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Abstract—Fast and periodic collection of aggregated data aggregated data from the various sources to the sink node as
is of considerable interest for mission-critical and conthuous aggregated convergecaft?].
monitoring applications in sensor networks. In the many-teone In this paper, we focus on thik scheduling problenof

communication paradigm known as convergecast, we consider Lo . .
scenarios where data packets are aggregated at each heproute maximizing the aggregated data collection rate at the sien

to a sink node along a tree-based routing topology and focusno Under the setting of TDMA protocols andultiple frequency
maximizing the data collection rate at the sink by employing channels The key challenge in designing efficient solutions

TDMA scheduling and multiple frequency channels. to such scheduling problems is the presence of wireless in-
Our key result in the paper lies in proving that minimizing  terference, which arises from concurrently transmittingles

the schedule length for anarbitrary network in the presence of . . . -
multiple frequencies is NP-hard, and in designing approxination that are in close proximity of each other. While there is a lot

algorithms with worst-case provable performance guarantes for Of research on single-channel scheduling protocol design f
geometric networks. In particular, we design a constant factor WSN, exploiting parallelism using multiple channels has$ no
approximation for networks modeled as unit disk graphs (UDG  been well explored. Moreover, given the fact that currentNVS
VOV?ZrFT)eK)er)rIL)ngderc?xailria?iolrjlniggrrm (:;aer:zlrmdsizil?n rzink?:'w?lr:aorlea hardware already provides multiple frequencies, such as th
nodes havgc;e diffeprgnt transmissiongranges,n is tﬁe Fr)lumber of 16 ortthon_al frequencies Wlt,h _SMHZ sp_acmg supportgd by
nodes in the network and A(T') is the maximum node degree CC2420 radios on TmoteSky, it is imperative to take their ad-
on a given routing tree . We also prove that a constant factor Vvantage in minimizing the interference and achieving aefast
approximation is achievable on UDG even forunknown routing data collection rate by concurrent transmissions. In aufdlit
LOSSL%gei?bsoal(éggr]]s?:n:h&énxgngmovc?ﬂ:t ?i?n%ﬁe tir?etzfintiﬁﬁnzs to multiple frequencies, we consider contention-free iplat
number of f):equencies réquired to remove all the ingterferirg links agcqss protocqls_ (e.g., TDMA) dug to, their inherent al:_nhty
in an arbitrary network in NP-hard. We give an upper bound on  €liminating collisions and retransmissions, and thuseachg
the maximum number of such frequencies required and propose better performance in periodic data collection scenari®s a
a polynomial time algorithm that minimizes the schedule legth  opposed to contention-based protocols [14].
u.nder this scenario. Fina[ly, we evalqate our algorithms though In our time slotted system, the duration of each slot is
ﬁg‘:\bﬁﬂoggrzwetﬂzw various trends in performance for diferent long enough to accommodate the successful transmission or
' reception of a single packet. We assume that packets are of th
same size, and equal numbers of consecutive slots are groupe
into non-overlapping frames that are repeated for periodic
Consider a large-scale wireless sensor network (WSKQheduling. We also assume that each node generates only
deployed for a continuous and periodic monitoring applicane packet in the beginning of every frame, and each node
tion, such as a security-surveillance network for monitgri has the ability to aggregate all the packets from its childre
facilities, or an environmental network for monitoringt@ral as well as its own into a single packet before transmitting
phenomena. The successful operation of such an applicatiorits parent. The classes of aggregation functions thhitrfal
depends on its ability to extract data from the network, Whiahis category includdistributiveandalgebraicfunctions [13],
often comprises periodic summaries or aggregates of rawhere the size of the aggregated data is constant (e.g., fits
sensor readings. It also requirest and periodic delivery of  within a single packet) and does not depend on the size of the
this aggregated data from the source nodes to a common si@kv measurements. Examples of such aggregation functions
Typically, the routing structure used for such data coitect are MIN, MAX, MEDIAN, COUNT, SUM, AVERAGE, etc.
is a spanning tree rooted at the sink. As the data flows up thikus, if every node continues to transmit only once during
routing tree, it is aggregated at each hop thereby, elinmgat each frame, then the sink will start receiving aggregated da
redundancy and minimizing the number of transmissions.[13fom all the nodes in the network after a certain time. This
We refer to this process of many-to-one communication &f when we say that the network has reachegigelined
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state. Note that, due to periodic scheduling, once a pipelinontrol policy, which minimized the total average transsiua
is established, the sink keeps receiving aggregated data frpower and support high data rates [6].
all the nodes once every frame. We call the number of timeIln the context of general ad hoc networks, the use of
slots in each frame thechedule lengthUnder this scenario, multiple channels has been well researched. To improve net-
maximizing the aggregated data collection rate at the siglen work throughput, Scet al. proposed a MAC protocol that
is equivalent to minimizing the schedule length. could switch channels dynamically and could avoid the hidde
We prove that minimizing the schedule length for an aterminal problem using temporal synchronization [18]. Ak}
bitrary network in the presence of multiple frequencies iayer protocol called SSCH was proposed by Behlal.
NP-hard and design approximation algorithms &obitrar-  that could increase the capacity of IEEE 802.11 networks by
ily deployedgeometricnetworks. In particular, we design autilizing frequency diversity [2]. In the context of WSN ete
constant factor approximation for networks modeled as umwikist fewer works utilizing multiple channels. The first il
disk graphs, where every node has a uniform transmissiffequency MAC protocol, MMSN, was proposed by Zheu
range, and a0 (A(T)logn)-approximation for general disk al. where the goal was to increase aggregated throughput [20].
graphs, where nodes could have different transmissioresang Most closely related is our previous work [12], in which
Here, n is the number of nodes in the network, add7’) we described a realistic simulation-based study on treeda
is the maximum node degree on a given routing ffeéVe data collection utilizing transmission power control, tiple
also prove that a constant factor approximation is achievalirequencies, and efficient routing topologies. It is showat t
on UDG even when the routing topology is unknown to thgnce all the interfering links are removed by use of multiple
algorithm designer a priori so long as the maximum in-degré@quencies, the data collection rate becomes limited ly th
of any node in the tree is bounded by a constant. We also sh@wiximum degree of the tree. We also showed that this rate can
that finding the minimum number of frequencies required farther be increased on degree-constrained trees. Ouenires
remove all the interfering links in an arbitrary network inwork is different from the rest in that we propose algorithms
NP-hard. We give an upper bound on the maximum numbgifid prove several important theoretical results on theeaggr
of such frequencies required and propose a polynomial tigated convergecast problem under multiple frequencies.
algorithm that minimizes the schedule length under this sce The rest of the paper is organized as follows. In Section I,
nario. Finally, we evaluate our algorithms through simola e describe our problem formulation and assumptions. In
and show various trends in performance for different nekwosection I11, we prove two complexity results on general dyap
parameters. for the aggregated convergecast problem. In Section IV, we
A. Related Work and Paper Overview focus on unit disk graphs and propose frequency anq time
slot assignment schemes that achieve constant factorxappro
The non-aggregated version of the convergecast probl@fation on the optimal schedule length. Section V focuses on
has been considered by Gandhamal. in the presence of general disk graphs. In Section VI we present our evaluation

