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Abstract

Intrusion detection in a Wireless Sensor Network (WSN)
is of significant importance in many applications to detect
malicious or unexpected intruder(s). The intruder can be an
enemy in a battlefield, or a unusual environmental change
in a chemical industry etc. With uniform distribution, the
detection probability is the same for any point in a WSN.
However, some applications may require different degrees of
detection probability at different locations in the deployment
area. Gaussian distributed WSNs (i.e., normal distribution)
can provide differentiated detection capabilities at different
locations and are widely deployed in practice. In view of
this, this paper analyzes the problem of intrusion detection
in a Gaussian distributed WSN, by characterizing intrusion
detection probability with respect to intrusion distance
and network deployment parameters. Two detection models
are considered: single-sensing detection and multiple-
sensing detection. Effects of different network parameters
on the intrusion detection probability are examined in
details. This work allows us to analytically formulate the
intrusion detection probability within a certain intrusion
distance under various application scenarios, therefore
provides insight for directing the application-specific WSN
deployment such as intrusion detection.

Keywords: Gaussian distribution, Intrusion detection, Net-
work deployment, Sensing range, Wireless sensor networks

1. Introduction

A large number of wireless sensors can be deployed in an
ad hoc fashion to form a Wireless Sensor Network (WSN)
for many civil and military applications (e.g., intrusion
detection), without relying on any underlying infrastructure
support [1], [2], [3]. Intrusion detection (i.e., object tracking)
in a WSN can be regarded as a monitoring system for
detecting an intruder that is invading the network domain
[4], [5], [6], [7]. Fig. 1 gives an example that a number
of sensors are deployed in a circular area (A = πR2) for
protecting the central-located target by sensing and detecting
the presence of a moving intruder. The intrusion detection
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Figure 1. Intrusion strategy model

application concerns how fast or how efficient the intruder
can be detected by the WSN. Obviously, the sooner the
intruder can be detected, the better the intrusion detection
capability the WSN offers. In the extreme, the intruder can
be detected immediately once it enters a WSN, if the WSN
is densely deployed with a large number of sensors, and can
almost provide full sensing coverage, and hence immediate
detection in which intruder can be detected right away
when it enters the WSN. However, full sensing coverage
leads to undesirable or unacceptable demand on the network
investment, and can hardly be applied or guaranteed in most
WSN applications. Therefore, most WSN applications such
as intrusion detection usually do not have such a strict
requirement of immediate detection. Instead, they specify a
maximum allowable intrusion distance and require that the
intruder should be detected within the pre-defined distance
[4]. As illustrated in Fig. 1, the intrusion distance is referred
as D and defined as the distance between the point the
intruder enters the WSN and the point the intruder is first
detected by the WSN system [8]. It is with no doubt that this
distance is of central interest to a WSN engaged in intrusion
detection.

In [4], the authors analyzed the problem of intrusion
detection in uniformly deployed WSNs following Pois-
son distribution. With uniform sensor distribution, the in-
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Figure 2. WSN deployments following Poisson and
Gaussian Distribution

trusion detection probability is the same for any point
in a WSN. The expected intrusion distance is E(D) =∫√2L

0
2ξλrse

−λ(2ξrs+ πrs
2

2 )d(ξ), where λ is the uniform
node density, rs is the sensor’s sensing range, and L is
the side length of the WSN deployment area. This work
provides systematical and complete insight for deploying
WSNs for intrusion detection, especially when the intruder
can only approach the network from the boundary. However,
if the intruder can enter the network from an arbitrary
point, the uniform WSN deployment can cause an inherent
and serious problem. Say, the intruder is dropped from an
airplane and arrives at a position P = (xp, yp) in the
WSN, and the distance between P and the target point
T = (xt, yt) is less than the expected intrusion distance, i.e.,√

(xi − xt)2 + (yi − yt)2 ≤ E(D). In this case, the target
can be attacked no matter how large the area of the uniform
WSN being deployed. In addition, many intrusion detection
applications in WSNs require different degrees of intrusion
detection capability at different locations. The system may
require extremely high detection capability with densely
deployed sensors at certain sensitive areas (e.g., areas close
to an important fort in a battlefield). For some not-so-
sensitive areas (e.g., the areas comparatively far away from
the important fort in a battlefield), relatively low detection
capability with sparsely deployed sensors is acceptable. This
kind of network configuration is even necessary for reducing
the number of deployed sensors in order to decrease the
overall WSN deployment cost. Uniform sensor deployment
can not fulfill such requirements.

