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Abstract—Fast and periodic collection of aggregated data
is of considerable interest for mission-critical and continuous
monitoring applications in sensor networks. In the many-to-one
communication paradigm known as convergecast, we consider
scenarios where data packets are aggregated at each hopen route
to a sink node along a tree-based routing topology and focus on
maximizing the data collection rate at the sink by employing
TDMA scheduling and multiple frequency channels.

Our key result in the paper lies in proving that minimizing
the schedule length for anarbitrary network in the presence of
multiple frequencies is NP-hard, and in designing approximation
algorithms with worst-case provable performance guarantees for
geometric networks. In particular, we design a constant factor
approximation for networks modeled as unit disk graphs (UDG)
where every node has a uniform transmission range, and a
O(∆(T ) log n) approximation for general disk graphs where
nodes have different transmission ranges;n is the number of
nodes in the network and ∆(T ) is the maximum node degree
on a given routing tree T . We also prove that a constant factor
approximation is achievable on UDG even forunknown routing
topologies so long as the maximum node degree in the tree is
bounded by a constant. We also show that finding the minimum
number of frequencies required to remove all the interfering links
in an arbitrary network in NP-hard. We give an upper bound on
the maximum number of such frequencies required and propose
a polynomial time algorithm that minimizes the schedule length
under this scenario. Finally, we evaluate our algorithms through
simulations and show various trends in performance for different
network parameters.

I. I NTRODUCTION

Consider a large-scale wireless sensor network (WSN)
deployed for a continuous and periodic monitoring applica-
tion, such as a security-surveillance network for monitoring
facilities, or an environmental network for monitoring critical
phenomena. The successful operation of such an application
depends on its ability to extract data from the network, which
often comprises periodic summaries or aggregates of raw
sensor readings. It also requiresfast andperiodic delivery of
this aggregated data from the source nodes to a common sink.
Typically, the routing structure used for such data collection
is a spanning tree rooted at the sink. As the data flows up this
routing tree, it is aggregated at each hop thereby, eliminating
redundancy and minimizing the number of transmissions [13].
We refer to this process of many-to-one communication of

aggregated data from the various sources to the sink node as
aggregated convergecast[12].

In this paper, we focus on thelink scheduling problemof
maximizing the aggregated data collection rate at the sink node
under the setting of TDMA protocols andmultiple frequency
channels. The key challenge in designing efficient solutions
to such scheduling problems is the presence of wireless in-
terference, which arises from concurrently transmitting nodes
that are in close proximity of each other. While there is a lot
of research on single-channel scheduling protocol design for
WSN, exploiting parallelism using multiple channels has not
been well explored. Moreover, given the fact that current WSN
hardware already provides multiple frequencies, such as the
16 orthogonal frequencies with 5MHz spacing supported by
CC2420 radios on TmoteSky, it is imperative to take their ad-
vantage in minimizing the interference and achieving a faster
data collection rate by concurrent transmissions. In addition
to multiple frequencies, we consider contention-free multiple
access protocols (e.g., TDMA) due to their inherent abilityin
eliminating collisions and retransmissions, and thus achieving
better performance in periodic data collection scenarios as
opposed to contention-based protocols [14].

In our time slotted system, the duration of each slot is
long enough to accommodate the successful transmission or
reception of a single packet. We assume that packets are of the
same size, and equal numbers of consecutive slots are grouped
into non-overlapping frames that are repeated for periodic
scheduling. We also assume that each node generates only
one packet in the beginning of every frame, and each node
has the ability to aggregate all the packets from its children
as well as its own into a single packet before transmitting
to its parent. The classes of aggregation functions that fall in
this category includedistributiveandalgebraicfunctions [13],
where the size of the aggregated data is constant (e.g., fits
within a single packet) and does not depend on the size of the
raw measurements. Examples of such aggregation functions
are MIN, MAX, MEDIAN, COUNT, SUM, AVERAGE, etc.
Thus, if every node continues to transmit only once during
each frame, then the sink will start receiving aggregated data
from all the nodes in the network after a certain time. This
is when we say that the network has reached apipelined
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state. Note that, due to periodic scheduling, once a pipeline
is established, the sink keeps receiving aggregated data from
all the nodes once every frame. We call the number of time
slots in each frame theschedule length. Under this scenario,
maximizing the aggregated data collection rate at the sink node
is equivalent to minimizing the schedule length.

We prove that minimizing the schedule length for an ar-
bitrary network in the presence of multiple frequencies is
NP-hard and design approximation algorithms forarbitrar-
ily deployedgeometricnetworks. In particular, we design a
constant factor approximation for networks modeled as unit
disk graphs, where every node has a uniform transmission
range, and aO(∆(T ) log n)-approximation for general disk
graphs, where nodes could have different transmission ranges.
Here, n is the number of nodes in the network, and∆(T )
is the maximum node degree on a given routing treeT . We
also prove that a constant factor approximation is achievable
on UDG even when the routing topology is unknown to the
algorithm designer a priori so long as the maximum in-degree
of any node in the tree is bounded by a constant. We also show
that finding the minimum number of frequencies required to
remove all the interfering links in an arbitrary network in
NP-hard. We give an upper bound on the maximum number
of such frequencies required and propose a polynomial time
algorithm that minimizes the schedule length under this sce-
nario. Finally, we evaluate our algorithms through simulations
and show various trends in performance for different network
parameters.

A. Related Work and Paper Overview

The non-aggregated version of the convergecast problem
has been considered by Gandhamet al. in the presence of
a single channel and TDMA protocols, where the goal is
to minimize the schedule length [9]. The authors describe
an integer linear programming formulation and propose a
distributed scheduling algorithm that requires at most3n
time slots for general networks, wheren is the number of
nodes in the network. A similar study [5] is presented by
Choi et al. in which an NP-completeness result is proved
on minimizing the schedule length under a single frequency
for non-aggregated convergecast. Minimizing the schedule
length by using orthogonal codes or hopping sequences to
get rid of interference is studied by Annamalaiet al., where
they consider assigning different time slots and code pair to
interfering links [1].

