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Abstract—Vehicle-to-vehicle/vehicle-to-infrastructure
(V2X) communication systems are envisioned to greatly
improve road safety, traffic efficiency, and driver
convenience. However, many V2X applications rely on
continuous and detailed location information, which
raises location privacy concerns. A multitude of privacy-
protection mechanisms have been proposed in recent
years. However, few efforts have been made to develop
privacy metrics, which can provide a rigorous way to
assess the privacy risk, evaluate the effectiveness of a
given mechanism, and exploit the full possibilities of
protection methods in V2X systems. Therefore, in this
paper we present a trip-based location privacy metric for
measuring user location privacy in V2X systems. The most
distinguishable aspect of the metric is to take into account
the accumulated information, which is the privacy-related
information acquired by an adversary for an extended
period of time, e.g., days or weeks. We develop methods
to model and process the accumulated information, and
reflect the impact on the privacy level in the metric. We
further prove the viability and correctness of the metric
by various case studies. Our simulations find out that
under certain conditions, accumulated information can
significantly decrease the level of user location privacy. The
metric and our findings in this paper give some valuable
insights into location privacy, which can contribute to the
development of effective privacy-protection mechanisms
for the users of V2X systems.

I. INTRODUCTION

The emerging vehicle-to-vehicle/vehicle-to-
infrastructure (V2X) communication systems enable
a new way of cooperation among vehicles, traffic
operators, and service providers. Based on Dedicated
Short Range Communications (DSRC) technology,
vehicles can communicate among each others and
with the entities in the back-end system via Roadside
Units (RSU). It is envisioned that V2X communication
systems can significantly improve road safety, traffic
efficiency, and driver convenience. Example V2X
applications include collision warning, floating car data,
and location-based services. If deployed, such systems
will be one of the biggest realizations of Mobile Ad
Hoc Networks (MANET).

However, many V2X applications rely on continuous

and detailed location information of the vehicles. Vehi-
cles are personal devices. Locations of a vehicle reveals
the movements and activities of its driver and passengers.
Sending and disseminating location information of the
users of V2X systems has the potential to infringe the
users’ location privacy. The location privacy issue in
V2X communication systems has been identified and a
multitude of privacy-protection mechanisms have been
proposed in recent years, e.g., in [1]–[4].

To evaluate the effectiveness of these mechanisms, a
metric for measuring the level of user location privacy is
crucial and indispensable. For example, we need a metric
which can tell us that the user privacy level has been
increased by 20% after applying one of the protection
mechanisms. However, so far the main focus on the
topic is to devise privacy-protection mechanisms, very
few metrics exist for measuring user location privacy
in V2X systems in a rigorous way. Hence, the useful-
ness of privacy-protection mechanisms cannot be strictly
evaluated and compared and the trustworthiness of V2X
systems cannot be assessed. Furthermore, the range of
possible protection methods cannot be fully exploited.

In our previous work [5], we introduced a trip-based
location privacy metric to measure the level of location
privacy of individual users in V2X systems. Based on the
observation that the uncertainty of a potential adversary
and the user privacy level are indeed two sides of the
same coin, the metric measures the level of location
privacy as the linkability of location information to
the individuals who generate it. The uncertainty in the
information is quantified into entropy. Our previous work
assumes that the information available to the adversary
is limited to a short period of time. To stay realistic, it is
reasonable to assume that an adversary will do its best
to decrease the uncertainty of the obtained information.
Therefore, the adversary is likely to take the maximum
available information into account. In particular, the
adversary will try to utilize the accumulated information,
which is privacy-related information acquired by captur-
ing communications from running V2X systems for an
extended period of time, e.g., days or weeks. Hence, the
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assumption of a limited time period is over-simplified
from the real world.

To reflect the true underlying privacy value in V2X
communication systems, the metric must take into ac-
count the impact of accumulated information on privacy
level. Intuitively, the more information an adversary has,
the more it can draw conclusions with less uncertainties.
However, the impact of accumulated information on
location privacy has not been investigated up to now.
In this paper, we address this issue by extending the
current location privacy metric to take into account
accumulated information. As a result, the metric can
more accurately reflect users’ privacy value in V2X
communication systems. Specifically, in this paper we
• develop a method to model the accumulated infor-

mation,
• design approaches to process, propagate, and utilize

the accumulated information, and reflect the effect
in the metric,

• prove the viability and correctness of the metric by
means of various case studies.

In the following, Section II gives the background
information on the basics of the trip-based location
privacy metric. Section III describes the method to model
the accumulated information. Section IV introduces two
approaches to process the accumulated information and
reflects it in the metric. Section V evaluates the metric
by case studies. Section VI discusses the related work,
followed by the conclusion in Section VII.

II. METRIC FUNDAMENTALS

This section gives the necessary background informa-
tion on the trip-based location privacy metric introduced
in [5].