Fortunately, WSNs with Gaussian distributed sensors can
provide differentiated node densities at different locations,
and are widely deployed in practice. Fig. 2 illustrates two
WSN deployments following Poisson and Gaussian Dis-
tribution respectively. In a Gaussian distributed WSN for
intrusion detection, the closer the location to the central
deployment point of T (the target to be protected), the more
the sensors are deployed to provide improved intrusion de-
tection capability. On the other hand, the further the location
away from the target T , the less the sensors are deployed
to provide relatively low intrusion detection capability to

reduce network investment. This motivates us to analyze the
intrusion detection problem in Gaussian distributed WSNs.
We aim to theoretically and experimentally capture the
intrusion detection capability in term of intrusion detection
probability by considering different network settings in
Gaussian-distributed WSNs. It is to provide guidelines in di-
recting WSN deployments for satisfying different detection
requirements at different locations for the sake of intrusion
detection.

The rest of this paper is organized as follows: Section 2
describes the system model. Section 3 examines the intrusion
detection probability in single-sensing and multiple-sensing
detection cases. Section 4 illustrates and explains both the
theoretical and simulation results. Section 5 presents some
related works. Finally, the paper is concluded in Section 6.

2. System Model and Definitions

The system model includes a network deployment model,
a detection model, and the evaluation metrics.

2.1. Network Deployment Model

As illustrated in Fig. 1, we consider a WSN with N
randomly deployed sensors. These sensors are deployed
around a target point (i.e., the central red star) following
a two-dimensional Gaussian distribution. All sensors are
assumed to be equipped with the same sensing range rs,
and their sensing coverage is assumed to be circular and
symmetrical. To be specific, each sensor is to be deployed
in a pre-defined deployment point Gi = (xi, yi) (i.e., the
location of the target or the red star). All sensors finally
reside at points around the deployment point according to
a two-dimensional Gaussian distribution. The probability
density function (PDF) [9] that a sensor resides at point
(x, y) with respect to deployment point Gi = (xi, yi) can
be given by:

f(x, y, σx, σy|n ∈ Gi) =
1

2πσxσy
e
−(

(x−xi)
2

2σ2
x

+
(y−yi)

2

2σ2
y

)
. (1)

In this model, the center, Gi = (xi, yi), is the location of
the target to be protected by the WSN, due to the fact that the
intruder may enter into the network from any direction and
start from any point. σx and σy are the standard deviations
for X and Y dimensions. Without loss of generality, we
assume the center-point coordinate of the disk is G = (0, 0).
Namely, the mean of the Gaussian distribution is (0, 0), and
the PDF for a sensor to be deployed in location (x, y) is the
following [10]:

f(x, y, σx, σy) =
1

2πσxσy
e
−( x2

2σ2
x

+ y2

2σ2
y

)
. (2)

If the sensor deployments in the two dimensions (i.e., X
and Y dimensions) are independent and admit the Gaussian
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Figure 3. PDF of Gaussian deployment with equal
variance in two dimensional case

distribution with the same standard deviation (i.e., σx =
σy = σ). The PDF for point (x, y) to be deployed with a
sensor is reduced as:

f(x, y, σ) =
1

2πσ2
e−

x2+y2

2σ2 . (3)

In our network model, we assume the same deployment
deviation along the two dimensions (i.e., σx = σy = σ),
and the case of (σx 6= σy) will be addressed in our follow-
up work. Fig. 3 shows the PDF of sensors deployed in a
two dimensional area A = 100∗100 with mean deployment
point G = (0, 0) and deployment standard deviation σx =
σy = σ. We can see that different deployment deviation
leads to different sensor distribution. Furthermore, the closer
the location to the center is, the higher is the probability that
it can be deployed with a sensor.

Note that for simplicity of notation, fxy(σ) is referred to
f(x, y, σ) in the rest of this paper.

2.2. Detection Model

In a WSN, it has two ways to detect an intruder: single-
sensing detection and multiple-sensing detection [4]. In the
single-sensing detection, the intruder can be successfully
detected by a single sensor, if the intruder enters the sensing
range of the sensor and the sensor is powerful enough to
detect such an event. On the other hand, in the multiple-
sensing detection model, the intruder should be collabora-
tively detected by multiple sensors [11]. For example, the
location of an intruder should be determined from at least
three sensors’ sensing information [12], [13], [14], [15].