The problem of joint scheduling, routing, and transmission
power control to improve network throughput and interference
is studied by Bhatiaet al. [3], and also by Bhatet al. [7]. A
prominent recent work was by Moscibroda, in which scaling
laws describing the achievable rate for aggregated converge-
cast in arbitrarily deployed networks were presented underthe
SINR (Signal-to-Interference-plus-Noise-Ratio) model [15].
Worst-case capacity results were also proved by employing
non-linear power assignment to nodes and exploiting SINR-
effects. Cruzet al. used a duality based approach to address
the problem of finding an optimal link scheduling and power

control policy, which minimized the total average transmission
power and support high data rates [6].

In the context of general ad hoc networks, the use of
multiple channels has been well researched. To improve net-
work throughput, Soet al. proposed a MAC protocol that
could switch channels dynamically and could avoid the hidden
terminal problem using temporal synchronization [18]. A link-
layer protocol called SSCH was proposed by Bahlet al.
that could increase the capacity of IEEE 802.11 networks by
utilizing frequency diversity [2]. In the context of WSN, there
exist fewer works utilizing multiple channels. The first multi-
frequency MAC protocol, MMSN, was proposed by Zhouet
al. where the goal was to increase aggregated throughput [20].

Most closely related is our previous work [12], in which
we described a realistic simulation-based study on tree-based
data collection utilizing transmission power control, multiple
frequencies, and efficient routing topologies. It is shown that
once all the interfering links are removed by use of multiple
frequencies, the data collection rate becomes limited by the
maximum degree of the tree. We also showed that this rate can
further be increased on degree-constrained trees. Our present
work is different from the rest in that we propose algorithms
and prove several important theoretical results on the aggre-
gated convergecast problem under multiple frequencies.

The rest of the paper is organized as follows. In Section II,
we describe our problem formulation and assumptions. In
Section III, we prove two complexity results on general graphs
for the aggregated convergecast problem. In Section IV, we
focus on unit disk graphs and propose frequency and time
slot assignment schemes that achieve constant factor approxi-
mation on the optimal schedule length. Section V focuses on
general disk graphs. In Section VI we present our evaluation
results, and finally Section VII concludes the paper.

II. PRELIMINARIES

In this paper, we are interested in designing link scheduling
protocols that exhibit provably good performance onarbi-
trarily deployed networks (possibly evenworst case) in the
Euclidean plane under multiple frequencies. We model the
network as an undirected graphG = (V,E), whereV is the
set of nodes and an edgee = (u, v) ∈ E exists between
any two nodesu, v ∈ V if they are within the communication
range of each other. We are also given a fixed nodes ∈ V that
represents the sink, and a spanning treeT = (V,ET ) rooted
at s that serves as the routing topology. All the nodes except
s generate packets.

We assume that each node has a single, half-duplex
transceiver, so it can either transmit or receive a single packet
at any given time slot. We also assume that transmissions on
orthogonal channels do not interfere with each other. Although
this assumption may fail in practice depending on adjacent
and alternate channel rejection values for different typesof
transceivers, experimental results [12] presented by Incel et
al. show that the scheduling performance remains similar for
CC2420 and Nordic nrf905 radios.
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Fig. 1. (a) Secondary interfering link. (c), (d) Aggregatedconvergecast with
7 source nodes with two frequencies and a single frequency. (b) Pipeline with
two frequencies starts from frame 2 with a minimum schedule length 3.

In our formulation, we consider areceiver-based frequency
assignmentstrategy, i.e., we statically assign a frequency to
each of the receivers (non-leaf nodes) ofT . Although in
practice, every sender-receiver pair could potentially negotiate
on a particular frequency before each packet transmission,
assigning different frequencies to the transmitters that are
children of the same parent does not significantly help in
reducing the schedule length. This is because the single-
transceiver radio cannot receive multiple packets simultane-
ously. Moreover, pair-wise, per-packet frequency negotiation
might create unnecessary overhead. Thus, the children of the
same parent transmit on the parent’s frequency, and so a node
operates on at most two frequencies.

We assume a graph-based interference model (also called
theprotocol model), where the interference range of a node is
equal to its transmission range, and concurrent transmissions
on two edgese1, e2 ∈ E interfere with each other if either
(i) they are adjacent, or (ii) both the receivers ofe1 and e2
are on the same frequency and at least one of the receivers is
within the communication range of the other transmitter. The
first type of interference is known as theprimary interference
while the second type is known as thesecondary interference,
as illustrated in Fig. 1(a).

In Fig. 1(c) and 1(d), we illustrate aggregated convergecast
and the advantages of using multiple frequencies on a network
of 7 source nodes. The dotted lines represent interfering links
and the solid lines represent tree edges. A number beside an
edge represents the time slot in which the edge is scheduled
to transmit. The entries in Fig. 1(b) list the source nodes from
which data is received on the corresponding time slot. For
example,s receives aggregated data fromb, e, andf in slot
3 starting from frame 1. In this case, it takes two frames to
reach a pipelined state, because data fromg does not reachs
in frame 1. Thus, from frame 2 onwards,s receives aggregated
data from all the nodes in the network once in every three time
slots; so the minimum schedule length is 3. Note that, there
may exist other assignments, such asf2 to a, c, ands, andf1
to b also yielding the same schedule length. However, if we

had only one frequency, the minimum schedule length is 5, as
shown in Fig. 1(d).

III. A SSIGNMENT ONGENERAL GRAPHS

A. Scheduling With Unlimited Frequencies

From the illustration above, we see that assigning different
frequencies to the receivers in an appropriate way can mitigate
the effects of interference and shorten the schedule length.
In this subsection, we first study the problem of finding the
minimum number of frequencies needed to removeall the
secondary interfering links. We say that a secondary interfering
link is removed if the two receivers of an edge pair are
assigned different frequencies. Note that, primary interference
cannot be removed using multiple frequencies because of half-
duplex radios.