a single channel and TDMA protocols, where the goal igsults, and finally Section VII concludes the paper.
to minimize the schedule length [9]. The authors describe

an integer linear programming formulation and propose a Il. PRELIMINARIES
distributed scheduling algorithm that requires at most
time slots for general networks, whereis the number of  In this paper, we are interested in designing link schegulin
nodes in the network. A similar study [5] is presented bprotocols that exhibit provably good performance anbi-
Choi et al. in which an NP-completeness result is provettarily deployed networks (possibly evemorst casg in the
on minimizing the schedule length under a single frequen&uclidean plane under multiple frequencies. We model the
for non-aggregated convergecast. Minimizing the scheduletwork as an undirected gragh= (V, E), whereV is the
length by using orthogonal codes or hopping sequencessgt of nodes and an edge= (u,v) € E exists between
get rid of interference is studied by Annamatdial, where any two nodes:,v € V' if they are within the communication
they consider assigning different time slots and code mair tange of each other. We are also given a fixed nodel” that
interfering links [1]. represents the sink, and a spanning tfee- (V, Er) rooted
The problem of joint scheduling, routing, and transmissioat s that serves as the routing topology. All the nodes except
power control to improve network throughput and interfesn s generate packets.
is studied by Bhatiat al. [3], and also by Bhaget al. [7]. A We assume that each node has a single, half-duplex
prominent recent work was by Moscibroda, in which scalinyansceiver, so it can either transmit or receive a singkea
laws describing the achievable rate for aggregated coavergt any given time slot. We also assume that transmissions on
cast in arbitrarily deployed networks were presented uttter orthogonal channels do not interfere with each other. Aigio
SINR (Signal-to-Interference-plus-Noise-Rgtinodel [15]. this assumption may fail in practice depending on adjacent
Worst-case capacity results were also proved by employiagd alternate channel rejection values for different types
non-linear power assignment to nodes and exploiting SINRansceivers, experimental results [12] presented byl Iate
effects. Cruzet al. used a duality based approach to addres$ show that the scheduling performance remains similar for
the problem of finding an optimal link scheduling and powe€C2420 and Nordic nrf905 radios.
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Frame 1 Frame 2 had only one frequency, the minimum schedule length is 5, as

Receiver| Slot 1 | Slot2 | Slot3 | Slot1 | Slot2 | Slot3 . .
1 R g s ¢ |ad | bef| cg | ad [bef shown in Fig. 1(d)-
. a d d
er1 N 1]e b e | f c I11. A SSIGNMENT ONGENERAL GRAPHS
. c

0q [

£ A. Scheduling With Unlimited Frequencies

From the illustration above, we see that assigning differen
frequencies to the receivers in an appropriate way can aétig
the effects of interference and shorten the schedule length
In this subsection, we first study the problem of finding the
minimum number of frequencies needed to remale the
secondary interfering links. We say that a secondary ieted
link is removed if the two receivers of an edge pair are
assigned different frequencies. Note that, primary ieterice
cannot be removed using multiple frequencies because Bf hal
Fig. 1. (a) Secondary interfering link. (c), (d) Aggregatahvergecast with duplex radios.