2.3. Intrusion Strategy Model

Here, we assume that the intruder is aware of its desti-
nation (i.e., the target located in the center of the WSN),
and follows the shortest path to approach the destination.
In this case, the intrusion path is a straight line from the
entering point toward the center of the WSN as shown in
Fig. 1. Further, we assume that the intruder can enter the

WSN from any point, and the starting point of the intruder
is at a distance of R, a variable, to its target (i.e., the
central star). The corresponding intrusion detection area
SD is therefore determined by the sensor’s sensing range
rs and intrusion distance D as illustrated in Fig. 1. It is
because the intruder can be detected within the intrusion
distance D by any sensor(s) situated inside the area of
SD in its invading. Given an intrusion distance D ≥ 0,
the corresponding intrusion detection area SD is almost an
oblong area. This area includes a rectangle area Sr with
length D and width 2rs, and two half disks Sc1 and Sc2

with radius rs attached to it [4], [16]. It has:

SD = Sc2 + Sr + Sc1 = 2 ∗D ∗ rs + πrs
2. (4)

For example, in single-sensing detection, at least one
sensor should be located in the area of SD for detecting the
intruder before it moves in the WSN with distance D. While
in multiple-sensing detection, at least k sensors should reside
in area SD for recognizing the intruder within intrusion
distance D.

2.4. Evaluation metrics

In order to evaluate the quality of intrusion detection in
WSNs, we define two metrics as follows [4]:
• Intrusion Distance: The intrusion distance, denoted by

D, is the distance that the intruder travels before it is
detected by a WSN for the first time. Specifically, it is
the distance between the point where the intruder enters
the WSN and the point where the intruder gets detected
by any sensor(s). Following the definition of intrusion
distance, the Maximal Intrusion Distance (denoted by
ξ, ξ > 0) is the maximal distance allowable for the
intruder to move before it is detected by the WSN.

• Intrusion Detection Probability: The detection prob-
ability is defined as the probability that an intruder
is detected within a certain intrusion distance (e.g,
Maximal Intrusion Distance ξ) specified by a WSN
application.

3. Intrusion Detection in a Gaussian dis-
tributed WSN

In this section, we analyze intrusion detection in a Gaus-
sian distributed WSN. We derive the detection probability
both for single-sensing and k-sensing detection scenarios.

3.1. Single-sensing Detection

In the single-sensing detection model, the intruder can be
detected efficiently if it moves into the sensing range of any
sensor(s), i.e., one sensor’s sensing information is enough
to detect the intruder. Of course, the more the merrier.
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Figure 4. Intrusion detection in a Gaussian distributed
WSN with single-sensing detection (D = 0)

Further, based on the intrusion strategy model, the intruder is
detected if and only if there exists at least one sensor within
the intrusion detection area SD with respect to the intrusion
distance D. Otherwise, the intruder can not be detected by
the WSN.

Here, we first examine the detection probability that
the intruder can be detected immediately once it enters
the network domain at a distance of R from its target.
If this is the case, the intruder has intrusion distance
D = 0. The corresponding intrusion detection area is
S0 = 2 ∗D ∗ rs + πrs

2 = πrs
2. This leads to Theorem I as

follows:

Theorem I. Given a Gaussian distributed WSN with N
homogeneous deployed sensors of identical sensing range
rs, mean deployment point (0, 0), and standard deployment
deviation σx = σy = σ. Let P1[D = 0] be the probability
that, an intruder which enters the network at a distance R
to the deployment point (0, 0), can be immediately detected
under single-sensing detection model. P1[D = 0] can be
given by:

P1[D = 0] = 1− {1−
∫ R+rs

R−rs

∫ √
r2

s−(x−R)2

−
√

r2
s−(x−R)2

fxy(σ)dydx}N . (5)

Proof :
In order to analyze the intrusion detection probability in a

Gaussian distributed WSN, we build a Cartesian coordinate
system as illustrated in Fig. 4 based on the network model.
Without loss of generality, (0, 0) is set as the location of the
target (i.e., the center of the circular network), and (R, 0) is
the starting position of the intruder. The intruder is invading
toward the target along the x-axis. Note that the intruder
can enter the network from any point in the circle with
distance R from its target. Once the starting point is set,
the corresponding Cartesian coordinate system can be built
accordingly.