Minimum Frequency Assignment: Given a treeT on
an arbitrary graphG and an integerq, is there a frequency
assignment to the receivers inT using at mostq frequencies
such that all the secondary interfering links are removed?

THEOREM 1. Minimum Frequency Assignment is NP-
complete.

The proof is by reduction from the Vertex Color problem
and is omitted here due to lack of space. We now give an
upper bound on the maximum number of frequencies required
to remove all the secondary interfering links and describe a
polynomial time algorithm that minimizes the schedule length
under this scenario.

L EMMA 1. Construct a constraint graphGC = (VC , EC)
from the original graphG as follows. For each receiver (i.e.,
non-leaf nodes) inG, create a node inGC . Create an edge
between two such nodes inGC if their corresponding receivers
in G are on two edges that form secondary interfering links.
Then, the numberKmax of frequencies that will remove all the
secondary interfering links is bounded by:Kmax ≤ ∆(GC)+
1, where∆(GC) is the maximum node degree inGC .

Proof: Since we create an edge between every two nodes
in GC whenever their corresponding receivers inG form
a secondary interfering link, assigning different frequencies
to every such receiver-pair inG is equivalent to assigning
different colors to the adjacent nodes inGC . Thus,Kmax

is equal to the minimum of the number of colors needed to
vertex colorGC , called itschromatic numberχ(GC). Since
χ(G) ≤ ∆(G) + 1, for arbitraryG, the lemma follows.

Once all the secondary interfering links are removed, the
problem of minimizing the schedule length onG reduces to
that on treeT . In the following, we propose an algorithm,
BFS-TIMESLOTASSIGNMENT (Algorithm 1), that runs in
O(|ET |

2) time and minimizes the schedule length.
In each iteration (lines 2-6) of theBreadth-First Search

(BFS) time slot assignment, an edgee is chosen in the BFS
order (starting from any node), and is assigned the minimum
time slot that is different from all its adjacent edges. We prove
such an assignment gives a minimum schedule length that is
equal to the maximum degree∆(T ) of T .
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Algorithm 1 BFS-TIMESLOTASSIGNMENT

1. Input: T = (V, ET )
2. while ET 6= φ do
3. e← next edge fromET in BFS order
4. Assign minimum time slot toe respecting adjacency constraint
5. ET ← ET \ {e}
6. end while

THEOREM 2. Algorithm BFS-TIMESLOTASSIGNMENT on a
tree T gives a minimum schedule length equal to∆(T ).

Proof: The proof is by induction oni. Let T i = (V i, EiT )
denote the subtree ofT in the ith iteration constructed in the
BFS order, whereEiT comprises all the edges that are assigned
a slot, andV i comprises the set of nodes on which the edges
in EiT are incident. Note that,|EiT | = i, because at every
iteration exactly one edge is assigned a slot. Fori = 1, clearly
the number of slots used is1, equal to∆(T 1).

Now, assume that the number of slotsN(i) needed to
schedule the edges inT i is ∆(T i). In the (i+ 1)th iteration,
after assigning a slot to the next edge in BFS order, the number
of slots needed inT i+1 can either remain the same as before,
or increase by one. Thus,

N(i+ 1) = max {N(i), N(i) + 1} (1)

If it remains the same,N(i+1) is still the maximum degree
of T i+1 at end of(i+1)th iteration. Otherwise, if it increases
by one, the new edge must be incident on a nodev∗, common
to bothT i andT i+1, such that the number of incident edges
on v∗ that were already assigned a time slot at the end ofith

iteration was∆(T i). This is so because in the BFS traversal,
all the edges incident on a node are assigned a slot first before
moving on to the next node, and because the slot assigned to
the new edge is the minimum possible that is different from all
that already assigned to the edges incident onv∗ until the ith

iteration. Thus, at the end of(i+1)th iteration, the number of
slots usedN(i) + 1 is equal to the number of assigned edges
incident onv∗ which, in turn, equals∆(T i+1). This proves
the inductive step. Therefore, it holds at every iteration of the
algorithm until the end wheni = |V |− 2, yielding a schedule
length equal to the maximum degree∆(T ) = ∆(T |V |−1).
Now, since assigning different time slots to the adjacent edges
in T is equivalent to edge coloringT , which requires at least
∆(T ) colors, the schedule length is minimum.

B. Scheduling With Limited Number of Frequencies

We showed that with sufficient number of frequencies, all
the secondary interfering links can be removed and a minimum
length schedule can be found in polynomial time. However,
typically there is a limitation on the number of frequencies
over which a given transceiver can operate. In this subsection,
we study the problem of minimizing the schedule length on
an arbitrary graph when a limited number of frequencies
are available (Multi-Frequency Schedulingproblem). First, we
state a known result in Lemma 2 ondistance-2-edge-coloring
(also calledstrong edge coloring) on trees that we use in the
proof of one of our key results in Theorem 3.

DEFINITION 1. Two edgese, e′ ∈ E in a graphG = (V,E)
are within distance 2 of each other if either they are adjacent
or both are incident on a common edge.

A distance-2-edge-coloringof G requires that every two
edges that are within distance 2 of each other have distinct
colors. The fewest such colors needed is called thestrong
chromatic index, sχ′(G), and finding it for general graphs is
known to be NP-hard [10]. It is easy to see that even when
all the receivers inG are assigned the same frequency, the
minimum schedule length is no more thansχ′(G).

L EMMA 2. The strong chromatic indexsχ′(T ) of a treeT =
(V,ET ) is given by [8]:

sχ′(T ) = max
(u,v)∈ET

{deg(u) + deg(v) − 1}

Multi-Frequency Scheduling: Given a treeT on an arbi-
trary graphG, and two positive integersp and q, is there an
assignment of time slots to the edges inT using at mostq
frequencies such that the schedule length is at mostp?

THEOREM 3. Multi-Frequency Scheduling is NP-complete.