Fource nodes wih o requencies and & snge requeb)Pigelne Wi Minimum Frequency Assignment Given a tree on
an arbitrary graphG and an integey, is there a frequency

| f lati id ver-based f assignment to the receivers i using at mosy frequencies
N our formulation, we consider @Cever-based MeqUeNCy g o hat all the secondary interfering links are removed?
assignmenstrategy, i.e., we statically assign a frequency to

each of the receivers (non-leaf nodes) Bf Although in THEOREM 1. Minimum Frequency Assignment is NP-
practice, every sender-receiver pair could potentiallyatiate complete.

on a particular frequency before each packet transmission
assigning different frequencies to the transmitters that a
children of the same parent does not significantly help
reducing the schedule length. This is because the sin
transceiver radio cannot receive multiple packets simeka
ously. Moreover, pair-wise, per-packet frequency negotia
might create unnecessary overhead. Thus, the childreneof
same parent transmit on the parent’s frequency, and so a nbd@/MA 1. Construct a constraint graplt:c = (Vo, Ec)
operates on at most two frequencies. from the original graphG as follows. For each receiver (i.e.,

We assume a graph-based interference model (also caff@-leaf nodes) iz, create a node inic. Create an edge

the protocol mode), where the interference range of a node i@€tween two such nodesdiy. if their corresponding receivers
equal to its transmission range, and concurrent transomissi N G aré on two edges that form secondary interfering links.
on two edges:i, e € E interfere with each other if either Then, the numbek,,.. of frequencies that will remove all the

(i) they are adjacent, or (ii) both the receiversafande, Secondary interfering links is bounded by, < A(Go)+
are on the same frequency and at least one of the receivers i¥hereA(Go) is the maximum node degree dro.

within the communication range of the other transmittere Th Proof: Since we create an edge between every two nodes
first type of interference is known as theimary interference in . whenever their corresponding receivers Gh form
while the second type is known as thecondary interference 3 secondary interfering link, assigning different freqtien
as illustrated in Fig. 1(a). to every such receiver-pair i is equivalent to assigning

In Fig. 1(c) and 1(d), we illustrate aggregated converdgecatfferent colors to the adjacent nodes @. Thus, K,
and the advantages of using multiple frequencies on a nktw@s equal to the minimum of the number of colors needed to
of 7 source nodes. The dotted lines represent interferimg li vertex colorG¢, called itschromatic numbery(G¢). Since
and the solid lines represent tree edges. A number besidexdtr) < A(G) + 1, for arbitraryG, the lemma follows. ®
edge represents the time slot in which the edge is schedule®nce all the secondary interfering links are removed, the
to transmit. The entries in Fig. 1(b) list the source nodemfr problem of minimizing the schedule length @A reduces to
which data is received on the corresponding time slot. Ftitat on treeT'. In the following, we propose an algorithm,
example,s receives aggregated data frdme, and f in slot BFS-TIMESLOTASSIGNMENT (Algorithm 1), that runs in
3 starting from frame 1. In this case, it takes two frames ©(| E|?) time and minimizes the schedule length.
reach a pipelined state, because data frodoes not reach In each iteration (lines 2-6) of th8readth-First Search
in frame 1. Thus, from frame 2 onwardsteceives aggregated(BFS) time slot assignment, an edgés chosen in the BFS
data from all the nodes in the network once in every three tinoeder (starting from any node), and is assigned the minimum
slots; so the minimum schedule length is 3. Note that, thetime slot that is different from all its adjacent edges. Wever
may exist other assignments, suchfago a, ¢, ands, andf; such an assignment gives a minimum schedule length that is
to b also yielding the same schedule length. However, if weual to the maximum degre®(7") of 7.

The proof is by reduction from the Vertex Color problem
nd is omitted here due to lack of space. We now give an
per bound on the maximum number of frequencies required
“remove all the secondary interfering links and describe a
polynomial time algorithm that minimizes the schedule kng
ﬁ]nder this scenario.
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Algorithm 1 BFS-TIME SLOTASSIGNMENT DEFINITION 1. Two edges, ¢’ € E in a graphG = (V, E)

. Inﬁ_rt:g :75(‘; %T) are within distance 2 of each other if either they are adjdcen
. while E o] L

¢ — next edge fromEy in BFS order or both are incident on a common edge.

Assign mini time slot t ting adj traint . . .
E‘;s'?_n ng{rT;? 1me slot ta respeciing adjacency constrain A distance-2-edge-coloringf G requires that every two

. end while edges that are within distance 2 of each other have distinct
colors. The fewest such colors needed is called stieng
chromatic indexsx’(G), and finding it for general graphs is

THEOREM 2. Algorithm BFS-TIMESLOTASSIGNMENTON a known to be NP-hard [10]. It is easy to see that even when

tree T' gives a minimum schedule length equalX¢T). all the receivers inG are assigned the same frequency, the

minimum schedule length is no more thag'(G).

cuprwpE

Proof: The proof is by induction on. LetT* = (V*, E..)
denote the subtree @f in the ;*" iteration constructed in the LEMMA 2. The strong chromatic indexy’(7") of a treeT =
BFS order, wherd:i. comprises all the edges that are assignéd’, Er) is given by [8]:

a slot, andV/* comprises the set of nodes on which the edges
in Ei. are incident. Note that,E%.| = i, because at every sx'(T) = e {deg(u) + deg(v) — 1}
iteration exactly one edge is assigned a slot.#erl, clearly L

the number of slots used is equal toA(T?). . o .
Now, assume that the number of slal(i) needed to Multi-Frequency Scheduling: Given a treel’ on an arbi-

schedule the edges ifi‘ is A(T"). In the (i + 1) iteration, trary graphG, and two positive integers and g, is there an

after assigning a slot to the next edge in BFS order, the num S|gnmgnt of time slots to the edges]?nugng at mosy
of slots needed iff**+! can either remain the same as beforé'cdUeNCIes such that the schedule length is at st

or increase by one. Thus, THEOREM 3. Multi-Frequency Scheduling is NP-complete.