Based the Cartesian coordinate system, the probability
that a sensor is present in the area S0 = πr2
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Figure 5. Intrusion detection in a Gaussian distributed
WSN with single-sensing detection (D = ξ)

represented by the following equation:

p1 =
∫ R+rs

R−rs

∫ √
r2

s−(x−R)2

−
√

r2
s−(x−R)2

fxy(σ)dydx. (6)

Under single-sensing detection scenarios, at least one sensor
should be located in the area S0 for immediate detection. The
probability that there is no sensor located in the area S0 is
P (0, S0) = (1 − p1)N . Then, the complement of P (0, S0)
is the probability that there is at least one sensor located
in the area S0 and can be given as: 1 − (1 − p1)N . In this
case, the intruder can be detected once it enters the network
with intrusion distance D = 0. Thus, the probability that the
intruder can be detected immediately by the given Gaussian
distributed WSN is P1[D = 0] = 1− (1− p1)N = 1−{1−∫ R+rs

R−rs

∫√r2
s−(x−R)2

−
√

r2
s−(x−R)2

fxy(σ)dydx}N .

¤

Based on the above derivation, it is clear that to provide
immediate detection of an intruder in a Gaussian-distributed
WSN, we need to deploy more sensors N , or enlarge
the sensor’s sensing range rs using more expensive
and powerful sensors. Either way increases the WSN
deployment cost, and it therefore is imperative to explore
the intrusion detection problem in a relaxed condition when
the intruder is allowed to travel pre-specified distance in
the WSN.

Theorem II. Suppose ξ is the maximal intrusion distance
allowable for intrusion detection in a given application,
and the intruder starts at a distance of R from its target.
Let P1[D ≤ ξ] be the probability that the intruder can be
detected within the maximal allowable intrusion distance ξ
under single-sensing detection model in a given Gaussian
distributed WSN with N homogeneous deployed sensors of
identical sensing range rs, mean deployment point (0, 0),
and standard deployment deviation σx = σy = σ. P1[D ≤
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ξ] can be derived as:

P1[D ≤ ξ] = 1− {1−
∫ R

R−ξ

∫ rs

−rs

fxy(σ)dydx

−
∫ R−ξ

R−ξ−rs

∫ √
r2

s−(x−R+ξ)2

−
√

r2
s−(x−R+ξ)2

fxy(σ)dydx

−
∫ R+rs

R

∫ √
r2

s−(x−R)2

−
√

r2
s−(x−R)2

fxy(σ)dydx}N .

(7)

Proof : For simplicity of analysis, we also build a Cartesian
coordinate system as illustrated in Fig. 5, the origin (0, 0)
is the location of the target, and (R, 0) is the starting
position of the intruder. The intruder is invading toward
the target along the x-axis. In order for the intruder to
be detected within maximal intrusion distance ξ in single-
sensing detection, there should be at least one sensor located
in the corresponding intrusion detection area Sξ = Sc1 +
Sr + Sc2 = πr2

s

2 + 2ξrs + πr2
s

2 = 2ξrs + πr2
s .

Let pr be the probability that a sensor deployed in the
rectangle area Sr = 2ξrs, pc1 be the probability that a
sensor resides in the left half disk Sc1 = πr2

s

2 , and pc2 be
the probability that a sensor resides in the right half disk
Sc2 = πr2

s

2 .
Based on the given Gaussian distributed WSN, pr can be

derived as:

pr =
∫ R

R−ξ

∫ rs

−rs

fxy(σ)dydx, (8)

where R− ξ < x ≤ R.
pc1 can be calculated as:

pc1 =
∫ R−ξ

R−ξ−rs

∫ √
r2

s−(x−R+ξ)2

−
√

r2
s−(x−R+ξ)2

fxy(σ)dydx, (9)

where R− ξ − rs < x < R− ξ.
pc2 can be given by:

pc2 =
∫ R+rs

R

∫ √
r2

s−(x−R)2

−
√

r2
s−(x−R)2

fxy(σ)dydx, (10)

where R < x < R + ξ.
Then, the probability pξ that a sensor is deployed in the

intrusion detection area Sξ with respect to the maximal
intrusion distance ξ, can be computed as:

pξ = pc1 + pr + pc2. (11)

