
covariance of selected values.

Maximum Likelihood: We need an accurate mapping
between RTT values and traffic patterns. Since we have the
distributions of traffic patterns, and the RTT values are known,
we can maximize the probability of traffic pattern sequence
from the observing results. Thus, a maximum likelihood
mapping from RTT values to traffic patterns can be given by:

γt(i) = P [(qt = Si)|O, λ]
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that is the probability of being in state Si at time t, given
the observation O and model λ. If the traffic patterns and the
traffic scheduling are given, the RTT values can be evaluated
as indicated in [5], given by:

RTTi =
∑

j∈Ri

Wj =
∑

j∈Ri

g(j)
τ(j)

Where j ∈ Ri denotes each link j on route Ri, and g(j)
τ(j) is

ratio between throughput of link j and allocated traffic of link
j. We’d to maximize the expected number of correct states.
We use the Viterbi algorithm [31], an algorithm modifying the
optimization goal, to find the state sequence

δt+1(j) = [max
j

δt(i)aij · bj(Ot+1)]

where δt(i) = maxP [q1q2...qt = i, O1O2...Ot|λ]. For the
given observation sequences of the RTT values, we can make
an inference on the route states given by δt(i).

V. A DECISION BASED GATEWAY ACCESS APPROACH

In this section, we introduce our solution to the MDP
model for dynamic spectrum access. We use a technique called
”Hindsight Optimization” [26], which is used to heuristically
solved the the problem of calculating ”Q-value” [27].

According to the MDP model described above, we can
formulate our spectrum access problem as follows: Goal of
optimization is to achieve a policy maximizing the objective
function

V ∗
H(s0) = max[R(x0, a0), , R(~sH−1,~aH−1]

As the time progresses, actions are triggering with the dy-
namic network states. The policy can be denoted as π =
{µ0, µ1, µ2, ...}, where µk : ~s → ~a. The policy π is markov if
it is only related to the current state and transition probabilities.

A. Analysis on Structure of Optimal Results

Optimal results of MDP models, although are usually not
achievable due to the explosion of computation on large state
space, is still meaningful to solve our problem heuristically.
Fix a large H , we focus on finite-horizon reward and follow
a standard approach in solving MDP [27] [28]. We then start
the analysis from the fixed horizon model. For a given initial
state ~s, let

V ∗
H(~s) = max

π
V π

H(~s)

That is the ”Q-value”, where

Qk(~s,~a) = R(~s) + E(V ∗
k−1(~s)

′), k = 1, 2, 3, ..., H

is the utility function of action ~a at state ~s, where k is the
number of time step. As mentioned in Bellman’s equations
[29]

V ∗
H(~s) = max

~a∈A
QH(~s,~a)

and a policy π∗ = {µ∗0, µ∗1, ...} is optimal if it satisfies the
following equation for all k.

µ∗k(~s) = arg max
~a∈A

QH(~s,~a)

In practice, computing QH is polynomial to the size of
state space. There are two problems need to be solved. The
first problem is that evaluating effects of the proposed action
is difficult and costly. We need an appropriate model to
validate our actions to avoid channel congestion. The second
problem is that the computation for very large state space is
extremely hard. We need an efficient algorithm to deal with
the exponential increase of the decision tree [32].

B. Hindsight Optimization Technique

The hindsight optimization technique [27] [26] is based on
traffic models, which can be viewed as stochastic predictions
for future network behaviors. The hindsight optimization al-
gorithm heuristically evaluates Q̂(~s,~a). Considering our ob-
jective:

~a∗ = arg max
~a∈A

Q(~s,~a)

Computation of Q(~s,~a) is carried out by estimating Q̂(~s,~a).
In short, Q̂(~s,~a) is a sampled evaluation of Q(~s,~a) given by

Q̂n(~s,~a) =
1
n

t=n∑
t=1

W ∗
t (~s,~a)

Q̂(~s,~a) = R(~s) + ES1,..,SH
max

~a1,...,~aH

WH−1(~(a)1, ...,~(a)H−1)

where

WH−1(~a1,~a2, ...,~aH−1) =
H−1∑

k=1

R(~sk,~ak)

and W ∗
t (~s,~a) is the hindsight optimal value for trace t. As

mentioned in in [26], the Q̂(~s,~a) is an upper bound on Q(~s,~a).
Given the estimate Q̂(~s,~a) of Q(~s,~a), the hindsight opti-

mization makes evaluation on different actions. As what we
are concerning is to rank a series of actions, the upper bound
estimation can be arbitrarily loose without effecting the results
[27].