N(i41) = max {N (i), N(i) + 1} 1) Proof: It is easy to see that Multi-Frequency Scheduling
is in NP. Given a particular assignment, one can verify in
polynomial time that - (i) at most frequencies angd time slots

of T+1 at end of(i + 1)*" iteration. Otherwise, if it increases o . >
by one, the new edge must be incident on a nedezommon are used, (ii) either the receivers of every secondaryferieg
’ ink are assigned different frequencies or their edges are o

i i+1 o

:)On ?}St?hzt 3\,2?5 alréasat;cgst;\igtnghde an?irr:gesrl gtf ;??hdeeg;;%e%‘iﬁerent time slots, and (iii) all adjacent edges are offedént
iteration wasA (7). This is so because in the BFS tra\versaﬂme slots. ) i o

all the edges incident on a node are assigned a slot first beford® SNOW NP-hardness, we reduce an instatice- (V', £')
moving on to the next node, and because the slot assigne®td"e Vertex Color problem to an instance= (V. £) of the
the new edge is the minimum possible that is different from dY'Ulti-Frequency Scheduling problem, as illustrated with a
that already assigned to the edges incidentbmintil the it example in Fig. 2. Our gadgets for reduction are as follows.
iteration. Thus, at the end ¢f+ 1) iteration, the number of ~ L&t[V'| = n. For every vertex; € V', create a sef; of ¢
slots usedV (i) + 1 is equal to the number of assigned edgeirs of nodes (uis, vis) : s =1,...,q} in G, and join each
incident onv* which, in turn, equals\(7%t1). This proves P& with an edge:;,, treatingu;, as the parent ob;,. Then,

the inductive step. Therefore, it holds at every iteratibthe create(5) = ¢q(¢ — 1)/2 secondary interfering links between
algorithm until the end when= |V| — 2, yielding a schedule all such pairs in eacls; as follows. Consider eachy in turn,

If it remains the samely (i+1) is still the maximum degree

length equal to the maximum degre®(7) = A(T|V|71)_ fors=1,.. 4= 1, and create an edge from; to v;;, for

Now, since assigning different time slots to the adjacegeed !l > s (see Fig. 2(b) foy = 2).

in 7' is equivalent to edge coloring, which requires at least Next, for every edgee;; = (vi,v;) € E', create ¢

A(T) colors, the schedule length is minimum. m secondary interfering links id/ by considering the two sets:
Si = {(uis,vis) : s = 1,...,¢} and S; = {(ujs,v5s) :

B. Scheduling With Limited Number of Frequencies s =1,...,q}, and creating an edge from eaal to each

We showed that with sufficient number of frequencies, all;;. Then, for eachS;, construct a binary tre€} creating
the secondary interfering links can be removed and a minimwadditional nodes and edges, and treating thg sgt of nodes
length schedule can be found in polynomial time. Howeveas leaves, fos =1, ..., q.
typically there is a limitation on the number of frequencies Finally, treating the roots of}’s as leaves, create a binary
over which a given transceiver can operate. In this sulm®ctitree on top of it, and designate the root of it as the sink
we study the problem of minimizing the schedule length ofhe reduction clearly runs in polynomial time and creates an
an arbitrary graph when a limited number of frequencigsstance of the Multi-Frequency Scheduling problem. Next,
are available Nlulti-Frequency Schedulingroblem). First, we show that there exists a solution to the Vertex Color problem
state a known result in Lemma 2 alistance-2-edge-coloring using at mosp colors if and only if there exists an assignment
(also calledstrong edge coloringon trees that we use in thein 7" using at mosy frequencies and at mogtplus a constant
proof of one of our key results in Theorem 3. number of time slots.
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Select those edges if;; whose corresponding vertices are
unassigned, and assign colorto all of them. Repeat the
above assignment for all the frequencijgsfor s =1,...,q.
Clearly, this uses at mogtcolors and assigns different colors
to adjacent vertices. Also, because we run the above proeedu
over all frequencies and over all time slots, and select an
edge fromE, only if its corresponding vertex is unassigned,
exactly one edge gets picked from eagh Therefore, every
node inG’ gets a proper color, and the theorem follows

IV. ASSIGNMENT ONUNIT DISk GRAPHS

In this section, we consider networks that are modeled as
unit disk graphs and design approximation algorithms on the
optimal schedule length.

We first consider the scenario when the routing topology
is known a priori. In the next subsection, we consider the
case when the routing topology is unknown to the algorithm
designer. The significance of the latter is that an optimal
algorithm can then choose any arbitrary routing tree to min-
imize the schedule length, while the goal of the algorithm
Fig. 2. Reduction for Multi-Frequency Scheduling: (a) &mste G’ of the designer will be to construct good routing topology such

vertex color problem. (b) Gadget for each in G’ for ¢ = 2. (c) Instance that scheduling on top of it would still guarantee provably
G of Multi-Frequency Scheduling as constructed fré# for ¢ = 2. good performance bounds.