Note that the probability the intruder can be detected
within the maximal intrusion distance ξ, is equivalent to the
probability that there is at least one sensor located in the
corresponding intrusion detection area Sξ. The probability
that there is no sensor located in the area Sξ is (1− pξ)N .
Thus, the probability that there is at least one sensor

locating in the area Sξ can be derived as: P1[D ≤ ξ] =
1 − (1 − pξ)N = 1 − {1 − ∫ R

R−ξ

∫ rs

−rs
fxy(σ)dydx −

∫ R−ξ

R−ξ−rs

∫√r2
s−(x−R+ξ)2

−
√

r2
s−(x−R+ξ)2

fxy(σ)dydx −
∫ R+rs

R

∫√r2
s−(x−R)2

−
√

r2
s−(x−R)2

fxy(σ)dydx}N . In this case, the

intruder can be detected within the maximal intrusion
distance ξ with probability P1[D ≤ ξ] in the given
Gaussian distributed WSN.

¤

3.2. Multiple-sensing Detection

In the k-sensing detection model, an intruder has to be
sensed by at least k sensors for intrusion detection in a
WSN. The number of required sensors depends on specific
applications [4]. For example, at least three sensors’ sensing
information is required to determine the location of the
intruder [15].

Theorem III. Given a Gaussian distributed WSN with N
homogeneous deployed sensors of identical sensing range
rs, mean deployment point (0, 0), and standard deployment
deviation σx = σy = σ. Let Pk[D = 0] be the probability
that, an intruder which enters the network at a distance
R from the deployment point (0, 0), can be immediately
detected under k-sensing detection model. Pk[D = 0] is
given by:

Pk[D = 0] = 1−
k−1∑

i=0

(
n

k

)
(1− p1)(N−i) ∗ pi

1, (12)

where p1 =
∫ R+rs

R−rs

∫√r2
s−(x−R)2

−
√

r2
s−(x−R)2

fxy(σ)dydx.

Proof: As illustrated in Fig. 4, in order for the intruder to
be detected immediately once it enters the WSN under k-
sensing detection model, at least k sensors should be located
in the immediate detection area of S0 = πr2

s . From Eq. 6,

p1 =
∫ R+rs

R−rs

∫√r2
s−(x−R)2

−
√

r2
s−(x−R)2

fxy(σ)dydx is the probability

that a sensor is deployed in the area of S0 according to the
given Gaussian distribution. Then, (1− p1)(N−i) ∗ pi

1 is the
probability that there are i sensors deployed in the area S0.
Since these i sensors could be any combination of the N
deployed sensors,

(
n
k

)
(1 − p1)(N−i) ∗ pi

1 is the probability
that there are exactly i sensors deployed in the immediate
intrusion detection area S0. Therefore, the probability that
less than k sensors located in the area of S0 can be computed
as

∑k−1
i=0

(
n
k

)
(1−p1)(N−i) ∗pi

1. Further, the probability that
there are at least k sensors located in the area of S0 can be
derived as: Pk[D = 0] = 1 −∑k−1

i=0

(
n
k

)
(1 − p1)(N−i) ∗ pi

1

in the given Gaussian distributed WSN.
Based on the above derivation and the requirement of

having at least k sensors to sense the intruder for success-
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ful detection in k-sensing detection case, we can obtain
the probability that an intruder is detected immediately
once it enters the given Gaussian distributed WSN, i.e.,
Pk[D = 0] = 1 − ∑k−1

i=0

(
n
k

)
(1 − p1)(N−i) ∗ pi

1, where

p1 =
∫ R+rs

R−rs

∫√r2
s−(x−R)2

−
√

r2
s−(x−R)2

fxy(σ)dydx. In other word, the

intruder can be detected by k sensors once it enters the WSN
with probability Pk[D = 0].

¤

Theorem IV. Suppose ξ is the maximal intrusion distance
allowable for a given application for intrusion detection, and
the intruder starts at a distance of R from its destination,
in a given Gaussian distributed WSN with N homogeneous
deployed sensors of identical sensing range rs, mean de-
ployment point (0, 0), and standard deployment deviation
σx = σy = σ. Let Pk[D ≤ ξ] be the probability that the
intruder can be detected within the maximal allowable intru-
sion distance ξ under k-sensing detection model. Pk[D ≤ ξ]
can be calculated as:

Pk[D ≤ ξ] = 1−
k−1∑

i=0

(
n

k

)
(1− pξ)(N−i) ∗ pi

ξ, (13)

where pξ =
∫ R

R−ξ

∫ rs

−rs
fxy(σ)dydx +

∫ R−ξ

R−ξ−rs

∫√r2
s−(x−R+ξ)2

−
√

r2
s−(x−R+ξ)2

fxy(σ)dydx

+
∫ R+rs

R

∫√r2
s−(x−R)2

−
√

r2
s−(x−R)2

fxy(σ)dydx.

