
978-1-4244-5113-5/09/$25.00 c©2009 IEEE

Multigrade Security Monitoring for Ad-Hoc Wireless Networks

Matthew Tan Creti, Matthew Beaman∗, Saurabh Bagchi, Zhiyuan Li∗, Yung-Hsiang Lu
School of Electrical and Computer Engineering, Department of Computer Science(*)

Purdue University
West Lafayette, IN 47907

Email: {mtancret,mbeaman,sbagchi,li,yunglu}@purdue.edu

Abstract

Ad-hoc wireless networks are being deployed in criti-
cal applications that require protection against sophisti-
cated adversaries. However, wireless routing protocols,
such as the widely-used AODV, are often designed with
the assumption that nodes are benign. Cryptographic
extensions such as Secure AODV (SAODV) protect
against some attacks but are still vulnerable to easily-
performed attacks using colluding adversaries, such as
the wormhole attack. In this paper, we make two contri-
butions to securing routing protocols. First, we present
a protocol called Route Verification (RV) that can
detect and isolate malicious nodes involved in routing-
based attacks with very high likelihood. However, RV
is expensive in terms of energy consumption due to its
radio communications. To remedy the high energy cost
of RV, we make our second contribution. We propose
a multigrade monitoring (MGM) approach. The MGM
approach employs a previously developed lightweight
local monitoring technique to detect any necessary
condition for an attack to succeed. However, local
monitoring suffers from false positives due to collisions
on the wireless channel. When a necessary condition
is detected, the heavy-weight RV protocol is triggered.
We show through simulation that MGM applied to
AODV generally requires little extra energy compared to
baseline AODV, under the common case where there is
no attack present. It is also more resource-efficient and
powerful than SAODV in detecting attacks. Our work,
for the first time, lays out the framework of multigrade
monitoring, which we believe fundamentally addresses
the tension between security and resource consumption
in ad-hoc wireless networks.

1. Introduction
Wireless networks depend on multi-hop routing to

communicate beyond a single radio’s range. Multi-
hop routing relies on trusting nodes in the network to
faithfully forward packets. Because it is possible that
some nodes in the network are physically compromised
by an adversary, methods for securing routing from
misbehaving nodes is required. Cryptographic methods,
such as Secure AODV (SAODV), provide some benefit

in securing routing protocols [1]. For example, routing
protocols often use a hop count to choose a least-cost
route. Each time a packet is forwarded, the forwarding
node must increment the hop count by one. SAODV
employs a cryptographic method of using hash chains to
prevent a malicious node from decreasing the hop count
of a packet it forwards—for example, if the malicious
node wants to attract routes go through it. However,
SAODV cannot defend against all types of attacks. For
example, it only works under the assumption that nodes
that are further than one radio hop away from each other
are not able to directly share information though an
out-of-band channel, such as in the wormhole attack.
The wormhole attack is where malicious nodes that
are farther than a normal radio range away from each
other use an out-of-band channel, such as a wireline
connection, to tunnel packets between each other. Note
that wormhole attacks can be launched by insider ad-
versaries by changing routing packets and this is as yet
an open problem how to efficiently detect and isolate
such malicious nodes.

The complement to cryptographic security is intru-
sion detection. An example of intrusion detection is
local monitoring [2]–[4]. In local monitoring, nodes
overhear communication in the network and through
this, observe the behavior of neighboring nodes. For
example, local monitoring can be used to detect if a
neighbor is delaying, dropping, modifying, fabricating,
or misrouting packets. Local monitoring is a light-
weight form of intrusion detection, because no extra
radio communication is generated so long as no misbe-
havior in the network is detected. It can also be used to
detect misbehavior in the presence of wormholes [2]. It
has a very low false negative detection rate, however,
it suffers from a high false positive detection rate due
to the imperfection of wireless radio channels. It is also
not able to detect sophisticated attacks with multiple
colluding nodes, which may, for example, share the load
of tunneling packets.

In this paper we present two innovations. First, we
present a new protocol called Route Verification (RV) for
detecting the wormhole attack against routing protocols.
RV has no false positive and a low false negative rate.
However, it is expensive in terms of energy consumption

342

due to its radio communications. So we present our
second innovation—a framework for monitoring called
Multigrade Monitoring (MGM). The specific instanti-
ation of the framework we describe in this paper—
also called MGM as a short-hand—uses the light-weight
local monitoring to detect the necessary condition for
the attack. The detection is used as a trigger for the
heavier weight RV protocol.

We demonstrate our innovations through simulation,
using TOSSIM [5] in TinyOS, of the AODV routing
protocol. We compare MGM and RV to the baseline
AODV and to SAODV. In general, MGM requires little
extra energy compared to AODV during the benign
phase and is more resource-efficient and powerful than
SAODV in detecting attacks.

2. Background
2.1. Local Monitoring

Local monitoring uses a fundamental characteristic
of wireless communications, that packets are easily
overheard, to observe and detect misbehaving nodes.
Misbehavior is broadly classified as any violation of the
packet forwarding function, namely, delaying, dropping,
modifying, fabricating, or misrouting packets. An early
example of local monitoring in wireless ad hoc networks
is the watchdog scheme [3]. This scheme applies to
any protocol where a node is expected to forward a
packet, after receiving it, within a set amount of time.
When node A sends a packet to node B, A expects
to overhear B forwarding the packet to the next hop.
If this does not happen A suspects B of misbehavior.
A severe limitation of local monitoring is that wireless
channels are not perfect and they suffer from losses
and collisions. Suppose that B does forward the packet,
but a collision with another packet causes A to fail
to overhear the packet from B. For this reason, local
monitoring must rely on a probabilistic approach to
detect misbehavior such as seen in LITEWORP [2].