A. Known Routing Topology

Suppose’’ is vertex colorable using at mogtcolors, and  We divide the area covering all the nodes into a set of grid
v; is assigned colo¥. First, assign frequencys to u;s, for  cells {c;}, each of sizex x «, as illustrated in Fig. 3. Under a
s = 1,..,q, in eachS;, and any one of thg frequencies, UDG model, there exists an edge between any two nodes that
say f1, to all the parents in the rest of tree (see Fig. 2(C)are at most a unit distance apart from each other. We say that
Then, assign time slatto all theq edges connecting the pairstwo cells areadjacentto each other if they share a common
(uis, vis), for s = 1, ..., ¢, in eachS;. Because all the receiversedge or a common grid point. We say that an edgbelongs
in S; are on different frequencies, assigning the same time sfgta cell ¢; if the receiver ofe;, lies within ¢;. Thus, a cell
to all the edges inS; does not create secondary interferingan have 3, 5, or 8 adjacent cells depending on whether it is a
links within eachS;. Also, since only non-adjacent verticesorner cell, an edge cell, or an interior cell, respectivBince
in G’ may have the same color, any two sets of ed§es the interfering links are of length at most one, interfeeeis
and S; that are on the same time slot cannot have secondgpatially restricted, and so time slots can be reused acediss
interfering links between each other. that are spatially well separated.

Next, the lowest level edges, which connect to the,} In our approach to design an approximation algorithm for
nodes, of all the binary treég’, Vi, can be scheduled using atminimizing the schedule length, we separate the frequendy a
most2 time slots, because all the edges in e8chre assigned time slot assignment phases. We first assign the frequencies
the same slot. Finally, all the remaining edges in the binaty the receivers ifl" such that the maximum number of nodes
tree can be scheduled in polynomial time because a distangansmitting on the same frequency is minimized. Then, we
2-edge-coloring on trees can be computed in polynomiainploy a greedy time slot assignment scheme that guarantees
time [17], and within number of time slots no more than ita constant approximation factor.

strong chromatic index which, from Lemma 2, equals at most1) Frequency Assignmentet R., = {v1,...,v,} denote
5. the set of receivers on the given routing tréethat lie in
Conversely, suppose there exists a valid assignmeid incell ¢;, and letm : R., — {f1,..., fx} be a mapping that

that uses at most frequencies and at mogtplus a constant assigns a frequency to each of these receivers. Note that if
number of time slots. Assign colors to the verticesGhas m(v;) = fx, then the children ob; transmit onf;.
follows. For each frequency, consider the set of edges

Bt {(u.ts’vts)}’ Wh'Ch are aSS|g.ned time slat for ment in ¢; as an assignment of th& frequencies to the
t=1,...,p, in order. Since the edges i, are on the same . . .
. ; receivers inR., such that the maximum number of nodes
slot and their receivers are on the same frequency, theyotany o ‘ L
) . . transmitting on the same frequency is minimized.
form secondary interfering links, and so each one of them
must lie in a differentS;. Therefore, each edge if;; has To formulate this, we define thiwad on frequencyf; in

a corresponding vertex i6y’, no two of which are adjacent. cell ¢; under mappingn as the total number of children of

DEFINITION 2. We define a load-balanced frequency assign-
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equivalent to minimizing the makespan over all the machines
—> Corner cell Under this mapping, REQUENCYGREEDY is identical to

”" ') " " M " &dge cell Graham.’s Iist. scheduling allgorithm accor_ding to4 Itumlgest
; ; ?Interl’orcell Processing TiméLPT) [11] first, which achieves & — 517)-
O o050 approximation on the minimum makespan. Therefore, the
73 4 73 4 73 " lemma follows. m

2) Time Slot Assignmen©nce the receivers in each cell
are assigned frequencies according to algorittREGUENCY
241 L6} " &) 41 % GREEDY, we employ a greedy time slot assignment scheme
for the whole network. The following lemmas follow from

greedily scheduling anaximalnumber of edges in each time
Y3 Y4 Y3 Y4 73 V4 S|Ot

—r

. S _ LEMMA 4. Let v; denote the set of time slots needed to
Fig. 3. Four pair-wise disjoint sets of time slofs, 72, 73, 74 schedule the schedule all the edges in cell. Then, the minimum schedule
whole network. Each set maps to a distinct color. ) 2

length I" for the whole network is bounded by: < 4 -

all the receivers ink,, that are assignedl,, and denote it by mc?x{|%'|} Vo > 2.

1¢!(fx). We call the number of children of; its in-degree Proof: Since in a UDG the distance between any two

and denote it byleg™" (v;). Thus, adjacent nodes is at most one, two edges that belong to
m in non-adjacent cells must have their transmitters at least tw
W)=Y deg™(v) (2) J

hops away from the receiver of the other, for any> 2.