Proof: As illustrated in Fig. 5, Sξ = Sc1 + Sr + Sc2 =
2ξrs + πrs

2 is the intrusion detection area with respect
to the maximal intrusion distance ξ. If there are at least
k sensors in the area Sξ, the intruder can be sensed by
the k sensors that need to collaborate with each other
to recognize the intruder before it travels a distance of
ξ in the WSN. From Eq. 8 ∼ 11, we know that the
probability that a sensor deployed in the area of Sξ

is: pξ = pc1 + pr + pc2 =
∫ R

R−ξ

∫ rs

−rs
fxy(σ)dydx +

∫ R−ξ

R−ξ−rs

∫√r2
s−(x−R+ξ)2

−
√

r2
s−(x−R+ξ)2

fxy(σ)dydx +
∫ R+rs

R

∫√r2
s−(x−R)2

−
√

r2
s−(x−R)2

fxy(σ)dydx. Then, (1−pξ)(N−i) ∗pi
ξ

is the probability that i sensors are deployed in the area of
Sξ. Again, these i sensors could be any combination of the
deployed N sensors,

(
n
k

)
(1− pξ)(N−i) ∗ pi

ξ is therefore the
probability that there are exactly i sensors located in the
area of Sξ. Furthermore,

∑k−1
i=0

(
n
k

)
(1− pξ)(N−i) ∗ pi

ξ is the
probability that there are less than k sensors located in the
intrusion detection area Sξ with respect to ξ.

Therefore, the probability that there are at least
k sensors located in the area Sξ can be derived as
the complement of

∑k−1
i=0

(
n
k

)
(1 − pξ)(N−i) ∗ pi

ξ, i.e.,
1 − ∑k−1

i=0

(
n
k

)
(1 − pξ)(N−k+i) ∗ pi

ξ. If this is the case,
the intruder can be sensed by at least k sensors from the

WSN with probability 1 − ∑k−1
i=0

(
n
k

)
(1 − pξ)(N−i) ∗ pi

ξ

before it travels a distance of ξ. Finally, the probability
Pk[D ≤ ξ], that the intruder is detected with the
maximal intrusion distance ξ in k-sensing detection model,
can be derived as: Pk[D ≤ ξ] = 1 − ∑k−1

i=0

(
n
k

)
(1 −

pξ)(N−i) ∗ pi
ξ, where pξ =

∫ R

R−ξ

∫ rs

−rs
fxy(σ)dydx +

∫ R−ξ

R−ξ−rs

∫√r2
s−(x−R+ξ)2

−
√

r2
s−(x−R+ξ)2

fxy(σ)dydx +
∫ R+rs

R

∫√r2
s−(x−R)2

−
√

r2
s−(x−R)2

fxy(σ)dydx.

¤

The results in single-sensing and multiple-sensing de-
tection cases indicate that intrusion detection probability
in a given Gaussian distributed WSN is determined by
the network deployment parameters including number of
deployed sensors N , sensing range rs, intruder’s starting
point R, deployment deviation σ, and maximal allowable
intrusion distance ξ. Intuitively, enlarging the sensing range
or the number of deployed sensors, the intrusion detection
probability can be improved. Further, the deployment de-
viation affects the intrusion detection probability. We will
analyze them in details in the following discussion.

4. Theoritcal Analysis and Simulation Verifica-
tion

In this section, we examine the effect of various network
deployment parameters on the intrusion detection probability
under both single-sensing detection and multiple-sensing
detection cases in a Gaussian distributed WSN in MATLAB
R2007a. Then we validate the correctness of our proposed
model and analysis by extensive simulations, based on a
WSN simulator developed in C++. The simulation results
match very well with the analytical results.