In V2X communication systems, each time a vehicle
sends a message, it gives out its location information to
the system. Although there are different levels of granu-
larities, the location information in V2X systems can be
categorized into three types, i.e., single locations, tracks,
and trips. Location information only becomes privacy-
relevant if it can be linked to identifiable individuals.
Since for privacy concerns vehicles are very likely to
use pseudonyms in communications [6], [7], information
on single locations and tracks are less privacy-sensitive
than the information on trips, which can be used to infer
an individual’s identity and activities. The first step to
measure privacy is to capture the information on trips
and individuals in an arbitrary defined area and time
period. Hence the metric virtually takes a “snapshot” of
the dynamic V2X systems.

The information captured in the snapshot is then
modeled in a weighted tripartite graph, shown in Fig.
1. The graph contains three distinct sets of vertices,
i.e., I , O, and D, which represent Individuals, Origins

and Destinations of the trips. An adversary’s knowledge
on the linkabilitiy of an individual to a set of trips is
expressed in probability distributions. The probabilities
are used as the weights on the directed edges. For
example, pjk is a weight on an edge (vj , vk) between
the vertices vj and vk.
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Fig. 1. Snapshot information modeled in weighted tripartite graph

For an individual to make a trip (e.g., o1 −→ d1), he
or she must start from one of the origins, e.g., i1 from o1.
If the trip from o1 ends at one of the destinations, it must
be possible to link i1 to d1 as well. Due to the uncertainty
in the information, there can be many of such possible
linkings among the vertices. A closed walk or a cycle
starting from a vertex is and passing vertices {oj , dk}
in the graph has the semantics of is’s probability pjk

to make a trip with origin oj and destination dk. By
collecting all cycles connected to a particular individual
in the graph, we can extract the probability distribution
of the linkability of that individual to a set of trips. The
probability distribution can be graphically expressed as a
hub-and-spoke structure, shown in Fig. 2. The last spoke
with probability pc in the clock-wise order denotes the
probability of an individual not making any trips, i.e.,
“staying at home”.
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Fig. 2. Extracted probability distribution as hub-and-spoke

The normalized probabilities on each of the spokes
are calculated as

p̂jk =
p(is, oj)p(oj , dk)p(dk, is)

m∑
j=1

m∑
k=1

p(is, oj)p(oj , dk)p(dk, is) + p̂c
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p̂c = 1−
m∑

j=1

p(is, oj)

with probabilities taken from the graph in Fig. 1. Apply-
ing Shannon’s entropy [8], we quantify the uncertainty
in the information about is in entropy as

H(is) = −(
m∑

j=1

m∑
k=1

p̂jklog(p̂jk) + p̂clog(p̂c))

where the logarithm is taken to base 2 to have a unit of
bit. H(is) is used as a quantitative measure of is’s level
of location privacy. The privacy level is directly propor-
tional to the value of entropy, i.e., the higher the entropy,
the higher the privacy level, and vice versa. Entropy
reaches its maximum if all trips are equally probable.
For a snapshot with m2 O/D pairs, the maximum entropy
for each individuals in the snapshot is

Hmax = log(m2 + 1)

with 1 accounting for not making any trips [5].

III. ACCUMULATED INFORMATION

Using snapshots enables us to capture privacy-relevant
information from V2X communication systems, which
are continuous and dynamic in nature. However, privacy
measurements based on a single snapshot only reflect the
privacy values in a short period of time. It is reasonable
to assume that a determined adversary will collect as
much information as possible over a long period of
time to work for its advantage. Intuitively, information
accumulated over time should help to reveal more facts
about the individuals and their vehicle movements.

To reflect this more realistic assumption on the adver-
sary, instead of one snapshot, we extend the metric to in-
clude consecutive snapshots. Thus the metric yields mea-
surements on “multiple snapshots”. In a single snapshot,
the information needed for measuring each individual
can be represented by a hub-and-spoke structure shown
in Fig. 2. When more snapshots are added to the metric,
we can imagine that the information related to an indi-
vidual i becomes a sequence of hub-and-spoke structures
ordered in time as shown in Fig. 3. Notice that only one
individual is shown in Fig. 3. But we can imagine that for
each of the individuals captured in the snapshots, we can
extract the information and build a similar sequence of
hub-and-spoke structures. For simplicity in formulations,
we will only consider one individual i in the rest of the
paper. The same formulas and procedures are applicable
to any of the other individuals captured in the snapshots.
However, in our future work, we will further investigate
the interrelations among individuals and their impacts
on the level of location privacy.

There are several observable characteristics of accu-
mulated information. First, i can be linked to different
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Fig. 3. Multiple snapshots of i in timely-ordered sequence

trips from snapshot to snapshot. The differences are in
the number, as well as the origins and destinations of
the trips. We name the assortment of trips related to i
in a snapshot a trip constellation. Second, accumulated
information has two dimensions, i.e., the one extends
into the diversity of trip constellations, and the other ex-
tends along the timeline. Third, given the fact that many
individuals use vehicles to fulfill demands on activities
on a daily basis [9], accumulated information is likely
to contain an individual’s trip patterns, i.e., regularly
occurring trips with the same origins and destinations.
Therefore, by same trip we mean two or more trips have
the same origin and destination, e.g., the same garage,
parking lot, or street parking space etc.