In our problem, the action space is somehow continuous.
This uncountable state space makes direct evaluation impossi-
ble and we cannot make a good estimation on Q̂(~s,~a). We
applies the method proposed in [26] to handle continuous
actions.

Algorithm Gradient Search Algorithm
1: Initialize ~a(0)
2: for k = 1, 2, ..., do
3: ∇~aQ̂n(~(s),~a) = 1

n

n∑
t=1

∇~aW ∗
t (~s,~a)

4:
5: if ‖∇~aQ̂n(~(s),~a)‖ ≤ ε then
6: break
7: end if
8: end for

Fig. 5. Pseudo Code of Gradient Search Algorithm

At each decision step, as the action vector is continuous,
we can use the searching algorithm to maximize Q̂(~s,~a). The
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pseudo code on our proposed search algorithm are shown in
Fig. 5.

VI. DISCUSSIONS

We will discuss two important issues in this section, probing
cost and probing errors.

A. Gateway Access and Probing Cost

The aforementioned decision based gateway access mecha-
nism does not consider the cost on channel probing. We are
attempting to prove the existence of optimal stopping time
on route states’ probing from the perspective of cooperative
game. Appealing to work of Zheng et al [25], we define the
return rate of gateway access probing, where {N1, N2, ..., NL}
denotes the stopping times for route probing, which means the
probing process is stopped after having probed L channels.

rL =
∑L

l=1 RNl
T∑L

l=1 TNl

→ limL→∞
E[RNl

T ]
TNl

RN is the stopping reward variable, TN is the duration of the
N th probing, and N is the stopping time.

As indicated in [33], if the optimal stopping point exists,
the following equation should be satisfied:

E[sup
n

Zn] < ∞ and lim
n

supZn = −∞

where Zn , R(n)T − xTn, Tn ,
∑n

j=1 Kj% + T , where Kj

denotes the number of probing times, % is the average duration
for each probing, and n is the number of routes being probed.

With the increasing of n, the reward value is bounded by
the maximal reward, and naturally lim

n
supZn = −∞. We

are to prove that, E[sup
n

Zn] < ∞. Let K̃ denote the average

probing, and we have

E[sup
n

Zn] = E[sup
n

R(n)T − x
n∑

j=1

kj%− xT ]

≤ E[sup
n

n(
R(n)T

n
− xK̃%)− xT ] ≤ ∞

The existence of optimal stopping point will lead the gateway
accessing to a new problem. If the probing cost is not
negligible and the route states distribution is not fully known,
the optimal stopping point would lead to partially observable
route states for decision based model.

B. Considering Probing Errors

Probing results are analyzed according to RTT values, which
is a measurement on network states. According to the results
in [10], RTT values can be given by:

Dn = ∆n + Un

where Un is a Gaussian random variable with mean zero and
variance σ. We use Neyman-Pearson detector for traffic state
probing, which is given by:

‖Y‖2 =≷H0
H1

ξ

where σ0 and σ1 are variance values for the route with and
without capacity gap respectively. ξ is the error tolerant factor,
which means that if the error rate is lower than ξ, the effects
of performance reduction can be overlooked.{ H0(g(t) > 0), Yi ∼ N (0, σ2

0), i = 1, 2, ..., L
H1(g(t) < 0), Yi ∼ N (0, σ2

1), i = 1, 2, ..., L

ε , Pr{‖Y‖2 > ξ|H0} = 1− Γ(
L

2
,

ξ

2σ2
0

)

where Γ(L, x) =
∫ x

0
tL−1e−tdt.

1− δ , Pr{‖Y‖2 > ξ|H1} = 1− Γ(
L

2
, η

σ2
0

σ2
1

)

The errors in route state determination however, are depen-
dent on RTT value distributions, state determination methods,
and threshold etc.

VII. EVALUATIONS

We implement the Cog Gap algorithm into GlomoSim [35],
and conduct extensive simulation experiments to evaluate our
design. In a gateway access system, there are many factors
which would impact our algorithm, such as gateway place-
ment, number of gateways, traffic patterns etc. We examine
the impact of probing process on cognitive gateway accessing.