Proof: It is easy to see that Multi-Frequency Scheduling
is in NP. Given a particular assignment, one can verify in
polynomial time that - (i) at mostq frequencies andp time slots
are used, (ii) either the receivers of every secondary interfering
link are assigned different frequencies or their edges are on
different time slots, and (iii) all adjacent edges are on different
time slots.

To show NP-hardness, we reduce an instanceG′ = (V ′, E′)
of the Vertex Color problem to an instanceG = (V,E) of the
Multi-Frequency Scheduling problem, as illustrated with an
example in Fig. 2. Our gadgets for reduction are as follows.

Let |V ′| = n. For every vertexvi ∈ V ′, create a setSi of q
pairs of nodes{(uis, vis) : s = 1, . . . , q} in G, and join each
pair with an edgeeis, treatinguis as the parent ofvis. Then,
create

(
q

2

)
= q(q − 1)/2 secondary interfering links between

all such pairs in eachSi as follows. Consider eachuis in turn,
for s = 1, . . . , q − 1, and create an edge fromuis to vil, for
all l > s (see Fig. 2(b) forq = 2).

Next, for every edgeeij = (vi, vj) ∈ E′, create q2

secondary interfering links inG by considering the two sets:
Si = {(uis, vis) : s = 1, . . . , q} and Sj = {(ujs, vjs) :
s = 1, . . . , q}, and creating an edge from eachuis to each
vjs. Then, for eachSi, construct a binary treeT ib creating
additional nodes and edges, and treating the set{uis} of nodes
as leaves, fors = 1, . . . , q.

Finally, treating the roots ofT ib ’s as leaves, create a binary
tree on top of it, and designate the root of it as the sinks.
The reduction clearly runs in polynomial time and creates an
instance of the Multi-Frequency Scheduling problem. Next,we
show that there exists a solution to the Vertex Color problem
using at mostp colors if and only if there exists an assignment
in T using at mostq frequencies and at mostp plus a constant
number of time slots.

366



1

2

v1 v2

v3

(a)

vi

ui1 ui2

vi1 vi2

(b)

v11 v31v21

f1 f2 f1 f2 f2f1

1 1

2

2
2

2 1 13

4 5

f1f1
f1

f1

f1

2

v12

u11 u12

v22

u21 u22

v32

u31 u32

3 3

4

6

Tb
1

Tb
2 Tb

3

s

(c)

Fig. 2. Reduction for Multi-Frequency Scheduling: (a) InstanceG′ of the
vertex color problem. (b) Gadget for eachvi in G′ for q = 2. (c) Instance
G of Multi-Frequency Scheduling as constructed fromG′ for q = 2.

SupposeG′ is vertex colorable using at mostp colors, and
vi is assigned colori. First, assign frequencyfs to uis, for
s = 1, ..., q, in eachSi, and any one of theq frequencies,
say f1, to all the parents in the rest of tree (see Fig. 2(c)).
Then, assign time sloti to all theq edges connecting the pairs
(uis, vis), for s = 1, ..., q, in eachSi. Because all the receivers
in Si are on different frequencies, assigning the same time slot
to all the edges inSi does not create secondary interfering
links within eachSi. Also, since only non-adjacent vertices
in G′ may have the same color, any two sets of edgesSi
andSj that are on the same time slot cannot have secondary
interfering links between each other.

Next, the lowest level edges, which connect to the{uis}
nodes, of all the binary treesT ib , ∀i, can be scheduled using at
most2 time slots, because all the edges in eachSi are assigned
the same slot. Finally, all the remaining edges in the binary
tree can be scheduled in polynomial time because a distance-
2-edge-coloring on trees can be computed in polynomial
time [17], and within number of time slots no more than its
strong chromatic index which, from Lemma 2, equals at most
5.

Conversely, suppose there exists a valid assignment inG
that uses at mostq frequencies and at mostp plus a constant
number of time slots. Assign colors to the vertices inG′ as
follows. For each frequencyfs, consider the set of edges
Ets = {(uts, vts)}, which are assigned time slott, for
t = 1, ..., p, in order. Since the edges inEts are on the same
slot and their receivers are on the same frequency, they cannot
form secondary interfering links, and so each one of them
must lie in a differentSi. Therefore, each edge inEts has
a corresponding vertex inG′, no two of which are adjacent.

Select those edges inEts whose corresponding vertices are
unassigned, and assign colort to all of them. Repeat the
above assignment for all the frequenciesfs, for s = 1, . . . , q.
Clearly, this uses at mostp colors and assigns different colors
to adjacent vertices. Also, because we run the above procedure
over all frequencies and over all time slots, and select an
edge fromEts only if its corresponding vertex is unassigned,
exactly one edge gets picked from eachSi. Therefore, every
node inG′ gets a proper color, and the theorem follows.

IV. A SSIGNMENT ONUNIT DISK GRAPHS

In this section, we consider networks that are modeled as
unit disk graphs and design approximation algorithms on the
optimal schedule length.

We first consider the scenario when the routing topology
is known a priori. In the next subsection, we consider the
case when the routing topology is unknown to the algorithm
designer. The significance of the latter is that an optimal
algorithm can then choose any arbitrary routing tree to min-
imize the schedule length, while the goal of the algorithm
designer will be to construct agood routing topology such
that scheduling on top of it would still guarantee provably
good performance bounds.

A. Known Routing Topology

We divide the area covering all the nodes into a set of grid
cells{ci}, each of sizeα×α, as illustrated in Fig. 3. Under a
UDG model, there exists an edge between any two nodes that
are at most a unit distance apart from each other. We say that
two cells areadjacentto each other if they share a common
edge or a common grid point. We say that an edgeek belongs
to a cell ci if the receiver ofek lies within ci. Thus, a cell
can have 3, 5, or 8 adjacent cells depending on whether it is a
corner cell, an edge cell, or an interior cell, respectively. Since
the interfering links are of length at most one, interference is
spatially restricted, and so time slots can be reused acrosscells
that are spatially well separated.