To model the accumulated information in multiple
snapshots, we represent the hub-and-spoke structures in a
more compact way. Let S be the set of all snapshots and
let T be the set of all trips considered for an individual
i, then snapshot St reflects the relation of i to a set of
trips at the time period t. We define St to be

St:={(Tk,pk)| Tk∈T,pk∈]0,1],
P

k pk=1,k=1,...,nt}

where (Tk, pk) is a tuple in which Tk denotes a specific
trip (i.e., the kth trip) and pk is the corresponding
probability of that trip. Only trips with probabilities
bigger than 0 are assigned to i. As trip constellations
can vary in snapshots, we denotes the number of pos-
sible trips at t by a variable nt. For the tth snapshot,
each Tk represents a spoke and each pk represents the
corresponding probability on that spoke. For simplicity,
the last spoke denoting the probability of an individual
“staying at home” is also represented as one of the trips.
As the metric uses entropy to quantify the uncertainty in
the information (cf. Section II), the calculation of entropy
of i at time t can be simplified as

Ht = −
∑

k

pklog(pk) (1)

where pk is the probability of the kth trip in St.
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Consider a simple example in Table I. We have five
consecutive snapshots of an individual i, t = 1, . . . , 5. In
the 1st snapshot, i is probable to make one of the trips
{T1, T2, T3, T4} with corresponding probabilities given
in the table. In the 2nd snapshot, i is observed to make
a new trip T5. In the 4th and 5th snapshot, T3 disappears
from the observation. For clarity, non-existing trips (or
tuples) are shown as blanks in the table. The probabilities
show the adversary’s information on the linkability of
the vehicle trips to a particular individual over time.
However, only one trip at each time (i.e., each row in
the table) has actually happened.

TABLE I
A SIMPLE EXAMPLE WITH SIX CONSECUTIVE SNAPSHOTS OF i

t T1 T2 T3 T4 T5

t = 1 0.2 0.2 0.3 0.3
t = 2 0.2 0.2 0.3 0.2 0.1
t = 3 0.2 0.1 0.3 0.2 0.2
t = 4 0.2 0.3 0.2 0.3
t = 5 0.2 0.2 0.3 0.3
t = 6 0.2 0.2 0.2 0.2 0.2

Now imagine that the 6th snapshot is captured. With-
out considering snapshots accumulated in the past, the
information contained in S6 represents the highest uncer-
tainty because all trips are equally probable. However,
if we also take into account the five already existing
snapshots, our intuition tells us that the historical data
might provide us with some useful information.

Based on the observed characteristics, we are aware
that to include accumulated information in the metric,
we need approaches to process the information contained
in the snapshots, propagate such information along the
timeline to the following snapshots, and utilize the in-
formation in the measurement calculation.

IV. METRIC BASED ON MULTIPLE SNAPSHOTS

In this section, we propose two approaches to measure
location privacy with accumulated information. Specif-
ically, the existing trip-based location privacy metric
is extended from a single snapshot to multiple timely-
ordered snapshots. The extension to multiple snapshots
takes into account the impact of accumulated information
on location privacy.

A. Frequency based approach

One way to “learn from the past” is to check whether
the same trip has already been observed. Normally
vehicle trips have some patterns. For example, we might
drive from home to work on a daily basis. Hence the
information on the frequency of a particular trip in the
past gives hints on how probable the same trip will be
repeated in the future. For this we define an auxiliary
variable f t

k which counts how often trip Tk has been
linked to i over all snapshots up to time t, i.e., f t

k =

|{Si|Si ∈ S, i = 1, ..., t, ∃(Tk, pk) ∈ Si}|. For example,
in Table I, at time t = 6, T1 has occurred 6 times so
f6
1 = 6, whereas f6

3 = 4 holds. Then the frequency-
adjusted snapshot Ŝf

t for snapshot St = {(Tk, pk)|...}
can be calculated as

Ŝf
t = {(Tk, αpkf

t
k), k = 1, . . . , nt} (2)

where α = 1/
∑

k pkf
t
k is a normalization constant

calculated by requiring that all probabilities in Ŝf
t sum

to 1. Consequently, the frequency-adjusted S6 is

Ŝf
6≈{(T1,0.22),(T2,0.22),(T3,0.15),(T4,0.22),(T5,0.19)}

Comparing Ŝ6 with S6, the probability distribution
changes from equal to unequal. The corresponding en-
tropy calculated by (1) is also decreased from 2.32 for S6

to 2.31 for Ŝ6, i.e., the accumulated information slightly
reduces the uncertainty of the current information.