Therefore, two such edges can be scheduled on the same time

Then, a load-balanced frequency assignmeftin c; is: slot regardless of their receiver frequencies, sucke;aand

e4 In Fig 3. Thus, the set; of time slots needed to schedule

all the edges irc; can be reused in any other cell that is

We denote the load on the maximally loaded frequency undwe?n-gdjacent t@;, for anyo = 2. This is equivalent to vertex
coloring a graph in which each node represents a cell and

m* in ¢; by L . Finding a load-balanced frequency assign ? . .
i Y e, 9 . q y assig Ao edge exists between any two nodes if the corresponding
ment is equivalent to, as shown in Lemma 3, scheduling jobs . o
. . . L N cells are adjacent to each other; the colors representyisar-
on identical machines to minimize theakespailast finishing =" .. .

disjoint sets of time slots.

time of th_e given ]Obs)’.Wh'Ch 'S knc_)wn to be NP-hard [11]. In Although vertex coloring an arbitrary graph is NP-hard [10]
the following, we describe an algorithnrREQUENCYGREEDY . . I
. : 4 1 L the particular color assignment to the cells shown in Fig. 3
(Algorithm 2) that achieves @— — —)—apprOX|mat|on onthe . . . .
X 3 3K gives an optimal assignment because of the regular grid
optimal load. : .
structure. Since we need at most four different colors, at
most four pair-wise disjoint sets of time slots are suffitien
to schedule the whole network. [ ]

vi€Rc, m(vj)=f

m* = argmin n}ax {07 (fe) } 3

Algorithm 2 FREQUENCYGREEDY
1. In each celle;, do the following:

2. Sort the nodes iR, in non-increasing order of their in-degrees. Let thi gpma 5. If Lff, denote the load on the maximally loaded
order be:deg'™(v1) > deg"™(v2) > ... > deg"™(vn) Lo d . "R

3. Starting from vy, assign each successive node a frequency froiﬁeq.uency Ine; ur? er mappingg : Re, — {f1,..., [k}
{f1,..., fx } that has thdeastload on it so far, breaking ties arbitrarily. achieved by algorithn(FREQUENCYGREEDY, then any greedy

time slot assignment can schedule all the edges; iwithin
2- L% time slots.

Proof: Consider a multi-graptf = ({f1,..., fx}, F'),

LeEMMA 3. The algorithmFREQUENCYGREEDY in each cell
¢; gives a(3 — - )-approximation onZ?"".

3 3 where for each edge = (v,v), vi,viy € R, with
Proof: Consider a job scheduling problem witi iden- ¢(v;) # ¢(v;/), we have an edgép(v;), ¢(vi)) € E'. Note
tical machinesm,, ..., mg, andn jobs 1,...,n. Executing that these will be multi-edges; let fx, fx) denote the number

a job j on any machine takes timg > 0. Thus, if U(k) of edges betweerf, and f,, in H. Then,deg(fi) <12 (fx),
denote the set of jobs assigned to maching, then the where(? (f;) is the load onf) under¢ in ¢;. By Ore’s
total time m;, takes is} .y, ¢;, and the makespan istheorem [16], which generalizes Vizing's theorem for edge
maxi<p<i{)_;cy( ¢} The objective is to find an assign-coloring on multi-graphs, it follows that the edgesfincan be
ment of the jobs to the machines that minimizes the makespaolored usingmaxj, {I (f»)} colors. Therefore, all edges of
In our load-balanced frequency assignment formulation, wee forme = (v;, v;/) between two nodes iR., with different
map each receiven; € R, to job j, and the in-degree frequencies can be colored inaxy, {I¢ (fx)} = L¢ colors.
deg™(v;) to t;. Map each frequency to machinem;. The All remaining edges either have only one end-poinfip,
load on f; is therefore equal to the total time:y. takes. or have both end-points iR.,, with the same frequency; let

Thus, minimizing the maximum load over all the frequencées iS(f;) denote the set of such edges with the end-poinkin
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assigned frequency,. Note that|.S(fx)| < 12 (fx), and edges THEOREM 5. Given a network modeled as a UDG and
e € S(fr),e € S(fir) can be assigned the same time slok frequencies, there exists an algorith that achieves
if fr # fiw. So all the remaining edges can be scheduled constant factor8u, - Ac-approximation on the optimal
in maxy, |S(f,)| < maxy, {I2 (fx)} time slots. Therefore, all schedule length so long as the maximum in-degree of any node
edges in;; can be scheduled withivmaxy, {12 (fx)} = 2-L  in the routing tree is bounded by a constakt: > 0, where
time slots, and the lemma follows. B ., > 0is a constant for a given cell size > 2.
We now prove our key approximation result on the optimal

Proof: Let V... denote the set of nodes in cejl We note
schedule length. ‘

that the set of receivers in the tree depends on the routing
THEOREM 4. Given a routing treel’ on a UDG G and K topology, but the total number of nodés, depends only on
frequencies, there exists a greedy algoritfnthat achieves a the graph. Because an optimal algorithm can simultaneously
constant facto8,, - (% — %)-approximation on the optimal schedule at most a constant numpgr> 0 of nodes (edges)
schedule length, where, > 0 is a constant for a given cell in any ¢; whose parents are on the same frequency, the best
sizea > 2. it could do with K frequencies is distributing the nodes in
V., evenlyamong all the frequencies so thav,|/ K| is the

tmlnlmumof the maximumnumber of nodes transmitting on

phase, we run REQUENCYGREEDY to assign thek frequen- the same frequency. ThUQPT > [|Vi|/K]/pta, Vei, =