In LITEWORP, all nodes in the network participate in
monitoring the behavior of their neighbors [2]. When-
ever a node G, that is a neighbor to both nodes A and
B, overhears a packet sent from A to B, G becomes a
guard node of B. The guard node G expects to overhear
node B forward the packet, unmodified, to the next hop
within a set amount of time. If this does not happen,
G suspects B of malicious behavior. Another malicious
behavior that can be detected by local monitoring is
packet fabrication. If B sends a packet as if it were
forwarding from A, then node G will overhear the
packet from B but not from A, and it will suspect
node B of fabricating the packet. In order to detect
fabrications in this manner it is required that a node
indicate where it is forwarding a packet from (the
previous hop). If a malicious node purports forwarding
from a node that is not an actual neighbor to itself,

then there will be no guard node (i.e. a node that is a
neighbor to both the malicious node and the purported
previous hop) that is able to suspect the malicious node
of packet fabrication. For this reason, it is assumed
that a secure neighbor discovery protocol is used by
all nodes, for example [6], to determine their neighbors
and their neighbor’s neighbors.

In LITEWORP, a packet forward event is monitored
by multiple guard nodes; the number depends on the
local node density. When the number of suspicious
events committed by one node within a window of
time exceeds a threshold, then the node is determined
to be malicious. A quorum of the guards need to
agree that a node is malicious in order to isolate
it from the network. Both these steps are meant to
distinguish between natural failures due to the imperfect
wireless channel and malicious actions. Nevertheless,
LITEWORP is still susceptible to false detection due to
the imperfect wireless channel, and particularly so when
collisions are frequent.

2.2. Wormhole Attack and Defenses

One use of local monitoring is to detect a particularly
severe attack known as the wormhole attack. In the
wormhole attack an adversary tunnels packets between
parts of the network that are not normally one hop
away from each other (given the radio capabilities of
the benign nodes in the network). This could be used
to insert a malicious node into a route. For example,
suppose AODV is being used, and an adversary has a
malicious node M1 near the origin node that is trying
to establish a route and another malicious node M2

near the route destination node. When M1 overhears
the origin sending a route request it tunnels the packet
to M2, say through an out-of-band channel. Node M2

forwards the route request as if it had received it from
a neighbor but with a lower hop count than if it had
received the packet through a legitimate route. When
the destination receives the packet with low hop count
it will choose the reverse route though M2 to send the
route reply. M2 may drop the route reply causing route
establishment to fail or it may forward the route reply
though the tunnel to M1, allowing a route to form over
which it has control—it may then selectively drop any
data packet passing along the route.

Cryptographic methods are not enough to defeat
the wormhole attack. For example, secure AODV
(SAODV) is nearly as defenseless against the worm-
hole attack as baseline AODV. In SAODV an ori-
gin node signs the non-mutable parts of a route re-
quest packet [1]. Each forwarding node verifies the
packet before modifying its route tables and forward-
ing the packet. The hop count is protected by at-
taching a value called the hash and a value called

343

top hash to a route request. The origin node com-
putes top hash = hMAX HOP COUNT (hash), where
hash is a random value selected by the origin node,
and using a secure hash function h. Both hash and
top hash are attached to a route message. Each time
a node forwards a packet it changes the value of
hash to be hash = h(hash). When a node receive
a packet it authenticates the hop count by verifying that
top hash = hMAX HOP COUNT−hop count(hash).
Because a node knows only the value of hash from
the node it receives the message from, and not previous
hops, the node can increment the hop count by zero
or more before forwarding, but it cannot decrement
hop count. However, this assumes there is no colluding
adversaries that are able share information using an out-
of-band channel, as in a wormhole attack. Colluding
adversaries can pass the packet through the tunnel
without incrementing the hop count and without the
possibility of detection through SAODV.

We will define packet fabrication as the following
event—a node gives the appearance of forwarding a
packet when that packet was not actually sent by any of
the node’s neighbors. By this definition the wormhole
attack, where packets are tunneled between distant parts
of the network, always involves a packet fabrication.
We are not interested in defending against physical
layer wormholes, where the adversary does not have to
change any packet, since any secure neighbor discovery
such as [6] can eliminate physical layer wormhole
attacks. RV and MGM defend against routing layer
wormhole attacks, where the adversary must modify the
contents of a routing packet when replaying it at the
wormhole end-points.
3. Multigrade Monitoring Framework

For monitors1 having high false positive rates, it is
often necessary to set thresholds, such that detection
occurs only if the rate of suspicious events exceeds
some threshold. If this were not done, then a system that
isolates detected malicious nodes, such as LITEWORP,
would likely isolate most of the nodes in the network.
Instead consider the scenario with two monitors M1

and M3, where M1 has a high false positive rate,
but is low cost, and is able to detect the necessary
condition for an attack. By necessary condition, we
mean that this step needs to be achieved for the attack
to succeed. Monitor M3 is more accurate than M1,
i.e., has a much lower false positive rate, but is also
more expensive resource usage-wise. In the Multigrade
Monitoring (MGM) framework, multiple monitors such
as M1 and M3 are used together, by having M1’s
detections trigger M3’s actions.

More formally, we notate monitor i as Mi, with false
positive rate FP (Mi), false negative rate FN(Mi), and

1. We will use the term “monitor” to mean a detection technique.

M3

M1 && M2

M4S3

S2

S1

RV: Fabrication

LocalMonitoirng: (Fabrication)
&& (RREQ_RETRY_THRESH

exceeded)

S2

S1

A) Generic Example B) MGM Instance

Figure 1. (a) Example of multigrade monitoring,
where stage S1 triggers S2 which in turn triggers S3.
Stages are ordered such that FP (S1) > FP (S2) >
FP (S3). (b) Specific instantiation of this framework
that we describe in Section 4.

the resource cost to monitor a single event as C(i).
Assume, without loss of generality and for a clean
exposition, that the cost for a monitor to monitor an
event is the same for all events. As shown in Figure
1, monitors are grouped into stages S1 to Sn, where
a lower numbered stage triggers a higher numbered
stage when the lower stage detects a triggering event.
When the final stage Sn detects a malicious event, di-
agnosis and attack mitigation is triggered. In this paper,
diagnosis and attack mitigation means discovering the
malicious node(s) and isolating them from the network.
A stage may contain multiple monitors grouped together
in such a way that for the stage to trigger the next stage,
all the monitors must trigger at the same event. We make
the following observations.