However, using only the frequency of a particular trip
does not consider the actual probability of that trip in
each snapshot. Therefore, we lose information if we use
only frequencies to adjust a snapshot. For example, in
Table I, though T1 and T4 have the same value of f t

k,
T4 has a higher average probability than T1. To include
actual values of the probabilities in the snapshots, we
rewrite (2) as

Ŝw
t = {(Tk, αpkw

t
k), k = 1, . . . , nt} (3)

in which we replace f t
k by the average probability of the

same trip, i.e., wt
k =

∑
i p

i
k/f

t
k for i = 1, . . . , t. The nor-

malization constant α is changed to α = 1/
∑

k pkw
t
k,

accordingly. The probability of a non-existing trip (e.g.,
T5 at t = 1) is treated as 0, so the equation can be kept
in a generic form. Using (3), Ŝw

6 turns out to be

Ŝw
6 ≈{(T1,0.18),(T2,0.18),(T3,0.24),(T4,0.21),(T5,0.19)}

with an entropy value of 2.31. The result again shows
that accumulated information, in terms of average prob-
abilities, can change the current probability distribution
and thus modify the level of uncertainty. Furthermore,
the result reflects the value of probabilities of the trips
in the past. For example, T3 has the highest probability
because it has been associated with high probabilities in
the past (i.e., 0.3 at t = 1, 2, 3). On the other hand, even
though T1 and T2 appear at all snapshots, the relatively
low probabilities in the past cause these two trips to
have the lowest value in the probability distribution of
Ŝw

6 (i.e., both are 0.18). A more extensive evaluation of
this approach will be given in Section V.

B. Bayesian approach

Our second approach to process, propagate, and utilize
the accumulated information is to use the Bayesian
method to infer information from the historical data.
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In principle, Bayesian method uses evidence to update
a set of hypotheses expressed numerically in probabili-
ties. The core of Bayesian method is the Bayes’ theorem.
Let hk be the kth hypothesis of a complete set of
hypotheses H1, the Bayes’ theorem can be written as
a function of hk as

P (hk|E) =
P (E|hk)P (hk)∑

k

P (E|hk)P (hk)
(4)

in which E is the evidence. P (hk|E) is the posterior
probability of hk because it is the conditional probability
of hk given the evidence E. P (E|hk) is the conditional
probability of observing the evidence E if the hypothesis
hk is true. P (hk) is the prior probability of hk because
it is the probability of hk before it is updated by E.
The denominator in (4) is the sum of probabilities of
observing the evidence E under all possible hypotheses.

The above description accounts for updating the hy-
potheses once. When applying Bayes’ theorem to situa-
tions in which hypotheses are continuously updated by
new evidence, the following steps are usually involved:
• Initially define an exhaustive and mutually exclusive

set of hypotheses H0.
• Before receiving new evidence E, generate a set of

priori hypotheses H−. H− is the same as H0 before
the first update.

• After receiving the evidence E, calculate the set
of posterior hypotheses H+ using (4). H+ will
be used as the prior hypotheses H− for the next
update.

In Bayesian method, the initial hypotheses can be sub-
jective, i.e., we can assign probabilities to the hypotheses
according to some preliminary knowledge. If there are
enough evidence, the hypotheses will eventually be up-
dated towards the objective truth.

The characteristics of the modeled accumulated infor-
mation make it appropriate to apply Bayesian method.
Specifically, St contains a set of possible trips and the
corresponding probabilities. Each of the trips can be
regarded as a hypothesis of an individual making that
trip. St includes all the possible trips and only one of
them can be true. Therefore, the hypotheses are complete
and mutually exclusive. The corresponding probabilities
are the evidence of those trips from observations. At each
time step, St contains a new set of evidence, which can
be used to update the hypotheses.

However, there is still an issue to be solved be-
fore we can apply Bayesian method. It is very likely
that St contains a dynamic constellation of trips, e.g.,

1Notice that the notation H is conventionally used for both entropy
and hypotheses. We keep the convention and assume that the meaning
should be clear from the context.

{T1, T2, T3, T4} in S1 and {T1, T2, T3, T4, T5} in S2 (see
Table I). The implication of such dynamics is that the
set of hypotheses H will be different from snapshot to
snapshot. As Bayesian method works on a fixed set of
hypotheses, i.e., it does not consider adding or removing
one or more hypotheses during the evidence updating
process, we need a “smart” solution to apply Bayesian
method to solve our problem.

The solution is Algorithm 1 shown below. In general,
for a given snapshot at time t the algorithm calculates the
modified probability distribution for this snapshot using
the Bayesian method. Specifically, for each existing
snapshot Sj , j = 1, . . . , t, the algorithm calculates the
prior hypotheses H−j and uses the probability in Sj to
calculate the posterior hypotheses H+

j . The algorithm
stores each H+

j in a belief table B. Entries in B can
be regarded as Belief, i.e., posterior hypotheses updated
by evidence which express the level of confidence of
the algorithm on their “correctness”. The algorithm also
keeps tracks of the latest posterior hypotheses with the
same trip constellation. For example, S6 has the same
trip constellation as S3 in Table I, so H+

3 will be the lat-
est posterior hypotheses with the same trip constellation
to S6. Informally, we use H+

j ≡lph Si, i > j to denote
that H+

j is the latest posterior hypotheses of Sj in B
with the same trip constellation as Si.