In our approach to design an approximation algorithm for
minimizing the schedule length, we separate the frequency and
time slot assignment phases. We first assign the frequencies
to the receivers inT such that the maximum number of nodes
transmitting on the same frequency is minimized. Then, we
employ a greedy time slot assignment scheme that guarantees
a constant approximation factor.

1) Frequency Assignment:Let Rci
= {v1, . . . , vn} denote

the set of receivers on the given routing treeT that lie in
cell ci, and letm : Rci

→ {f1, . . . , fK} be a mapping that
assigns a frequency to each of these receivers. Note that if
m(vj) = fk, then the children ofvj transmit onfk.

DEFINITION 2. We define a load-balanced frequency assign-
ment in ci as an assignment of theK frequencies to the
receivers inRci

such that the maximum number of nodes
transmitting on the same frequency is minimized.

To formulate this, we define theload on frequencyfk in
cell ci under mappingm as the total number of children of

367



e1
e4

a

g
1

g
2

g
3

g
4

g
1

g
2

g
1

g
2

g
1

g
2

g
3

g
4

g
3

g
4

g
3

g
4

f f

a

g
2

g
2

g
4

g
4

g
1

g
1

g
3

g
3

Corner cell

Edge cell

Interior cell

Fig. 3. Four pair-wise disjoint sets of time slotsγ1, γ2, γ3, γ4 schedule the
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all the receivers inRci
that are assignedfk, and denote it by

lmci
(fk). We call the number of children ofvj its in-degree,

and denote it bydegin(vj). Thus,

lmci
(fk) =

∑

vj∈Rci
:m(vj)=fk

degin(vj) (2)

Then, a load-balanced frequency assignmentm∗ in ci is:

m∗ = arg min
m

max
fk

{
lmci

(fk)
}

(3)

We denote the load on the maximally loaded frequency under
m∗ in ci by Lm

∗

ci
. Finding a load-balanced frequency assign-

ment is equivalent to, as shown in Lemma 3, scheduling jobs
on identical machines to minimize themakespan(last finishing
time of the given jobs), which is known to be NP-hard [11]. In
the following, we describe an algorithm FREQUENCYGREEDY

(Algorithm 2) that achieves a
(

4
3 − 1

3K

)
-approximation on the

optimal load.

Algorithm 2 FREQUENCYGREEDY

1. In each cellci, do the following:
2. Sort the nodes inRci

in non-increasing order of their in-degrees. Let this
order be:degin(v1) ≥ degin(v2) ≥ . . . ≥ degin(vn)

3. Starting from v1, assign each successive node a frequency from
{f1, . . . , fK} that has theleast load on it so far, breaking ties arbitrarily.

L EMMA 3. The algorithmFREQUENCYGREEDY in each cell
ci gives a

(
4
3 − 1

3K

)
-approximation onLm

∗

ci
.

Proof: Consider a job scheduling problem withK iden-
tical machinesm1, . . . ,mK , andn jobs 1, . . . , n. Executing
a job j on any machine takes timetj > 0. Thus, if Ψ(k)
denote the set of jobs assigned to machinemk, then the
total time mk takes is

∑
j∈Ψ(k) tj , and the makespan is

max1≤k≤K{
∑
j∈Ψ(k) tj}. The objective is to find an assign-

ment of the jobs to the machines that minimizes the makespan.
In our load-balanced frequency assignment formulation, we

map each receivervj ∈ Rci
to job j, and the in-degree

degin(vj) to tj . Map each frequencyfk to machinemk. The
load on fk is therefore equal to the total timemk takes.
Thus, minimizing the maximum load over all the frequencies is

equivalent to minimizing the makespan over all the machines.
Under this mapping, FREQUENCYGREEDY is identical to
Graham’s list scheduling algorithm according to theLongest
Processing Time(LPT) [11] first, which achieves a

(
4
3 − 1

3K

)
-

approximation on the minimum makespan. Therefore, the
lemma follows.

2) Time Slot Assignment:Once the receivers in each cellci
are assigned frequencies according to algorithm FREQUENCY-
GREEDY, we employ a greedy time slot assignment scheme
for the whole network. The following lemmas follow from
greedily scheduling amaximalnumber of edges in each time
slot.

L EMMA 4. Let γi denote the set of time slots needed to
schedule all the edges in cellci. Then, the minimum schedule
length Γ for the whole network is bounded by:Γ ≤ 4 ·
max
ci

{|γi|} , ∀α ≥ 2.

Proof: Since in a UDG the distance between any two
adjacent nodes is at most one, two edges that belong to
non-adjacent cells must have their transmitters at least two
hops away from the receiver of the other, for anyα ≥ 2.
Therefore, two such edges can be scheduled on the same time
slot regardless of their receiver frequencies, such ase1 and
e4 in Fig 3. Thus, the setγi of time slots needed to schedule
all the edges inci can be reused in any other cellcj that is
non-adjacent toci, for anyα ≥ 2. This is equivalent to vertex
coloring a graph in which each node represents a cell and
an edge exists between any two nodes if the corresponding
cells are adjacent to each other; the colors represent pair-wise
disjoint sets of time slots.

Although vertex coloring an arbitrary graph is NP-hard [10],
the particular color assignment to the cells shown in Fig. 3
gives an optimal assignment because of the regular grid
structure. Since we need at most four different colors, at
most four pair-wise disjoint sets of time slots are sufficient
to schedule the whole network.

L EMMA 5. If Lφci
denote the load on the maximally loaded

frequency inci under mappingφ : Rci
→ {f1, . . . , fK}

achieved by algorithmFREQUENCYGREEDY, then any greedy
time slot assignment can schedule all the edges inci within
2 · Lφci

time slots.