1) As long as every stage has zero false negatives
(i.e., missed alarms) then the monitoring system
will have no false negative.

2) If the stages are ordered by false positive rate
such that, FP (S1) > ... > FP (Sn), the the false
positive rate of the system will be no greater than
FP (Sn).

3) Combining points 1 and 2, if the false negative
rate at all stages is zero and the false positive
rate of FP (Sn) is also zero, then the system has
perfect detection.

4) Define the rate of monitored events as r. The cost
to the system, in the benign case where no attack
is present, is r∗C(S1)+r∗FP (S1)∗C(S2)+...+
r∗FP (S1)∗ ...∗FP (Sn)∗C(Sn) << r∗C(Sn).

In the next section we present a system that fits into
the MGM framework. Local monitoring is used as a
low cost monitor with high false positives but low false
negatives. A new protocol called Route Verification
(RV) provides low false positives and false negatives.
These protocols are combined in the MGM framework.
We believe that many existing techniques for security
in wireless networks can be mapped to the MGM

344

framework. As another example, Sybil detection [7] is
meant to detect if multiple identities are being used in
a wireless network. This can be done when there is a
collision of claimed IDs from multiple nodes. MGM
represents a way to structure security in wireless net-
works, which balances the competing goals of detecting
a large class of attacks and do the detection using low
resource usage.

4. Route Verification (RV) Protocol
4.1. Attack Model

We consider the adversary has the goal of disrupt-
ing route establishment, i.e., an origin node is not
able to establish a route with a destination node.
The underlying model is that the origin tries route
establishment a certain number of times (denoted
MAX_ROUTE_RETRIES) before giving up. So the at-
tack model is the route request has to be disrupted these
many times. Arbitrary collusion among the malicious
nodes is possible.

To achieve this, the following three basic actions
can be adopted by the adversary: (i) modification of
non-mutable parts of the packet; (ii) fabrication of a
packet; (iii) not correctly incrementing the hop count
on forwarding a packet. All other actions to disrupt
AODV route establishment have been shown in [8] to
be mappable to these. We only consider attacks that
change the contents of routing packets and not timing-
based attacks or Denial of Service attacks.

4.2. Assumptions

First, we assume that a secure neighbor discovery
protocol is being used, so that nodes know their neigh-
bors and their neighbor’s neighbors. An example of
secure neighbor discovery is [6]. We define neighbors
as pairs of nodes that are able to directly receive each
others packets using radios that are common to the
set of legitimately deployed nodes. Note that neighbor
discovery, while a necessary step, does not solve the
problem of attacks that we target in this paper. As a
simple example, two ends of the wormhole can fabricate
packets to insert themselves in a route despite neighbor
knowledge at all legitimate nodes.

Second, we assume that the network is not highly
mobile. The Route Verification (RV) protocol relies on
tracing the path back to the source of a packet. If the
network has a high degree of mobility, enough nodes
along the path between the packet’s origin and the node
initiating trace may have moved between the time that
the originator generates the request and it receives the
response, such that, tracing the reverse route of the
packet is no longer possible. If this were the case then
AODV would likely fail to establish a route anyway,
because AODV requires the route reply packet to follow

...
O A B C

V(O) V(A) V(B)

Pi(Hn,A,B) Pi(A,B,C)Pi(Hn-1,Hn,A)Pi(O,O,H1)
Packet

Forwarding

RV

vreq<Pi(A,B,*)>vreq<Pi(Hn,A,*)>vreq<Pi(O,O,*)>

vres<Pi(O,O,*)> vres<Pi(Hn,A,*)> vres<Pi(A,B,*)>...

H1 Hn

V(H1) V(Hn)

Figure 2. Example of RV used to verify packet P1

at each hop using verify request (vreq) and verify
response (vres) messages. The chain of vreq’s is
started by node V (B).

Table 1. The verify table stores an entry for each
packet instance.

Verify Table

Field Type Description

heard from address The node the packet is over-
heard from.

addressed to address Where the packet was ad-
dressed.

non mutable hash hash A hash of the non-mutable
fields (e.g. origin and des-
tination addresses) of the
packet.

mutable list The mutable fields (e.g. hop
count) of the packet.

state enumeration Can be {unverified,
verified, invalid}.

verify pending boolean True when a verification re-
quest has been sent.

expires timestamp Time when the entry can be
removed from the table.

a reverse path from the destination node to the origin
to establish a route.

Third, we assume that the packets that are to be
protected by our protocols are authenticated hop-by-
hop. That is, when X forwards a packet, it attaches
a key to the packet that only it could know, and that all
of X’s neighbors can use it to authenticate that X is the
node forwarding the packet. This type of authentication
can be done using one way hash chains as presented in
[9]. This assumption is necessary in local monitoring to
prevent a malicious node from lying about its identity,
when committing a malicious action, in order to frame
an innocent node. Also, for non-repudiation, when a
node Y forwards a message from X to Z, node Y
attaches the key that X used to authenticate itself. This
means Y cannot be accused of fabrication.

4.3. Route Verification Overview
The goal of Route Verification (RV), is to ensure that

any fabrication or incorrect modification of a forwarded

345

packet will be detected; and that the neighbors of the
node committing the incorrect action will correctly
diagnose that node as the source of the problem. RV
achieves this by using a combination of passive local
monitoring to observe packets being forwarded, and
active requests to previous hops in a path to validate
a packet. We use the term packet instance to define
the contents of a packet when it is forwarded from
a particular node. The notation for a packet instance
is Pi(X,Y, Z) where Pi is packet i, X is the node
from which node Y received packet Pi, Y is the
node forwarding Pi, and Z is the node to which Y is
forwarding Pi. In the case of a broadcast packet, (e.g.
route request in AODV) the packet instance is written
Pi(X,Y, ∗) where * means any node. Any packet has
mutable fields and non-mutable fields. Mutable fields
have values that change at each hop, such as the hop
count; non-mutable fields have values that do not.