Algorithm 1 Calculate Ŝt using Bayesian method
Input: snapshots until time t, S1, . . . , St

Output: snapshot at time t with modified probability
distribution, Ŝt

1: for i = 1 to t do
2: if found H+

j ≡lph Si then
3: use H+

j as H−i
4: else
5: assign equal probabilities to H−i
6: end if
7: update H−i with the probabilities in Si, the result

is H+
i

8: add H+
i to B

9: end for
10: replace the probability distribution in St with H+

t

to obtain Ŝt, return Ŝt

To calculate Ŝt, the algorithm takes all existing snap-
shots up to time t. Before processing a new snapshot
Si, the algorithm first consults B for the latest posterior
hypotheses with the same trip constellation as Si. If
found, the posterior hypotheses H+

j will be used as
the prior hypotheses H−i for the current snapshot Si.
If not found, the algorithm assigns H−i with equally
distributed probabilities. The rationale is that we as-
sign probabilities without any prejudices to the initial
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hypotheses, believing that the evidence will eventually
update the hypotheses towards the objective truth. Then
H−i is updated by Si to generate H+

i . H+
i is added to B.

Notice that for efficiency, B only needs to keep the latest
H+ with unique trip constellation. Finally, H+

t replaces
the probability distribution in St to have Ŝt. Ŝt reflects
the current beliefs expressed in probabilities, which have
been continuously updated by new evidence, on each of
the trips in the trip constellation in St. In line 7 of the
algorithm, when using the probabilities in Si to update
the prior hypotheses, the notions in (4) can be substituted
and rewritten as

p
H+

i

k =
pSi

k p
B
k∑

k

pSi

k p
B
k

(5)

in which p
H+

i

k and pSi

k are the probabilities of the kth

trip in H+
i and Si, respectively. pB

k is defined as

pB
k =

{
p

H+
j

k if H+
j ≡lph Si found

1
ni

if H+
j ≡lph Si not found

(6)

in which p
H+

j

k is the probability of the kth trip of
the latest posterior hypotheses in B with the same trip
constellation as Si, and ni is the number of trips in Si.

We demonstrate how the algorithm works by calculat-
ing the same example from Table I. The results at each
time step are shown in Fig. 4. We also include H− at
each time step to show how they are assigned and how
they are updated by S to generate H+. For example,
at t = 2, since the trip constellation of S2 appears
for the first time, H− is assigned a equal probability
distribution. Look further down, at t = 6, the latest
snapshot with the same trips constellation can be found
at t = 3. So the posterior probabilities H+ at t = 3 is
copies to the prior probabilities H− at t = 6. Ŝ6 has the
same value as H+ at t = 6

Ŝ6≈{(T1,0.19),(T2,0.1),(T3,0.42),(T4,0.19),(T5,0.09)}

with entropy of 2.08. Comparing with the results from
the frequency based approach in Section IV-A, we wit-
ness a more dramatic change in the probability distribu-
tion and the decrease in entropy. We will further compare
and evaluate these approaches in the next section.

V. EVALUATION

A. Evaluation criteria

Our goal is to evaluate whether the privacy metric
can really reflect the underlying value of user location
privacy in V2X communication systems. For this pur-
pose, we define two use-case-based evaluation criteria.
The use cases specify scenarios likely to happen in V2X

T1 T2 T3 T4 T5 T1 T2 T3 T4 T5
H- 0.25 0.25 0.25 0.25
H+ 0.2 0.2 0.3 0.3
H- 0.2 0.2 0.2 0.2 0.2
H+ 0.2 0.2 0.3 0.2 0.1
H- 0.2 0.2 0.3 0.2 0.1
H+ 0.19 0.1 0.42 0.19 0.1
H- 0.25 0.25 0.25 0.25
H+ 0.2 0.3 0.2 0.3
H- 0.2 0.3 0.2 0.3
H+ 0.16 0.24 0.24 0.36
H- 0.19 0.1 0.42 0.19 0.1
H+ 0.19 0.1 0.42 0.19 0.09

t

0.2 0.2 0.3 0.3

0.2 0.2 0.2 0.2 0.2

0.3 0.2 0.2

0.2 0.3 0.2 0.3

t=5

t=6

0.2 0.2 0.3 0.3

0.2 0.2 0.3

St (Evidence) B (Belief)

t=1

t=2

t=3

t=4

0.2 0.1

0.2 0.1

Fig. 4. Example of Algorithm 1

systems. The criteria are the expected impacts of the
scenarios on user location privacy. We simulate the use
cases. The simulation results will then be compared with
the criteria. The results give us clues as how good the
metric can be used to measure the location privacy in
V2X systems. We define the evaluation criteria as

1) if an individual has irregular trips with quite
different origins and destinations at each time,
accumulated information should provide less or
even no additional information;

2) if an individual has regular trip patterns, accumu-
lated information should provide additional infor-
mation. With this additional information, it should
be possible to detect an individual’s trip patterns.