4.1. Effect of Number of Deployed Sensors N

In order to analyze the effect of number of deployed
sensors on the intrusion detection probability in a Gaussian
distributed WSN, we set deployment point, intruder’s start-
ing point, the deployment standard deviation, the sensing
range, and the maximal intrusion distance as G = (0, 0),
R = 80, σ = 25, and Dmax = ξ = 30 respectively.
Unless otherwise specified, the deployment point is set as
G = (0, 0).

Fig. 6 shows the detection probability in both single-
sensing (marked as ’1-sensing’) and multiple-sensing
(marked as ’3-sensing’) detection model, with varying num-
ber of deployed sensors. From the figure, the detection prob-
abilities in all the cases are improving with the increasing of
number of deployed sensors. This is because, given intrusion
distance (e.g., Dmax = 30), more sensors could be deployed

318



0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R = 80, σ
x
 =σ

y
 = 25, D

max
 =30 

Number of sensor deployed (N)

D
et

ec
tio

n 
pr

ob
ab

ili
ty

 

 

1−sensing, analytical
3−sensing, analytical
D=0, 1−sensing, analytical
1−sensing, simulation
3−sensing, simulation
D=0, 1−sensing, simulation

Figure 6. Effect of number of deployed sensors N on
the detection probability in a Gaussian distributed WSN

in the corresponding intrusion detection area for detecting
the intruder.

It can also be seen from Fig. 6 that the 1-sensing detection
probability is much higher than that of 3-sensing detection.
This is due to the fact that multiple-sensing detection im-
poses a more strict requirement on detecting the intruder,
e.g., at least 3 sensors are required.

Note that fig. 6 also plots the immediate detection prob-
ability (i.e., Dmax = 0, marked as ’D = 0’), in contrast
to the detection probability with maximal intrusion distance
Dmax = 30 in single-sensing detection. The results point out
that the immediate detection probability is much lower than
the detection probability with certain allowable intrusion
distance, implying that more sensors should be deployed for
immediate detection under specified detection probability.
This substantiates our intuition that allowing intruder to
travel some distance in the WSN can save the network
deployment cost.

4.2. Effect of Sensing Range rs

We analyze the effect of sensing range on the detec-
tion probability in a Gaussian distributed WSN, where the
intruder’s starting point, standard deviation, and number
of deployed sensors is set as R = 80, σ = 25, and
N = 100 respectively, with the maximal intrusion distance
Dmax = ξ = 30.

Fig. 7 depicts the intrusion detection probability in 1-
sensing detection and 3-sensing detection with varying sens-
ing range. From the figure, the intrusion detection probabil-
ity increases with the increasing of the sensing range. This is
because larger sensing range improves the network coverage,
and higher network coverage leads to a quicker detection
of the intruder in a WSN. Furthermore, under the given
network parameters, the detection probability approaches 1
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Figure 7. Effect of sensing range rs on the detection
probability in a Gaussian distributed WSN

while the sensing range increases to a certain threshold. For
example, in 1-sensing detection, the intruder can be detected
with probability 1 if the sensing range exceeds 20. While
in 3-sensing detection, the intruder can be detected with
probability 1 if the sensing range exceeds 25. This results
can be used to direct the design of network deployment and
power saving schemes. For example, the sensor’s sensing
range can be tuned to the threshold to save sensing energy
while satisfying the required QoS for intrusion detection
in a WSN. We also plot the analytical and simulation re-
sults for immediate intrusion detection under single-sensing
detection, given different sensing ranges, as a contrast. It
is observed from the figure that under the same network
deployment scenario, the detection probability for immediate
detection is much lower than the case that the intruder
should be detected within a pre-defined maximum allowable
intrusion distance, which further validates our intuition.

4.3. Effect of Deployment Deviation σ

In a Gaussian distributed WSN with fixed deployment
point (i.e., G = (0, 0)) and unvarying number of deployed
sensors, the deployment deviation determines the node dis-
tribution and affects the performance of intrusion detection
in the WSN. For the purpose of exploring the effect of the
deployment deviation σ on the detection probability in a
Gaussian distributed WSN, we set the intruder’s starting
point, number of deployed sensors, sensing range, and
maximal allowable intrusion distance as R = 80, N = 100,
rs = 20, and Dmax = ξ = 30 respectively.