Proof: Consider a multi-graphH = ({f1, . . . , fK}, E′),
where for each edgee = (vi, vi′ ), vi, vi′ ∈ Rci

with
φ(vi) 6= φ(vi′ ), we have an edge(φ(vi), φ(vi′ )) ∈ E′. Note
that these will be multi-edges; letn(fk, fk′) denote the number
of edges betweenfk andfk′ in H . Then,deg(fk) ≤ lφci

(fk),
where lφci

(fk) is the load onfk under φ in ci. By Ore’s
theorem [16], which generalizes Vizing’s theorem for edge
coloring on multi-graphs, it follows that the edges inH can be
colored usingmaxfk

{lφci
(fk)} colors. Therefore, all edges of

the forme = (vi, vi′) between two nodes inRci
with different

frequencies can be colored inmaxfk
{lφci

(fk)} = Lφci
colors.

All remaining edges either have only one end-point inRci
,

or have both end-points inRci
, with the same frequency; let

S(fk) denote the set of such edges with the end-point inRci
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assigned frequencyfk. Note that|S(fk)| ≤ lφci
(fk), and edges

e ∈ S(fk), e
′ ∈ S(fk′) can be assigned the same time slot

if fk 6= fk′ . So all the remaining edges can be scheduled
in maxfk

|S(fk)| ≤ maxfk
{lφci

(fk)} time slots. Therefore, all
edges inci can be scheduled within2·maxfk

{lφci
(fk)} = 2·Lφci

time slots, and the lemma follows.
We now prove our key approximation result on the optimal

schedule length.

THEOREM 4. Given a routing treeT on a UDGG andK
frequencies, there exists a greedy algorithmG that achieves a
constant factor8µα ·

(
4
3 − 1

3K

)
-approximation on the optimal

schedule length, whereµα > 0 is a constant for a given cell
sizeα ≥ 2.

Proof: Algorithm G consists of two phases. In the first
phase, we run FREQUENCYGREEDY to assign theK frequen-
cies to the receivers in each cell. In the second phase, we
greedily schedule amaximalnumber of edges on each time
slot. Let the schedule length ofG beΓG , and that of an optimal
algorithm beOPT .

Due to the presence of interfering links, there exists a
constantµα > 0, depending on the cell sizeα and the
deployment distribution, such that at mostµα edges in any
cell, whose receivers are on the same frequency, can be
scheduled simultaneously by an optimal algorithm.

Now, regardless of the assignment chosen by an optimal
strategy, it will take at leastLm

∗

ci
/µα time slots to schedule

the edges inci, becauseLm
∗

ci
is theminimumof themaximum

number of edges that are on the same frequency inci. Thus,
OPT ≥ Lm

∗

ci
/µα, ∀ci, ⇒ OPT ≥ maxci

{Lm
∗

ci
}/µα; so

max
ci

{Lm
∗

ci
} ≤ µα ·OPT (4)

By running FREQUENCYGREEDY in ci, Lemma 3 implies

Lφci
≤

(
4

3
−

1

3K

)
· Lm

∗

ci
(5)

and by scheduling a maximal number of edges in each time
slot, Lemma 5 implies|γi| ≤ 2 · Lφci

. Then, from Lemma 4:

ΓG ≤ 4 · max
ci

{|γi|}

≤ 8 · max
ci

{
Lφci

}

≤ 8 · max
ci

{(
4

3
−

1

3K

)
· Lm

∗

ci

}

≤ 8µα ·

(
4

3
−

1

3K

)
·OPT

B. Unknown Routing Topologies

In this subsection, we consider the scenario when the
routing topology is not known to the algorithm designer a
priori. Our goal is to find properties of a routing tree that
could still guarantee a constant factor approximation on the
optimal schedule length.

THEOREM 5. Given a network modeled as a UDG and
K frequencies, there exists an algorithmH that achieves
a constant factor8µα · ∆C -approximation on the optimal
schedule length so long as the maximum in-degree of any node
in the routing tree is bounded by a constant∆C > 0, where
µα > 0 is a constant for a given cell sizeα ≥ 2.

Proof: Let Vci
denote the set of nodes in cellci. We note

that the set of receivers in the tree depends on the routing
topology, but the total number of nodesVci

depends only on
the graph. Because an optimal algorithm can simultaneously
schedule at most a constant numberµα > 0 of nodes (edges)
in any ci whose parents are on the same frequency, the best
it could do withK frequencies is distributing the nodes in
Vci

evenlyamong all the frequencies so that⌈|Vci
|/K⌉ is the

minimumof the maximumnumber of nodes transmitting on
the same frequency. Thus,OPT ≥ ⌈|Vci

|/K⌉/µα, ∀ci, ⇒
OPT ≥ maxci

{⌈|Vci
|/K⌉}/µα; so

max
ci

{⌈|Vci
|/K⌉} ≤ µα ·OPT (6)

SupposeRci
(T ) = {v1, . . . , vn} denote the set of receivers

in ci on an arbitrary routing treeT , and suppose∆in(T ) be
the maximum in-degree of any node inT .

Define acyclic frequency assignmentunder mappingψ :
Rci

(T ) → {f1, . . . , fK} as follows:

ψ(vi) =

{
i mod K, if i 6= qK
K, if i = qK

(7)

whereq ∈ N
+ is a positive integer. It is easy to see that the

maximum number of receivers that are on the same frequency
is

⌈
|Rci

(T )|/K
⌉
. Therefore, the loadLψci

on the maximally
loaded frequency inci is bounded by:

Lψci
≤

⌈
|Rci

(T )|/K
⌉
· max
vj∈Rci

(T )

{
degin(vj)

}

≤ ⌈|Vci
|/K⌉ · ∆in(T ) (8)

The loadLφci
on the maximally loaded frequency produced

by FREQUENCYGREEDY cannot be more thanLψci
; thus

Lφci
≤ Lψci

≤ ⌈|Vci
|/K⌉ · ∆in(T ) (9)

Then, scheduling a maximal number of edges in each time slot
and using Lemma 4, Lemma 5 as before, and (9) it follows
that:

ΓH ≤ 8 · max
ci

{
⌈|Vci

|/K⌉ · ∆in(T )
}

(10)

Since|Vci
| and∆in(T ) are independent of each other, we can

take the maximum separately on the two terms as:

ΓH ≤ 8 · max
ci

{⌈|Vci
|/K⌉} · max

ci

{
∆in(T )

}

= 8 · max
ci

{⌈|Vci
|/K⌉} · ∆in(T )

≤ 8µα · ∆in(T ) ·OPT (11)

Thus, (11) implies that so long as the maximum in-degree
of a node inT is bounded by a constant∆C > 0, the theorem
holds. Although finding a degree-bounded spanning tree on a
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general graph is known to be NP-hard [10], for any UDG it
is always possible to find a spanning tree of degree at most
5 [19]. Therefore, the theorem follows.