The verify table for each node, shown in Table 1,
contains an entry for each packet instance overheard
by that node. A verify table entry for a packet instance
can take on one of three possible states unverified,
verified, or invalid. The state unverified
is the default state for a new packet instance,
verified means that the packet instance and all
previous instances of the packet back to an origin node
O have been correctly forwarded, and invalid means
that it is known that the packet instance or a previous
packet instance has been fabricated or modified.

After some node B receives the packet Pi from
node A and forwards it to node C, all the neighbors
of B create an entry for packet instance Pi(A,B,C)
in their verify tables and set the state to the default,
unverified. One of the neighbors of B is designated
the verifier node, we will denote it as V (B). Choosing
the verifier node is explained in Section 4.4.1, and
the case where the verifier may itself be malicious in
Section 4.4.2. Verifier V (B) multicasts a verification
request. A verify request message contains a record
of the mutable fields and a hash of the non-mutable
fields of the packet instance that is being verified and
is notated as vreq < packet instance >.

We use a reliable authenticated multicast functionality
as described in [10]. The multicast is limited to nodes
that are a particular number of hops from another node.
The multicast is notated as mcast(< message >, n, h),
where h is the number of hops from the node n that the
message will reach. The verify request is multicast as
mcast(vreq < Pi(A,B, ∗) >,B, 2); all 1 and 2 hop
neighbors of B receive the message. This ensures that
all the neighbors of node B and of node A receive the
message. It is critical that all neighbors of B receive the
message so that they know V (B) has correctly fulfilled
its duty of sending a verify request; and all neighbors of

A must receive the message so that they know a request
has been received for which a response is expected.

Upon receiving the verify request message, the neigh-
bors of B set verify_pending to true for that packet
instance in their verify tables. One of the neighbors of
A is designated the verifier for A called V (A), checks
its verify table for any packet instance Pi(∗, A,B).
A matching packet instance would have the same
non_mutable_hash as the packet instance in the
request and would have been forwarded from A to B. If
V (A) finds a match, and the state of the matching entry
is set to verified, it multicasts a verify response
to the neighbors of nodes A and B; mcast(vres <
Pi(A,B, ∗), verified >,A, 2). A verify response mes-
sage contains the packet instance for which it is re-
sponding and a diagnosis from the set {verified,
invalid, fabricated, modified}. It is no-
tated as vres < packet instance, diagnosis >.
If V (A) finds a match with the state set to
invalid, then V(A) sends a multicast mcast(vres <
Pi(A,B, ∗), invalid >,A, 2). Diagnosis Invalid in-
dicates that the packet has been modified or fabricated
by a previous hop. If V (A) finds a match with the state
set to unverified and the previous hop is Hn, then
the verifier creates a verification request by performing
mcast(vreq < Pi(Hn, A, ∗) >,A, 2). When V (A)
receives a verify response for Pi(Hn, A, ∗) it will then
send the appropriate verify response, either verified
or invalid, for Pi(A,B, ∗).

Figure 2 shows how packet Pi is verified by the
neighbors of each hop. When node O originates packet
Pi, all of the neighbors of O overhear the packet
instance Pi(O,O,H1) and record it in the verify table
with the state set to verified. When H1 forwards
the packet, the verifier V (H1) sends a verify request
and the verifier V (O) sees that the state has been
set to verified and sends a verify response with
the diagnosis verified. From this we can state the
following two invariants:
Inv1: If any node has set a packet instance to
verified, then all nodes that have records of previous
instances of the same packet (i.e., on previous hops)
have also set the state of those packet instances to
verified.
Inv1: The only way the neighbors of node O set packet
Pi(O,O,H1) to verified is if they have overheard
the message directly from node O.

We can put together these two invariants to state the
following lemma:
Lemma: If a packet instance at hop i is marked
verified, then that the packet has not been fabricated
or modified till the hop i.
Attack Scenario

The diagnosis is performed by the verifier node
that sends the verify response message. For example,

346

consider the case where V (A) has received a request for
packet instance Pi(A,B, ∗). It does not have a match
for P1(∗, A,B) in the verify table, and it initiates a
verify request vreq < P1(∗, A,B) >, which is not
responded to before a request timeout period. This
will detect a fabrication. V (A) multicasts a response
mcast(vres < P1(A,B, ∗), fabricated >,A, 2). All
the neighbors of B receive this response and isolate
node B from the network.

4.4. Route Verification Details

4.4.1. How is the verifier node chosen? The verifier
node of a node has a central role in initiating the verifi-
cation requests and then relaying verification responses.
It is possible that the verifier node fails to overhear
a packet forwarded from say X , which then causes
it to fail to send a verify request. For this reason, all
neighbors of a node X can take the role of verifier if
they detect that the “head verifier” has failed to send a
verify request or verify response. The head verifier of X
is notated as V1(X) and the other neighbors are given
an order in the verifier hierarchy V2(X) to Vn(X). If
a verify request or response should be sent and verifier
V1(X) fails to send the request or response within a
given response time then V2(X) will send the request
or response and so on until Vn(X)’s time slot is reached.

The order of verifiers is created using a secure hash
function H . For each neighbor i of X , take the hash of
i concatenated to X . This value, H(i,X), is the verifier
id of i for node X . Assign V1(X) as the node with the
smallest verifier id, V2(X) as the node with the next
smallest verifier id, and so on. In the unlikely case of a
tie, the node with the smaller node id wins. This method
for assigning verifier ids helps to distribute the role of
verifier evenly among the nodes, and makes it difficult
for a malicious node to make itself the verifier node for
a large number of other nodes.