Fig. 8 presents the intrusion detection probability with
varying deployment deviations σ, under different network
scenarios under both singe-sensing detection and multiple-
sensing detection. From the figure, the detection probability
improves when the deployment deviation increase from 0 to
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Figure 8. Effect of deployment deviation σ on the
detection probability in a Gaussian distributed WSN
(Dmax = 30)

a certain threshold, then the detection probability decreases
while the deployment deviation keeps increasing. For ex-
ample, in single-sensing detection, the detection probability
archives its peak when the deployment deviation is set as 40.
This is due to the fact that when the deployment deviation
grows from 0 to the threshold, more sensors can be deployed
around the starting point of the intruder to detect it sooner.
However, when the deployment deviation keeps increasing
from the threshold, the number of sensors deployed in the
intrusion detection area around the intruder’s start point is
decreasing, thus reduces the detection probability.

Fig. 9 illustrates the immediate intrusion detection prob-
ability under the same network scenarios depicted in Fig. 8.
Obviously, the same trend is found in Fig. 9. Specifically,
the detection probability improves when the deployment
deviation increase from 0 to a certain threshold, then the de-
tection probability decreases while the deployment deviation
keeps increasing. However, the threshold deviation leading
to optimum immediate detection probability is different
from the case that intruder can travel some distance in the
network before being detected. For example, in both single-
sensing and three-sensing detection, the detection probability
archives its peak when the deployment deviation is equal to
55 for immediate detection, different from 40 where intruder
is allowed to travel some distance shown in Fig. 8.

In a word, optimal deployment deviation can be chosen to
maximize the network QoS in terms of intrusion detection
in a Gaussian distributed WSN.

5. Related Works

Intrusion detection is one of the critical applications in
WSNs, and has thus received considerable attention in the
literature. Most of the existing work is so far devoted to the
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Figure 9. Effect of deployment deviation σ on the im-
mediate detection probability in a Gaussian distributed
WSN (Dmax = 0)

problem of intrusion detection analysis from the perspectives
of network deployment and tracking protocol design [5],
[16], [6], [7], [17]. The purpose of these approaches aims at
effectively detecting the presence of an intruder and com-
pressing the detection delay under the constraints of power
saving and network lifetime enhancement. Dousse et al. [5]
have characterized the time traveled by an intruder before
the detection alarm reaches the base station. It provides the
distribution of the distance traveled by a moving intruder
until it comes within the sensing range of a node in a
uniformly distributed sensor network according to Poisson
distribution. Ren et al. [16] have examined the tradeoff
between the network detection quality (i.e., how fast the
intruder can be detected) and the network lifetime, and have
proposed three wave sensing scheduling protocols to achieve
the bounded worst-case detection probability. Liu et al. [17]
have taken the node mobility into consideration and present
the optimal strategy for fast detection by illustrating that a
mobile WSN improves its detection quality due to mobility
of sensors. However, most of the existing work on intrusion
detection are based on the assumption that the sensors
are uniformly deployed according to Poisson distribution.
For example, Wang et al.[4] have explored the intrusion
detection problem in both homogenous and heterogeneous
wireless sensor networks following Poisson distribution. On
the contrary, WSN deployments conforming to Gaussian
distribution, i.e., Normal distribution are widely used in
reality, and the corresponding analysis of intrusion detection
problem has been neglected. In this paper, we address the
intrusion detection problem in a Gaussian distributed WSN
by providing a comprehensive theoretical and experimen-
tal analysis on intrusion detection probability, employing
both single-sensing detection and multiple-sensing detection
models. The detection probability is theoretically captured
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by using underlying network parameters, and validated by
extensive simulation results. This work is paramount for net-
work planner to design Gaussian distributed WSNs in terms
of efficient intrusion detection, and provide differentiated
detection probability in the deployed field.

6. Conclusion

This paper examines the intrusion detection problem in a
homogenous Gaussian distributed WSNs by characterizing
intrusion detection probability with respect to intrusion
distance and network parameters (i.e., intruder’s starting
point, deployment point, deployment deviation, number of
deployed sensor, and sensing range), under two detection
model, i.e., single-sensing detection and multiple-sensing
detection. Extensive simulations have been performed to
validate the correctness of the proposed model and analysis.
The proposed model for intrusion detection allows us to
analytically formulate the intrusion detection probability
within a certain intrusion distance under various network
settings. Effects of different network parameters on the
intrusion detection probability are also explored in details,
to provide insights in designing Gaussian distributed WSNs
and help in selecting critical network parameters, so as
to meet the differentiated detection capability requirements
with respect to different locations/area in WSN applications
for intrusion detection.
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