V. A SSIGNMENT ONGENERAL DISK GRAPHS

In this section, we relax our assumption of nodes having
a uniform transmission range, and consider networks where
nodes could transmit at different power levels resulting indif-
ferent transmission ranges. Such networks could be modeled
as general disk graphs, where a directed edge from nodeu to v
exists if d(u, v) ≤ r(u), wherer(u) is the transmission range
of u. We consider only those edges that are bidirectional, i.e.,
bothr(u) andr(v) are greater than or equal to their Euclidean
distance.

For an edgee = (u, v), we use the convention thatu is the
transmitter andv is the receiver. The Euclidean length ofe
is denoted byl(e). Define I(e) as the set of edges that are
either adjacent toe or form a secondary interfering link with
e. Also, defineI≥(e) ⊆ I(e) as the subset of edges ofI(e)
whose end points have “larger” disks than those ofe, i.e.,

I≥(e) = {e′ = (u′, v′) : e′ ∈ I(e) and

max{r(u′), r(v′)} ≥ max{r(u), r(v)}}.

As before, we separate the two phases of frequency assign-
ment and time slot assignment. Our approach in the frequency
assignment phase is to assign the frequencies in such a way
that minimizes the maximum number of edges that interferes
with any given edge. Once this is done, we devise a time slot
assignment strategy that optimizes the schedule length.

We formulate the frequency assignment subproblem as a 0-
1 Integer Linear Program (ILP). Define the indicator variables
Xvk for edgee = (u, v) as follows:

Xvk =

{
1, if v is assigned frequencyfk
0, otherwise

A frequency assignment is therefore a 0-1 assignment to
the variablesXvk, ∀e = (u, v) ∈ ET , ∀fk. Furthermore, for
an edgee = (u, v) on frequencyfk, defineZek as the total
number of edges inI≥(e) that are also on frequencyfk. Thus,

Zek =
∑

e′=(u′,v′)∈I≥(e)

Xv′k =
∑

v′

n(e, v′)Xv′k,

wheren(e, v′) = |{e′ = (u′, v′) ∈ I≥(e) : ℓ(e′) ≥ ℓ(e)}|. If
we are given a frequency assignment~X, the following lemma
(based on [21], [22]) shows how the schedule length is related
to theZek ’s.

L EMMA 6. ( [21], [22]) Let Xvk andZek be as defined above.
Then,Ω(maxe,fk

{Zek}) is a lower bound on the length of any
schedule for the edges. Also, it is possible to schedule all the
edges usingmaxe,fk

{Zek} time slots.

Proof: (sketch) The lower bound directly follows
from [21], [22]. We briefly sketch a greedy scheduling algo-
rithm (also from [21], [22]), which implies the upper bound.
LetET = {e1, e2, . . . , en−1}, with the edges numbered so that
ℓ(e1) ≥ ℓ(e2) . . .. Our scheduling algorithm assigns a time

slot t(ei) for each edgeei in the following manner: consider
the edges in the ordere1, . . . , en−1, and for edgeei, assign
the smallest available time slott = t(ei) so that (i) for each
edgeej with j < i having the same receiver asei, we have
t(ei) 6= t(ej), and (ii) for eachej such thatei, ej ∈ EkT (i.e.,
they are assigned the same frequency), we havet(ei) 6= t(ej).
It can now be shown that the number of slots needed is at
mostmaxe,fk

{Zek}.
The above lemma implies that we should find a frequency

assignment that minimizesmaxe,fk
{Zek}. We formulate this

by the following ILP.

Minimize λ

subject to :

∀e = (u, v), ∀fk :
∑

v′

n(e, v′)Xvk ≤ λ (12)

∀e = (u, v) :
∑

fk

Xvk = 1, (13)

∀e = (u, v), ∀fk : Xvk ∈ {0, 1} (14)

The second constraint guarantees that each of the receivers
is assigned a single frequency. Since solving this ILP is NP-
hard, we first find the solution to the linear programming
(LP) relaxation of it, which is obtained by modifying the
third constraint to include fractional values for the indicator
variables asXvk ∈ [0, 1]. Let the optimum (fractional) values
for the indicator variablesXvk obtained by solving the LP
relaxation beX∗

vk, and letλ∗ be the corresponding objective
value. We now construct integral random variablesYvk by
rounding the fractional valuesX∗

vk in the following manner:
for eachv andfk, we chooseYvk = 1 with probabilityX∗

ik.
this rounding is done in a mutually exlusive manner, so that
for eachv, there is exactly one frequencyfk with Yvk = 1;
this can be done since

∑
kX

∗
vk = 1.

L EMMA 7. Let Yvk be the rounded solution, as described
above. Then,

max
e=(u,v),fk





∑

e′=(u′,v′)∈I≥(e)

Yv′k




 = O (∆(T ) logn · λ∗) ,

with probability at least1 − 1/n.

Proof: Because of our randomized rounding strategy,

E[Yik] = Pr[Yik = 1] = X∗
ik

Let Ẑek =
∑

e′=(u′,v′)∈I≥(e) Yv′k =
∑
v′ n(e, v′)Yv′k.