4.4.2. What happens if a verifier node is malicious?
If a verifier is malicious and does not send a required
request or response, this is handled as we saw in Section
4.4.1. If a node suspects another node of sending a
malicious verify response, it multicasts a challenge for
that response. A malicious verify response may be
responding that a packet instance has been verified,
when in reality it has not. Note that all nodes in a
neighborhood agree on whether or not a packet instance
has been verified based on Inv1. Suppose that for
node A, V (A) sends out a malicious response. Another
neighbor of A, say V2(A) makes the challenge and a
vote happens among all neighbors of A. An example
voting scheme is shown in [11]. If a quorum of the
votes say the response message is malicious then the
node that sent the message is isolated from the network,

otherwise the node that requested the vote is isolated
from the network. Conversely for a malicious request,
if a node B detects a malicious request for a message
that it forwarded, it is B’s responsibility to initiate
the challenge. This means that for RV to work, no
node can have a quorum or more number of malicious
neighbors. Voting is costly because it requires every
neighbor to multicast an authenticated ballot; but an
adversary would not be able to take advantage of the
voting process to consume resources for long, because
the outcome of the vote is always one malicious node
being isolated from the network.

4.4.3. What happens when the previous hop is un-
known? Suppose that the verifier for node A receives
the verify request vreq < Pi(A,B, ∗) > and it has
no entry in the verify table matching Pi(∗, A,B). This
could mean that the packet was fabricated or that the
verifier node failed to overhear A forwarding the packet
to B due to a natural failure. The verifier will send a
multicast mcast(vreq < Pi(∗, A, ∗) >,A, 2). All nodes
receiving the broadcast check for a match to P1(∗, ∗, A)
in their verify table. If a match is found they send
a verify response. If a match is not found, then after
a timeout period, the verifier for node A assumes the
message was fabricated and sends the verify response
indicating that B fabricated the packet. The chance that
all nodes failed to overhear the message and yet the
transmission from A to B happened successfully is
small.

4.4.4. Can a malicious node use radio control to
frame a legitimate node of fabrication? Suppose that
malicious node M controls the power of its radio so
that only node B overhears a packet it fabricates. When
B forwards the packet to say C, the verifier of B
will generate a verify request vreq < Pi(M,B, ∗) >.
The verifier of M will see that M neither received
nor forwarded any packet Pi and will send the verify
response vres < Pi(M,B, ∗), fabricated >. This will
cause B to be incorrectly isolated from the network.
To provide non-repudiation of a forwarded message, a
node attaches the key that was used by the previous
hop. To prevent this from happening, when the verifier
of B sends the verify request vreq < Pi(M,B, ∗) >,
it includes the key that M used to authenticate itself
(recall the non-repudiation design mentioned in Section
4.2). When the neighbors of M receive the verify
request with the key attached, they will be able to
verify that only M could have known this key. From
this they can correctly diagnose that if packet instance
vreq < Pi(M,B, ∗) > is fabricated, then it is node M
that performed the fabrication, and not node B which
innocently forwarded the packet received from M .

347

4.4.5. What type of routing and forwarding proto-
cols can RV secure? As described here RV can protect
route request, route response, and data messages in any
distance vector routing protocol, such as AODV. The
difference between route request and response is that
the request is a broadcast message. So when node B
forwards a route request it would look like P1(A,B, ∗)
rather than P1(A,B,C). This does not change the
working of RV in any way. RV can also secure a beacon
routing protocol like those commonly found in sensor
networks. Consider beacon routing where each node
periodically announces its minimum hop count distance
from a base station node. If we add the rule that a node
must announce the neighbor with the lowest hop count
along with its beacon message, then RV can generate a
verify request message where the previous hop is taken
to be the neighbor with the lowest hop count. With slight
modification, RV can also secure aggregation protocols
commonly used in sensor networks. For aggregation,
rather then sending the verify request for a single
previous hop, the verify request would be sent for every
node that contributed to the aggregated message.

RV can generate a very large number of verify request
messages when securing a broadcast packet such as a
route request in AODV. For example, consider the case
where node D broadcast a route request packet that is
then forwarded by three neighbors: E, F , and G. This
would cause verifier nodes V (E), V (F), and V (G) to
generate route requests vreq < Pj(D,E, ∗) >, vreq <
Pj(D,F, ∗) >, and vreq < Pj(D,G, ∗) > respectively.
All three requests would be responded to by the same
diagnosis from verifier V (D). It would be more efficient
if just one of the verifiers sent a route request. This is
done by waiting a random backoff time before sending
verify request and suppressing the request if a response
is already heard.

4.5. Incorporating RV in MGM
Although RV is able to correctly detect and diagnose

all packet fabrications and modifications, it is very
costly in terms of radio traffic generated. On the other
hand, LITEWORP which is based on passive local mon-
itoring generates no extra traffic except when malicious
activity is detected. However it has two sources of
weakness as discussed in the introduction—it requires
a malicious node to generate anomalous activity above
a particular rate for detection and colluding malicious
nodes can stay below the threshold for each individual
node by sharing the activities; it has false positives
due to link losses and collisions. Multigrade Monitoring
(MGM) combines LITEWORP and RV to obtain a
protocol that can correctly detect and diagnose all route
establishment attacks lasting longer than a threshold
amount of time, and does so with nearly the same
low cost of local monitoring protocols. To see what

this threshold amount of time is, consider the following
scenario.

Assume that AODV has been implemented to retry a
route request every RREQ_RETRY_RATE seconds until
a route reply is received indicating route establishment.
Observing repeated route request RREQ_RETRY_RATE
seconds apart for a given source-destination pair is an
indication that an adversary is maliciously preventing
route establishment. The same is true for LITEWORP
suspecting malicious packet fabrications. While neither
repeated route requests nor suspected fabrications is
a sufficient condition for concluding that a wormhole
attack is occurring, each is a necessary condition for
the attack.

We set a threshold RREQ_RETRY_THRESH,
such that if a node overhears that many route
requests for the same source-destination pair within
RREQ_RETRY_THRESH*RREQ_RETRY_RATE and
the node suspects even a single packet fabrication
using local monitoring, the node will enter into RV
mode and initiate the verify requests. Thus, RV will
detect route disruption attacks that last longer than
RREQ_RETRY_THRESH*RREQ_RETRY_RATE.