TABLE I
SIMULATION PARAMETERS

Parameters Value

Number of Wireless Nodes 50

Number of Gateway Nodes 5, 10, 15, 20, 25

MAC Protocol IEEE 802.11 DCF Module in GlomoSim

Routing Protocol FSR

Working Area (1000, 1000) meters square

Communication Range 100 meters

Packet Length 512 bit

Channel Bandwidth 1M

A. Impact of Gateway Placement

Fig. 6. Impact on gateway placement

Firstly, we first study the impact of gateway placement on
network performance. As shown in Fig. 6(a), gateway nodes
are deployed on a surrounded border. In Fig. 6(b), gateway
nodes can be deployed in any points of closed area. Fig. 6(a)
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Fig. 7. Impact on number of flows

and (b) are conventional in wireless networks, such as wireless
sensor networks. Fig. 6(c) depicts that there are only a fraction
of border can be used to deploy gateway nodes. The placement
in Fig. 6(c) stands for the network with constrained area for
gateway nodes.

With increased traffic loads, the normalized through-
put varies on different gateway placement as shown in
Fig.F̃IG:TRAFFIC-NUMBER. Placement (a) outperforms (b)
and (c) with the increasing number of flows. Because more
transmission opportunities exist in the placement (a) when a
destination-hub based gateway access model is applied.

B. Impact of Gateway Number

Apart from the gateway placement, the number of gateway
nodes is also an important factor. In our simulations, we vary
the number of gateways to explore the impact of gateway
number on our proposed algorithm.

As shown in Fig. 8, by increasing the number of gateways,
throughput on each gateway placement mode increases ac-
cordingly. The placement (c), however, does not demonstrate
a throughput improvement with the increasing number of
gateway nodes, because the gateway nodes are clattered into
a small region, which will lead to congestions in the end.

C. Impact of Traffic Patterns

We model different level of traffic loads and variations to
illustrate the impact of traffic patterns. We use three types of
traffic patterns, as shown in Table II. The second column lists
the traffic patterns of each mode. The vector values denote
the packet interval for each traffic pattern {T P1, T P2, T P3}
respectively, and the third column is the transition probability
between each transmission rate. The vector values listed as
{P12,P23,P31}, where Pij denotes the probability transition
from pattern i to j.

The three traffic modes are different on transmission op-
portunities. Mode 1 is traffic load heavy, and Mode 2, 3
will provide more opportunities for transmission on gaps
comparing to the Mode 1. The difference between mode 2

Fig. 8. Impact on number of gateways

TABLE II
SIMULATION PARAMETERS

Traffic Mode Traffic Load Transition Probability

Mode 1 {0.5s, 1s, 2s } {0.6, 0.2, 0.2}
Mode 2 {1s, 4s, 6s} {0.1, 0.1, 0.8}
Mode 3 {2s, 4s, 6s} {0.3, 0.5, 0.2}

and mode 3 is the traffic variations. In mode 3, there are
more opportunities for network with light traffic load, and the
probabilities on transition are different from Mode 2.

As shown in Fig. 9, we can see that traffic mode 1, which
is relative high in terms of traffic load, has less transmission
opportunities than traffic mode 2 and 3. The network through-
put of each placement is very close. While in mode 2 and 3,
the placement (a) outperforms (b) and (c) in mode 2 and 3,
with varying traffic load. Because there are more opportunities
in the two modes, and using the ”Destination Hub”, more
opportunities could be exploited for placement (a).

Fig. 9. Impact on traffic patterns
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VIII. CONCLUSIONS AND FUTURE WORK

The proposed destination-hub based gateway accessing al-
gorithm paves the way for opportunistic route level traffic
allocations. Transmission opportunities are exploited using a
route level cognitive paradigm. By applying the IEEE 802.11
DCF model, the transmission opportunities on different routes
are explored and evaluated. The traffic allocation is based on
the decision dominated in the MDP model. In future work, the
following issues need to be further studied:

1) The probing cost is not in full consideration. In section
VI, we have proven the optimal stopping point. As only
the partially probed route states are available, gateway
accessing turns into a POMDP problem, which needs to
be further studied.

2) The effects on errors, which is evaluated only according
to RTT variance, are not fully addressed. Because the
errors might exist in each modeling process, such as
traffic modeling, route state determination, etc, we will
study the problem to improve the accuracy.

3) The algorithm mainly concerns on theoretical results on
opportunities exploitation and decision making. In future
works, we need a systematic design on ”Destination
Hub” based gateway access protocol, with both ”Cog
Gap”, and coordination process between gateway nodes.
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