In our metric, the uncertainty of information is quan-
tified in entropy. A decrease in entropy indicates that
additional information leads to a decrease in uncertainty,
i.e., a decrease in user location privacy.

B. Evaluation setup

We identify three parameters to have main influences
on the outcome of the metric. Among them are the
trip constellations in each snapshot, their corresponding
probability distributions, and the number of snapshots.
First, the trip constellation specifies the number of trips
and their appearances observed in a snapshot. Second,
the probability distribution of the corresponding trips
specifies the information captured by a snapshot. Finally,
the number of snapshots specifies the duration of the
measurement. Implicitly, it specifies the amount of ac-
cumulated information available to the metric.

By specifying these parameters, we can create use
cases to check whether the metric meets the evaluation
criteria. The use cases are the mock-ups of scenarios in
the real world. We have created a set of use cases to
evaluate the metric. However, due to the page limit, we
include only three selected use cases in this paper.

The first two use cases represent two opposite ex-
tremes. In the first use case, each of the snapshots has
different trip constellations. A series of such snapshots
contain irregular trips. We imagine that such scenario
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will happen, if either an individual makes different trips
each time or the observation of an adversary is of
very bad quality such that there are high confusions
or uncertainties associated with the obtained informa-
tion. For each snapshot, the simulation first generates
a random trip index in the range of 1 to 100, then
it generates the corresponding probabilities. To avoid
any subjectiveness in the probability assignment, the
probabilities are randomly generated from the uniform
distribution. The process is repeated for 60 snapshots.

In the second use case, all snapshots have the same
trip constellation. However, only one trip in the con-
stellation actually happens. Hence the snapshots contain
a regular trip hidden among other observed trips. This
scenario happens if an adversary has correctly observed
the regular trip such as driving from home to work, but
somehow cannot distinguish it from other trips observed
at the same time. To simulate such scenario, we generate
60 snapshots with the same trip constellation, each with
100 trips. We set the trip T1 in the constellation as the
one actually happened and assign a fixed probability,
called the p-value, to it. The remaining 99 trips are
assigned with probabilities from the uniform distribution.
We set the p-value to be the average, i.e., p = 0.01, and
normalize the probabilities of the remaining 99 trips to
be

∑i=100
i=2 pi = 0.99. The choice and impact of the p-

value will be further discussed in Section V-C.
The third use case locates on the spectrum between the

two extreme cases described before, and contains several
re-occurring trips. Thus it is a mock-up of a more realis-
tic and common scenario. In this use case, we simulate
the trip patterns specified in Table II. Imagine there is
a series of snapshots capturing an individual’s vehicle
trips for several weeks. All snapshots cover a time period
somewhen in the morning, so all the trips are from home
to somewhere. We simulate this by four trip constella-
tions. The first trip constellation for snapshots (Mon. –
Wed.) contains trips (T1, T4, . . . , T100). We set T1 as the
trip actually happened and assign a p-value of 0.012.
The corresponding probabilities of (T4, . . . , T100) are
assigned with probabilities from the uniform distribution,
and normalized to be

∑i=100
i=4 pi = 0.988. The second

trip constellation for snapshots (Thur. – Fri.) contains
trips (T2, T4, . . . , T100). We set T2 as actually happened
and also assign a p-value of 0.012, and the normalized
probabilities to (T4, . . . , T100). The third trip constella-
tion for snapshots (Sat.) contains trips (T3, T4, . . . , T100).
We assign a p-value of 0.012 to T3 and the normalized
probabilities to (T4, . . . , T100). The last trip constellation
for snapshots (Sun.) has trips (T4, . . . , T100). To simulate
random destinations on Sundays, we assign all the trips
with probabilities from the uniform distribution. The
simulation setup is also summarized in Table II. We
repeat the process and generate 56 snapshots to simulate

8 weeks of snapshots with re-occurring trips.

TABLE II
3nd USE CASE SETUP

Scenario Simulation
Week
days

Trip (from
Home to )

Trip constellation Probability
assignment

Mon. –
Wed.

Office A (T1, T4, . . . , T100) p1 = 0.012Pi=100
i=4 pi = 1−p1

Thur. –
Fri.

Office B (T2, T4, . . . , T100) p2 = 0.012Pi=100
i=4 pi = 1−p2

Sat. Shopping
mall C

(T3, T4, . . . , T100) p3 = 0.012Pi=100
i=4 pi = 1−p3

Sun. A random
destination

(T4, . . . , T100)
Pi=100

i=4 pi = 1

In the simulations, the snapshot data of each use
case is fed to the metric. The outcome of the metric is
analyzed along the evaluation criteria. For our analysis,
we choose the following entropy values: 1) Hmax, the
theoretical maximum entropy based on each single snap-
shot; 2) H , the entropy based only on single snapshot;
3) Hf , the entropy based on the snapshots modified by
frequencies of occurrence; 4) Hw, the entropy based on
the snapshots modified by average probabilities; 5) HB ,
the entropy based on the snapshots modified by Bayesian
method.