4.6. Coverage of Attacks in MGM
Recall from section 4.1, that our goal is to prevent

an adversary from disrupting route establishment. We
want to detect and isolate malicious nodes that are
disrupting the route before the origin has performed
MAX_ROUTE_RETRIES route requests. For this, MGM
needs to achieve two properties—first, MGM should
trigger before MAX_ROUTE_RETRIES and second, RV
should detect the route disruption attack and specifically,
any of the three adversarial actions for route disruption
that we introduced in Section 4.1.

For the first property, MGM sets
RREQ_RETRY_THRESH to be less than
MAX_ROUTE_RETRIES. For the second property, local
monitoring can detect modification of the non-mutable
parts of a packet or an incorrect increment (including
no increment) to a hop count with vanishingly low
false alarm. Therefore, RV need only concern itself
with fabrication. As described in the RV design, a
suspected fabrication results in verification requests
propagating all the way back to the origin node. The
neighbors of the origin only verify a packet if they
have directly heard it. As long as only less than a
quorum of nodes in any neighborhood along the path
from the origin to the destination is malicious, then
the verification responses are received correctly and
any fabricated packet is detected. There is a fairly
obvious implication to this quorum requirement. If the
quorum threshold is set too low, then an adversary
can compromise greater than that threshold number
of nodes in a neighborhood. If it is set too high, then

348

there may not be enough density in the network for
RV to make progress. This is a design parameter that
needs to be set by the network operator based on her
deployment. Regarding the applicability of MGM to
a routing protocol, if in the routing protocol a packet
is modified by a node in a manner that cannot be
deduced by its neighbors, then MGM will not work.
An example of such a protocol is the onion anonymous
routing.

5. Experiments and Results
Our results are based on simulations in the TinyOS

2.0.2 version of TOSSIM. We simulate 200 nodes, and
vary the size of a square region to obtain topologies
with different average degrees (number of neighbors)
per node. The version of TOSSIM models packet loss of
the CC2420 radio based on signal to noise ratio (SNR),
where the noise is generated from real noise traces using
a technique called closest-fit pattern matching [12].
Thus inputs to this radio model are a noise trace (we
use the Meyer Library trace) and the link gain, in both
directions, between every pair of nodes in the network.
Link gains between every pair of nodes is based on
the distance between nodes and is generated using the
TinyOS support code LinkLayerModel.java. To
generate random topologies, we randomly distribute
nodes in a square region and then generate their link
gains. We then set any pair of nodes with a link gain
greater than -70dBm in both directions to be neighbors.
A node processes messages from its neighbors and dis-
cards others. The threshold of -70dBm provides reliable
links between neighbors, given that the default value
of the Clear Channel Assessment (CCA) threshold is
-77dBm for CC2420 [13]. In reality, a node will not
know the gains and will use some form of neighbor
discovery to obtain the neighbor relations.

When the CC2420 radio is in receive mode it con-
sumes about 35.5mW, which is even greater than the
31mW it consumes when it is transmitting at 0dBm
[13]. For this reason, some form of low-power listening
(where a radio is able to sleep between packet recep-
tions) is required for nodes to conserve energy. We
implemented the BMAC [14] protocol with low-power
listening and added it to the TinyOS 2.0.2 version of
TOSSIM, which was previously lacking a low-power
listening mode. In BMAC, radios are set to wake up at
a check interval and perform clear channel assessment.
If the channel is clear the radio goes back to sleep,
otherwise if the channel is not clear, the radio remains
awake until it has received a message or a timeout
period is reached. To ensure that all nodes receive a
packet, a transmitting node must transmit a preamble
that is the length of one check period before transmitting
the actual packet. Based on this, a radio may be in
one of four states: sleeping, waking up, receive mode,

or transmit mode. We keep a count of the total time
a radio is in each of these states and use this to
compute the total energy consumed by the radio. In
all simulations we set the check interval to be 25ms
and duty cycle to be 10%. TOSSIM does not simulate
time for code execution. Therefore, there is no easy
way to account for the energy of code execution, which
in any case is insignificant (for route establishment)
compared to that used in network traffic. We do count
the energy expended in instructions related to message
transmission and receipt. This is also very small relative
to that for network traffic, in all cases except SAODV.

Behavior of SAODV: In practice SAODV takes about
3 seconds to authenticate a route message at each hop on
a TelosB mote. We use TinyECC to provide fast elliptic
curve authentication [15]. If SAODV were being used
on real motes it would not even be able to form a 5
hop route in the route retry period of 20 seconds used
in all of our simulations. Nevertheless, it is interesting
to compare energy consumption of SAODV to the other
protocols, ignoring the effect of added latency to route
request and reply.

We looked at other candidates (apart from SAODV)
for comparison in the simulation experiments. However,
no satisfactory candidate came up, since existing proto-
cols do not handle the gamut of attacks that MGM does
or makes unrealistic assumptions of the wireless net-
work. An example of the first is identifying wormholes
by considering the graph topology and that only handles
physical layer wormholes, but not the routing layer
wormholes. An example of the latter is temporal leashes
for identifying wormholes and that assumes extremely
tight time synchronization (order of µs) which is costly
to achieve in wireless networks.

Behavior of AODV: Unless explicitly stated oth-
erwise, the following parameters are used in all the
simulations. The test application picks a new source
destination pair 5 hops away from each other every 40
seconds and attempts to establish a route. After an origin
node has made a route request it expects a route reply
within 20 seconds. If this does not happen the origin
will retry the route request, up to 5 times. There is no
data traffic in the simulation because it is not relevant
to the solution. We also use RREQ_RETRY_THRESH
value of 3.