Therefore, by linearity of expectation,E[Ẑek] =∑
v′ n(e, v′)E[Yv′k] =

∑
v′ n(e, v′)X∗

vk ≤ λ∗. Next,
note that n(e, v′) ≤ ∆(T ) for any e, v′. Therefore, by
the weighted version of the Chernoff bound [23], it
follows that for any edgee and frequencyfk, we have
Pr[Ẑek ≥ λ∗∆(T ) logn] ≤ 1/n3. Since the number of
edges inT and the number of frequencies are bothO(n),
we havePr[maxe,k Ẑek ≥ λ∗∆(T ) logn] ≤

∑
e,k Pr[Ẑek ≥

λ∗∆(T ) logn]] ≤ 1/n, where the first inequality follows
from the union bound.
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The above rounded solution, along with the scheduling al-
gorithm from Lemma 6, leads to the following approximation
guarantee.

THEOREM 6. The schedule constructed by Lemma 6, along
with the frequency assignment using the above random-
ized rounding procedure results in a schedule of length
O(∆(T ) log n) times the optimum.

VI. EVALUATION

In this section, we evaluate the performance of our algo-
rithms through simulations on UDG. We generate connected
networks by randomly placing nodes in a square region of
maximum size200×200 unit2 and connecting any two nodes
that are at most25 units apart (scaled up for convenience).

A. Frequency Bounds

Fig. 4 compares the number of frequencies needed as a
function of density to remove all the secondary interfering
links on shortest path trees (SPT) as calculated from the
upper bound,∆(GC) + 1, and that from aLargest Degree
First (LDF) assignment (where a node is assigned the first
available frequency in non-increasing order of degrees). Here,
the number of nodesN is fixed at200 and the lengthl of the
square region is varied from200 to 20 so the densityd = N/l2

varies from0.005 to 0.5.
The trend shows that the number of frequencies initially

increases with density, reaches a peak, and then steadily
goes down to one. This happens because of two opposing
factors: as the density goes up, the parents link up with
more and more new nodes, thus increasing the number of
secondary interfering links; however, at the same time the
number of parents (on the SPT) gradually decreases because
the deployment region gets smaller in size. As we go right in
the graph, the latter effect starts dominating until the network
finally turns into a single hop network with the sink as the only
parent. We also observe that for sparser networks there is a
significant gap between the upper bound and the LDF scheme
as compared to that in denser networks. This is because in
sparser settings there are many parents, resulting in higher
∆(GC), and assigning a distinct frequency to the largest
degree parent according to LDF removes more interfering links
at every step than it does for denser settings when the parents
are fewer and have similar degrees.

B. Schedule Length

We evaluate the performance of our greedy algorithmG of
Theorem 4 forl = 200 on shortest path trees andMinimum
Interference Trees(MIT). We note that the constant factor
approximations in our algorithms depend on the parameterµα,
which decreases with decreasingα. However, the smallestα
for which Lemma 4 holds is 2. Thus, in our experiments we
choseα = 50, which is again scaled up 25 times, as is the
UDG. We do not present our evaluation results on general disk
graphs due to lack of space.
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Fig. 4. Number of frequencies required to remove all the secondary
interfering links as a function of network density for shortest path trees.
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Fig. 5. Schedule length of the greedy algorithmG with different network
sizes on shortest path trees;K is the number of frequencies.

1) Shortest Path Tree:Fig. 5 shows the schedule length of
G with different number of nodes on SPT for different number
of frequencies. We observe that multiple frequencies help in
reducing the schedule length, and this effect dominates with
increasing network size as the curve for single frequency and
those for multiple frequencies diverge from each other. We also
note that the schedule lengths with three or more frequencies
do not differ much, implying that for larger networks the
schedule length is constrained by the number of children any
receiver has rather than the number of secondary interfering
links.

2) Minimum Interference Tree:Since interference is one
of the limiting factors in minimizing the schedule length, we
study the performance of our approximation algorithms on
interference-optimal trees. We use an existing greedy algo-
rithm LIFE [4] to construct minimum interference spanning
trees. LIFE uses a particular interference model, in which the
outgoing edge interferenceIout(e) for an edgee = (u, v) is
defined as the number of nodes covered by the union of the
two disks centered atu and v, each of radius|uv|, where
|uv| denotes the Euclidean distance betweenu and v. The
interferenceIout(G) of a graphG is defined as the maximum
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Fig. 6. Schedule length of the greedy algorithmG on SPT and MIT for
different network sizes;K is the number of frequencies.

edge interference over all edges. The greedy strategy in LIFE

is to construct a minimum spanning tree with the weight of
an edgee equal toIout(e).

Fig. 6 shows the schedule length computed by algorithm
G on SPT with one frequency, and on MIT with one and
three frequencies, for different network sizes. As expected,
we observe a significant reduction in the schedule length for
larger networks on MIT. Comparing Fig. 5 and 6, we note
that the curve for MIT with even one frequency is lower
than those for SPT with multiple frequencies, implying that
interference-optimal trees can also give benefits similar to
multiple frequencies in terms of reducing the schedule length.
The increasing gain in larger networks is due to smaller
maximum node degree on MIT compared to that of SPT. For
this particular plot with one frequency, the average maximum
node degree on MIT is between 4 and 9, whereas on SPT it
is between 8 and 34, with more than 20 beyond 450 nodes.

VII. C ONCLUSIONS

We proved two NP-completeness results on the problem of
minimizing the schedule length for aggregated convergecast
and proposed algorithms that achieve constant factor approx-
imation on UDG and∆(T ) logn approximation on general
disk graphs. We also evaluated some of our algorithms through
simulations and showed various trends in performance for
different network parameters. Even though we considered a
graph-based network and interference model as opposed to
the SINR-based model [15] as a first step in this paper, the
results presented in [12] show that graph-based models provide
a decent approximation to SINR-model behavior. Studying
scheduling protocols utilizing multiple frequencies under the
SINR model remains as part of our future work. From the
simulation results, we observed that the schedule length im-
proved significantly for minimum interference trees; however
the trees are not guaranteed to be degree-bounded, which is
a necessary condition for Theorem 5 to hold. Exploring the
problem of constructing interference-optimal, degree-bounded
trees is also part of our future work.
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