To analyze the impact of accumulated information on
the actual level of uncertainty, we further define Hd as
a measurement of the decrease in uncertainty

Hd =
HB −H

H
100% (7)

which bases the calculation on the difference of the
entropy using Bayesian method and the entropy based
on single snapshot without any additional information.

C. Simulation

Fig. 5 shows the simulation result from the first
use case, in which each snapshot contains a randomly
generated trip constellation. We can see from the figure
that the entropies of H , Hf , Hw, and HB are so close
that they overlap each other most of the time. This means
neither frequency based approach nor Bayesian approach
are able to benefit from the accumulated information.
Besides, these entropies are very close to the upper-
bound Hmax, due to the fact that the probabilities in each
snapshot are from uniform distributions. For illustrative
reason, the lower part of the figure includes a bar chart
showing the number of trips in each of the snapshots.
Notice that the actually trip constellations are not shown
in the bar chart.

Fig. 6 shows what the metric returns from the second
use case, which simulates the scenario that a regular trip
is blurred by other false observations in each snapshot.
The result shows that the frequency based approaches
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Fig. 5. Entropy of irregular trips

can barely utilize the accumulated information. As a
result, Hf and Hw mostly overlap H , with the exception
that Hw has slightly lower entropies at the first few
snapshots. On the other hand, Bayesian method has
significantly decreased the entropy level from 6.3 bits
to as low as 0.79 bits at the 33th snapshot. Obviously,
at 0.79 bits, the uncertainty is very low, i.e., the privacy
level is very low. The shape of the curve of HB suggests
that Bayesian method is able to process and benefit from
the accumulated information.
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Fig. 6. Entropy of regular trips

Fig. 7 shows the simulation result from the third use
case. The third use case simulates weekly re-occurring
trips. Hf and Hw have similar outcomes as those in
Fig. 6, i.e., frequency based approaches can not really
benefit from accumulated information. Again, Bayesian
method has significantly decreased the entropy value.
Interestingly, this time the curve of HB has a cascading
and downward pattern. The reason is that we have
simulated four types of re-occurring trips in this use case.
The first three trips are regularly occurred trips and the
fourth one (i.e., the Sunday trip) is chosen to be random.
Therefore, while the overall curve of HB demonstrates
a downward trend, the entropies corresponding to the
first three trips decrease much faster than the entropy of
the Sunday trip. Notice that the entropy of the Sunday

trip also exhibits a downward trend. The reason is that
even though the probability distributions of the Sunday
trip are from the uniform distribution, their values are
slightly different among each others. As a result, the
probabilities are modified by Bayesian approach towards
a non-uniform distribution. In other words, given consec-
utive snapshots, our algorithm regards some of the trips
are “more likely to have happened” than others. The
result again demonstrates that Bayesian approach can
take advantage of the accumulated information caused
by regularly occurring trips.
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Fig. 7. Entropy of re-occurring trips

As the next step, we use Hd to analyze the decrease
in uncertainty in each of the use cases. Since a new set
of random values is generated each time a use case is
simulated, we run each use case 100 times to take into
account the effects of the variations of random variables.
We calculate the mean value of the results from the
three use cases and plot them in Fig. 8. For irregular
trips, taking more snapshots into the metric does not
decrease information uncertainty. In some cases, it even
increases the level of uncertainty. This means based on
the metric, accumulated information does not provide
any additional information due to the randomness in the
captured information. For regular trips, we can see that
there is a constant decrease in uncertainty as more and
more snapshots are added in the sequence. The decrease
reaches -84.6% at the 60th snapshot. The outcome of
the metric shows that with regular trips, accumulated
information can significantly reduce the uncertainty in
the information related to user location privacy. For
re-occurring trips, despite the spikes on each Sunday
due to the randomness of the trips on that day, there
is also a constant decrease in uncertainty as the time
elapses. Because there are several regular trip patterns
involved in this use case, the speed of the decrease in
uncertainty is slower than the one in the previous use
case. The result demonstrates again that the accumulated
information can cause considerable decreases in the level
of uncertainty, i.e., users’ location privacy. Notice that
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the curves in Fig. 8 correspond to those appeared in
Fig. 5, 6, and 7, i.e., the observations we made before
on single simulation result also hold in general cases.
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We know that the main reason behind the significant
decrease in uncertainty is because of the algorithm
based on Bayesian method. The algorithm processes,
propagates, and utilizes the accumulated information by
continuously updating the probabilities of each hypothe-
sis each time it receives a set of new evidence contained
in a snapshot. The updated hypotheses are kept in the
belief table B. As a result, the probability distributions
in the belief table converge toward the “real happened”
trips. The changing of probability distributions leads to
lower entropy values hence the decrease in uncertainty.
However, so far we have not shown whether the al-
gorithm is able to update probability distributions in
a correct way. We test the correctness of Algorithm 1
by tracing the change of beliefs in the algorithm. In
this sense, the second and the third use case are quite
similar. Therefore, we only show the study on the second
use case here. Same as before, we assign the first trip
as the one actually happened. Furthermore, we assign
different probabilities to study the effect of the p-values
on the performance of the algorithm. The p-values are
{0.009, 0.01, 0.011}, which correspond to 10% lower
than the average, the average, and 10 % higher than the
average of the probability of the 100 trips in the trip
constellation. Again, we run the simulation 100 times
to account for the variations in the random data set and
take the means of the values of the first trip from the
belief table.