5.1. Energy Consumption in Benign Network
We examine how well the different protocols scale

with average node degree and number of hops between
the origin and destination, when no malicious node is
present. For comparison, consider that idle receiving
power is 35.5 mW and the network is operating at
10% duty cycle. Instead of plotting energy, we plot the
power since the former will depend on the arbitrary
setting of simulation time. In our application, power

349

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 5 6 7 8 9 10 11 12 13 14 15

A
ve

ra
ge

 P
ow

er
 C

on
su

m
pt

io
n

pe
r

N
od

e
(m

W
)

Average Degree

 AODV
SAODV

RV
MGM

Figure 3. Average power consumption for different
topologies.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 5 6 7 8 9 10 11 12 13 14 15

A
ve

ra
ge

 P
ow

er
 C

on
su

m
pt

io
n

pe
r

N
od

e
(m

W
)

of Hops between Origin and Destination

 AODV
SAODV

RV
MGM

Figure 4. Average power consumption for different
number of hops between origin and destination
node in benign network.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 5 6 7 8 9 10 11 12 13 14 15

C
ol

lis
io

n
R

at
io

Average Degree

 AODV
SAODV

RV
MGM

Figure 5. Collision ratio with average node degree
for the different protocols. Collision ratio is the num-
ber of packet collisions to the number of packet
collisions plus successfully received packets.

is directly proportional to energy. We see in Figure
3 that RV consumes power at a quickly increasing
rate with increase in average node degree. This can be
explained by the large number of verification requests
and responses that are multicast up to 3 hops. For
degrees less that 9, MGM consumes barely more power
than the baseline AODV. Ideally, MGM will not trigger
RV and will act the same as baseline AODV. As the
degree increases, the probability increases that route
requests will fail due to natural collisions, and hence
LITEWORP will falsely suspect fabrications and MGM

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5

A
ve

ra
ge

 P
ow

er
 C

on
su

m
pt

io
n

pe
r

N
od

e
(m

W
)

Route Retry Threshold

Avg Degree = 5
Avg Degree = 15

Figure 6. Average power consumption of the MGM
protocol for different values of the trigger for invok-
ing RV from MGM (RREQ_RETRY_THRESH). Two
random topologies with degrees 5 and 15 are used.

will trigger RV. The ratio of packet collisions with
degree in Figure 5 explains this increase. Both AODV
and SAODV increase by only a small amount with
increases in degree. In Figure 4 increasing hop count has
a smaller affect on RV. SAODV’s power consumption
increases more rapidly with increasing hops than with
increasing degree. This may be caused by the much
larger packet size of SAODV which makes it more
susceptible to losses on the longer paths. TOSSIM’s
packet loss model is such that a larger packet has a
higher likelihood of overlapping with another packet,
which raises the noise floor and ultimately leads to
a higher likelihood of the packet being not received
correctly.

5.2. Choosing MGM Parameters

A significant parameter in MGM is
RREQ_RETRY_THRESH. This is the threshold
number of times a node must observe an RREQ for
a particular route establishment flow before triggering
RV. Figure 6 shows how this threshold affects the
average power consumption at a node. Setting the
threshold to one means that every observed RREQ will
trigger RV. This is very costly particularly for dense
networks (node degree 15). However, for both sparse
and dense networks, the cost decreases quickly and
then stabilizes. This indicates that the performance of
MGM is not very sensitive to this parameter setting in
a reasonable range.

5.3. Isolation Coverage

In Figure 7 we see how increasing the amount of
traffic in the network affects the fraction of malicious
nodes that are detected and isolated. In this simulation
the period between origin destination pairs attempting
to establish a new route is varied. The probability of
attacking an attempt to establish a route by a pair of
malicious nodes forming a wormhole is P , which is
set to 0.1 and 0.5. This mimics an intelligent adversary

350

 0

 0.2

 0.4

 0.6

 0.8

 1

10 20 30 40 50

F
ra

ct
io

n
M

al
ic

io
us

 N
od

es
 Is

ol
at

ed

New Route Period (s)

MGM, P=0.1
MGM, P=0.5

RV, P=0.1
RV, P=0.5

Figure 7. Isolation coverage for different amounts
of load in the network.

which picks a subset of routes to attack to stay under
the radar. The number of malicious nodes is not pre-
determined in these simulations, rather it is assumed
that as many malicious nodes as are required to attack
the corresponding number of route requests are available
to the adversary. MGM performs better than RV since
it uses the bandwidth more intelligently. The lack of
coverage is caused by the route verification taking too
long to complete. Expectedly the protocols perform
better with fewer number of malicious nodes (P = 0.1
than 0.5).

6. Related Work
Sy and Bao present a packet traceback mechanism

called CAPTRA that shares similarities with RV [16].
In CAPTRA all nodes in the network add overheard
messages being forwarded by neighbors in a bloom
filter. When an access point (e.g. a base station node or
a destination node in AODV) detects a security breach
it sends a traceback request message. Nodes use their
bloom filter to look up the source of the packet for
which the request has been made. If a node finds an
entry in the bloom filter it sends an announcement of the
source of the packet (the previous hop where the packet
came from). When a quorum of nodes have announced
the source of the packet, a trace request is sent to that
source and the process repeats itself until the ultimate
origin of the packet has been found. Trace confirmation
messages are propagated back to the requesting access
point at each hop of the trace, allowing the access point
to diagnose the source of the security breach.

CAPTRA uses an access point initiated trace to find
the source of an attack while RV uses a locally initiated
verification to verify the source of a packet. The access
point initiated approach would have less overhead in
the case where a destination node is trying to find the
source of a RREQ fabrication. However, locally initiated
verification has the advantage of being able to isolate
malicious nodes at the local level.

In [4] a locally initiated verification approach is used,
but it is assumed that special secure monitoring nodes

are available. RV can tolerate any nodes in the network
becoming compromised, so long as no more that a
quorum of nodes is compromised in any neighborhood.

Other papers have used the idea of setting triggers
that initiate increased levels of monitoring. For example,
in [17] when an anomaly is detected in application data
the system begins collecting additional state information
on the network. In [18] only a few nodes monitor for
anomalous behavior until an anomaly is found, then
all of the two-hop neighbors of the node that detected
the anomaly begin monitoring. To our knowledge, no
one has presented a multigrade monitoring type of
framework, where low cost local monitoring is able to
detect all necessary conditions for an attack to succeed,
and then trigger more costly detection mechanisms that
have low rates of false positive detection.