Fig. 9 shows the result. At 10% below the average, the
algorithm fails to detect the trip. However, as soon as the
p-value is of the average value, there is a steady rise of
the probability. If we assume that 0.5 is the threshold to
select a trip as the one really happens, the first trip will
be selected at the 59th snapshot. Only slightly increase
the p-value 10% higher, the probability of the first trip
exhibits a sharp rise and passes the 0.5 threshold at the
32th snapshot.
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Fig. 9. Change of beliefs with different p-values

D. Discussion

The simulation results show that the privacy metric
fulfills both evaluation criteria defined in Section V-A.
However, as already shown, the algorithm only functions
well on regular trip patterns. We can consider this
issue from two angles. On one hand, one can develop
heuristics to assist the functioning of the algorithm.
For example, trimming and keeping only the trips with
high probabilities can limit the number of trips in the
constellations and facilitate the “learning from the past”
process. On the other hand, a privacy-protection mech-
anism might exploit this feature by virtually creating
irregular trip patterns to render accumulated information
useless to a potential adversary.

VI. RELATED WORK

Anonymity and (un)linkability are two common ap-
proaches to express user privacy in communication sys-
tems. A definition on these two terms is given in [10]
and unlinkability is further refined in [11].

The size of the anonymity set is a popular metric
of anonymity. The authors of [12], [13] point out that
the size of the anonymity set does not reflect different
probabilities of the members in an anonymity set, and
propose to use entropy as the metric for anonymity.
Beresford et al. [14] use entropy to quantify the infor-
mation obtained by an adversary on the user movements
through mix zones. Applying the same principle, the
authors in [15] and [16] use the entropy provided by
the mix zones to evaluate the level of location privacy
achieved by the vehicles in vehicular ad hoc neworks
(VANET). Tracking, which learns a vehicle’s movement
by linking a series of messages from that vehicle, is
another common approach to measure location privacy.
Gruteser et al. [17] propose to use tracking algorithms to
characterize the level of location privacy. Sampigethaya
et. al [3] use maximum tracking time to evaluate the
location privacy of vehicles in VANET. Hoh et. al [18]
use the mean time to confusion to measure the privacy
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level of vehicles sending GPS traces in a traffic mon-
itoring system. Fischer et. al [19] propose to measure
unlinkability of sender-message relations based on the
outer and inner structures of the set partitions of the
observed messages. Most approaches to location privacy
focus on location information. In [5], we propose that
metrics for location privacy in V2X systems should
take both individuals and their vehicle movements into
considerations.

The impact of accumulated information on location
privacy has not been explicitly addressed in most of
these approaches so far. Mostly, it is assumed that an
adversary’s knowledge on a system already reflects its
longtime observations at the time of attack. Empiri-
cal studies such as [20] use two weeks of recorded
pseudonymous location tracks to infer home addresses
and identities of the drivers with partial successes. Out-
side the communication domain, the authors of [21]
find out that snapshot-based, time-invariant approaches
cannot cope with the emergence of time series data
mining, and propose to add the time dimension to the
current research on privacy-preserving data mining.

VII. CONCLUSION AND FUTURE WORK

In this paper we present a trip-based location privacy
metric for measuring location privacy of the users of
V2X communication systems. To reflect the true under-
lying privacy values, the metric includes accumulated
information and reflects the impact in the privacy mea-
surement. We model the accumulated information and
develop approaches to process, propagate, and utilize the
accumulated information in the metric. We evaluate the
viability and correctness of the metric by various case
studies and extensive simulations. Our simulations show
that under certain conditions, accumulated information
can significantly decrease users’ location privacy. We
show that our metric is a valuable tool to evaluate and
develop privacy-protection mechanisms for the users of
V2X systems.

In future work, we will further evaluate our metric
with more scenarios and realistic V2X applications. The
evaluation will also include existing privacy-protection
mechanisms proposed to V2X systems. The current
metric only measures privacy of individual users. The
possible interrelations among individuals and their im-
pacts on the level of location privacy will be investigated
to determine location privacy in a global view. The
metric is extensible, which means when it is necessary,
we can add other identified attacks on location privacy
to the metric in the future.
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