ODSBR has been proposed as a Byzantine resilient
on-demand routing protocol [19]. Byzantine behavior
includes wormhole attacks and collusion. In ODSBR
both the route request and route reply are flooded
throughout the network. This ensures, that as long
as a fault free path exists between the source and
destination, route establishment cannot be suppressed
by faulty nodes dropping packets. A metric that factors
in failures and adversarial behavior is used to select
the least cost path to a destination node during the
route reply phase. The metric is a weight that represents
the reliability of each link along the path. A path is
accumulated hop-by-hop during the route reply phase,
so that when the source node receives the route reply, it
will know the nodes and the weight of each link on that
path. This requires each node to sign the accumulated
route reply message. In addition each node is required
to authenticate all of the signatures of a route reply
message, so that a fabricated route reply with a low cost
is not selected over a legitimate route reply. ODSBR is
a routing protocol, with its own route selection metric.
This is different from the route protection mechanisms
we have presented in this paper, which can be added to
existing routing protocols such as AODV.

7. Conclusion
We have shown a multigrade monitoring approach

that has little energy overhead compared to baseline
insecure AODV, while having a high rate of detection
and isolation. Our approach fundamentally balances the
conflicting pulls of achieving high security with low
resource consumption. We have shown this for routing
protocols through two protocols—a previous protocol
LITEWORP and a new protocol RV incorporated into
a multigrade monitoring (MGM) framework. In future
work, we are applying the MGM framework to other
security attacks. We are also developing compiler-based
tools to populate a MGM framework, given implemen-
tations of the individual protocols.

351

References
[1] M. G. Zapata, “Secure ad hoc on-demand

distance vector (saodv) routing,” September 2006,
http://personals.ac.upc.edu/guerrero/papers/draft-
guerrero-manet-saodv-06.txt (Retrieved: Apr 5, 2009).

[2] I. Khalil, S. Bagchi, and N. B. Shroff, “Liteworp: De-
tection and isolation of the wormhole attack in static
multihop wireless networks,” Comput. Netw., vol. 51,
no. 13, pp. 3750–3772, 2007.

[3] S. Marti, T. J. Giuli, K. Lai, and M. Baker, “Mitigating
routing misbehavior in mobile ad hoc networks,” in Proc.
MobiCom ’00, 2000, pp. 255–265.

[4] C. Tseng, P. Balasubramanyam, C. Ko, R. Limprasitti-
porn, J. Rowe, and K. N. Levitt, “A specification-based
intrusion detection system for aodv,” in Proc. Workshop
on Security of Ad Hoc and Sensor Networks (SASN),
2003, pp. 125–134.

[5] P. Levis, N. Lee, M. Welsh, and D. Culler, “Tossim:
accurate and scalable simulation of entire tinyos appli-
cations,” in Proc. SenSys ’03, 2003, pp. 126–137.

[6] R. Maheshwari, J. Gao, and S. Das, “Detecting worm-
hole attacks in wireless networks using connectivity
information,” Proc. IEEE INFOCOM ’07, pp. 107–115,
May 2007.

[7] J. Newsome, E. Shi, D. Song, and A. Perrig, “The
sybil attack in sensor networks: analysis & defenses,”
in Proceedings IPSN ’04. ACM New York, NY, USA,
2004, pp. 259–268.

[8] P. Ning and K. Sun, “How to misuse aodv: A case
study of insider attacks against mobile ad-hoc routing
protocols,” in Ad Hoc Networks, 2005, pp. 795–819.

[9] S. Zhu, S. Setia, and S. Jajodia, “Leap: efficient security
mechanisms for large-scale distributed sensor networks,”
in Proc. CCS ’03. New York, NY, USA: ACM, 2003,
pp. 62–72.

[10] A. Perrig, R. Szewczyk, J. Tygar, V. Wen, and D. Culler,
“SPINS: Security protocols for sensor networks,” Wire-
less networks, vol. 8, no. 5, pp. 521–534, 2002.

[11] I. Krontiris, Z. Benenson, T. Giannetsos, F. C. Freiling,
and T. Dimitriou, “Cooperative intrusion detection in
wireless sensor networks,” in Proc. EWSN ’09. Berlin,
Heidelberg: Springer-Verlag, 2009, pp. 263–278.

[12] H. Lee, A. Cerpa, and P. Levis, “Improving wireless
simulation through noise modeling,” in Proc. IPSN ’07.
New York, NY, USA: ACM, 2007, pp. 21–30.

[13] T. Instruments, “2.4 GHz IEEE 802.15.4 /
ZigBee-ready RF Transceiver,” March 2007,
http://focus.ti.com/lit/ds/symlink/cc2420.pdf (Retrieved:
April 5, 2009).

[14] J. Polastre, J. Hill, and D. Culler, “Versatile low power
media access for wireless sensor networks,” in Proc.
SenSys ’04, 2004, pp. 95–107.

[15] A. Liu and P. Ning, “Tinyecc: A configurable library for
elliptic curve cryptography in wireless sensor networks,”
in Proc. IEEE IPSN ’08. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 245–256.

[16] D. Sy and L. Bao, “Captra: coordinated packet trace-
back,” in Proc. IPSN ’06, 0-0 2006, pp. 152–159.

[17] S. Gupta, R. Zheng, and A. Cheng, “Andes: an anomaly
detection system for wireless sensor networks,” in Proc.
IEEE MASS ’07, Oct. 2007, pp. 1–9.

[18] L. Yu and J. Li, “Spymon: Hidden network monitoring
for security in wireless sensor networks,” in Proc. IEEE
MASS ’08, 29 2008-Oct. 2 2008, pp. 328–333.

[19] B. Awerbuch, R. Curtmola, D. Holmer, C. Nita-Rotaru,
and H. Rubens, “Odsbr: An on-demand secure byzantine
resilient routing protocol for wireless ad hoc networks,”
ACM Trans. Inf. Syst. Secur., vol. 10, no. 4, pp. 1–35,
2008.

352