cies to the receivers in each cell. In the second phase,
greedily schedule anaximalnumber of edges on each timeW?DT Z maxe, {[[Vei |/ K1}/ 1ai S0
slot. Let the schedule length gfbeT'¢, and that of an optimal max {[|V¢,|/K1} < po. - OPT (6)
algorithm beOPT. “
Due to the presence of interfering links, there exists a SUPPOSER., (T') = {v1,...,v,} denote the set of receivers

constanti, > 0, depending on the cell size and the N ¢; on an arbitrary routing tred, and supposé\’™”(T’) be
deployment distribution, such that at mqst edges in any the m_aX|mum ”_1 degree of any r_10d97h _
cell, whose receivers are on the same frequency, can b@efme acyclic frequency assignmeninder mapping) :

scheduled simultaneously by an optimal algorithm. R (T) — {f1,..., fx} as follows:
Now, regardless of the assignment chosen by an optimal i mod K, if i qK
strategy, it will take at leasLy" /. time slots to schedule Y(vi) = { K, if i K )

the edges ir;, becauseLm is theminimumof the maximum L S )
number of edges that are on the same frequenczy imhus, Whereq € N™ is a positive integer. It is easy to see that the

OPT > L™ /s, Yei, = OPT > maxe, {L™ }/jia; SO maximum number of receivers that are on the same frequency
' is [|Rc,(T)|/K . Therefore, the load.¥ on the maximally
max{LZj*} < pio - OPT (4) loaded frequency im; is bounded by:
' ¥ . ing,
By running REQUENCYGREEDY in ¢;, Lemma 3 implies Le, < HRCT‘(TWK] vjer?%iX(T) {deg (UJ)}
. < . AT 8
Lé’ié(é—i)LZ 5) < I | (T) 8)
3 3K The IoadL¢ on the maximally loaded frequency produced
and by scheduling a maximal number of edges in each tirl¥ I:REQUENCYGREEDY cannot be more thah? ; thus
slot, Lemma 5 impliedy;| < 2- L¢ . Then, from Lemma 4: L? < LY < [|Va|/K]-A™(T) ©)
g < 4 H}f}x{m” Then, scheduling a maximal number of edges in each time slot
< 3. max{L¢} and using Lemma 4, Lemma 5 as before, and (9) it follows
- c that:
< some{ (5 g5 ) 2} P < 8 max {[|Ve, |/ K] - A™(T)) (10)
< Sia (é - L) OPT e A™(T) are independent of each other, we can
3 3K take the maximum separately on the two terms as:
= Ty < 8 max{[|Vi,|/K]} - max {A™(T)}
B. Unknown Routing Topologies = 8-max{[|V,, - A™(T)
In this subsection, we consider the scenario when the < 8jua-A™(T).OPT (11)

routing topology is not known to the algorithm designer a
priori. Our goal is to find properties of a routing tree that Thus, (11) implies that so long as the maximum in-degree
could still guarantee a constant factor approximation an tlof a node in7" is bounded by a constatk~ > 0, the theorem

optimal schedule length. holds. Although finding a degree-bounded spanning tree on a
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general graph is known to be NP-hard [10], for any UDG #lot ¢(¢;) for each edge; in the following manner: consider
is always possible to find a spanning tree of degree at méis¢ edges in the order,...,e,_1, and for edgee;, assign
5 [19]. Therefore, the theorem follows. B the smallest available time slot= ¢(e;) so that (i) for each
edgee; with j < ¢ having the same receiver ag we have
. . _ t(e;) # t(e;), and (i) for eache; such thate;, e; € EX (i.e.,

In this section, we relax our assumption of nodes havn]gey are assigned the same frequency), we have # t(e;).
a uniform transmission range, and consider networks whetean now be shown that the number of slots needed is at
nodes could transmit at different power levels resultingifa mostmax,, s, { Zex }- m
ferent transmission ranges. Such networks could be modeledhe ahove lemma implies that we should find a frequency

as general disk graphs, where a directed edge fromndde  assignment that minimizesax., ;, { Z..}. We formulate this
exists ifd(u,v) < r(u), wherer(u) is the transmission rangepy the following ILP.

of u. We consider only those edges that are bidirectional, i.e.,

V. ASSIGNMENT ONGENERAL DIsk GRAPHS

bothr(u) andr(v) are greater than or equal to their Euclidean Minimize A
distance. subject to :
For an edge: = (u,v), we use the convention thatis the Ve = (u,0),Vfi Z”(e V)Xo < A (12)

transmitter andv is the receiver. The Euclidean length of

is denoted byi(e). Define I(e) as the set of edges that are B . - B

either adjacent te or form a secondary interfering link with ve=(uv) ;X”k =1 (13)
. Also, definer cI th bset of ed (il -

e. Also, definels(e) C I(e) as the subset of edges &fe) Ve = (o) Ve : Xow € {0,1} (14)

whose end points have “larger” disks than thoseofe.,
I-(e) = {¢'=(u\v'):¢ elI(e) and . The_ second qonstraint guarante_es that e_ach o_f the r(_aceivers
= , , is assigned a single frequency. Since solving this ILP is NP-
max{r(u’),r(v')} = max{r(u),r(v)}}. hard, we first find the solution to the linear programming
As before, we separate the two phases of frequency assi}f?) relaxation of it, which is obtained by modifying the
ment and time slot assignment. Our approach in the frequer@ifd constraint to include fractional values for the iratior
assignment phase is to assign the frequencies in such a wagjables asX,; € [0, 1]. Let the optimum (fractional) values
that minimizes the maximum number of edges that interferf the indicator variablesY, obtained by solving the LP
with any given edge. Once this is done, we devise a time sfglaxation beX7,, and letA* be the corresponding objective
assignment strategy that optimizes the schedule length. value. We now construct integral random variablés by
We formulate the frequency assignment subproblem as argunding the fractional valueX’y, in the following manner:

1 Integer Linear Program (ILP). Define the indicator varabl for eachv and f, we chooseY,, = 1 with probability X .
X, for edgee = (u,v) as follows: this rounding is done in a mutually exlusive manner, so that

for eachw, there is exactly one frequendy, with Y, = 1;

1, if v is assigned frequency this can be done sincg), X7, = 1.

Kok = { 0, otherwise

. . . I.[EMMA 7. Let Y, be the rounded solution, as described
A frequency assignment is therefore a 0-1 assignment Bove. Then
the variablesX,, Ve = (u,v) € Ep, Vfi. Furthermore, for ' ’

an edgee = (u,v) on frequencyfy, defineZ., as the total
number of edges iti- (¢) that are also on frequendf. Thus, max > Yy p = O (A(T)logn - \"),
_ e=(u0), fi e/=(u'w)els (e)
Ze = X’U’ = I /X’U/ I . aqe 7 B
g e,_(u,;eb(e) g ;n(e )Xok with probability at leastl — 1/n.

wheren(e,v') = [{e/ = (u/,v) € Is(e) : £(e') > £(e)}]. If Proof: Because of our randomized rounding strategy,

we are given a frequency assignméﬁtthe following Iemma E[Yi] = Pr[Yix = 1] = X},

(based on [21], [22]) shows how the schedule length is relate . )

to the Z.'s. Let Z, = Ze/:(u’,v/)elz(e) Yor = >y ”(fv’U Yok
, Therefore, by linearity of expectation,F[Z.,] =

LEMMA 6. ([21], [22]) Let X, and Z.; be as defined above.zv/ n(e,\EYur] = Y, n(e,v)X7, < M. Next,

Then,Q(max., 5, {Z.r}) is a lower bound on the length of any
schedule for the edges. Also, it is possible to scheduléall
edges usingnax. r, {Zex} time slots.

note thatn(e,v’) < A(T) for any e,v’. Therefore, by
tthe weighted version of the Chernoff bound [23], it
follows that for any edgee and frequencyfy, we have
Proof: (sketch) The lower bound directly follows Pr[Z.. > M*A(T)logn] < 1/n3. Since the number of
from [21], [22]. We briefly sketch a greedy scheduling algcedges in7" and the number of frequencies are bd#n),
rithm (also from [21], [22]), which implies the upper boundwe havePr[max, i Zex > N*A(T)logn] < 3°_\ Pr{Ze, >
Let Er = {ey,ea,...,e,—1}, wWith the edges numbered so thah*A(T") logn]] < 1/n, where the first inequality follows
l(e1) > L(e2).... Our scheduling algorithm assigns a timérom the union bound. [ |
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The above rounded solution, along with the scheduling al- 25 —o- LagestDegreefirst |

- c

gorithm from Lemma 6, leads to the following approximation
guarantee.

N
o
T

THEOREM 6. The schedule constructed by Lemma 6, along
with the frequency assignment using the above random-
ized rounding procedure results in a schedule of length
O(A(T)logn) times the optimum.

Number of frequencies

V1. EVALUATION

In this section, we evaluate the performance of our algo-
rithms through simulations on UDG. We generate connected S
networks by randomly placing nodes in a square region of 0 005 01 015 02 025 03 035 04 045 05
maximum size200 x 200 unit? and connecting any two nodes_ Density

. . ig. 4. Number of frequencies required to remove all the iséany
that are at mose5 units apart (Scaled up for Convemence)' interfering links as a function of network density for skestt path trees.

A. Frequency Bounds 55

t

XXX X||

Fig. 4 compares the number of frequencies needed as a 501
function of density to remove all the secondary interfering pal
links on shortest path trees (SPT) as calculated from the
upper bound A(G¢) + 1, and that from alLargest Degree
First (LDF) assignment (where a node is assigned the first
available frequency in non-increasing order of degreesjeH
the number of noded' is fixed at200 and the length of the
square region is varied fro00 to 20 so the densityl = N/I> 200
varies from0.005 to 0.5. 15l

The trend shows that the number of frequencies initially
increases with density, reaches a peak, and then steadily ‘ ‘ ‘ ‘ ‘ ‘
goes down to one. This happens because of two opposing foo 200 30 400 500 60 700 800
factors: as the density goes up, the parents link up with Number of nodes
more and more n,eW nOdeS’ thus Increasing the nu_mberF%f. 5. Schedule length of the greedy algoritimwith different network
secondary interfering links; however, at the same time tRges on shortest path trees: is the number of frequencies.
number of parents (on the SPT) gradually decreases because
the deployment region gets smaller in size. As we go right in 1) shortest Path TreeFig. 5 shows the schedule length of
the graph, the latter effect starts dominating until thevoek  ; \yith different number of nodes on SPT for different number
finally turns into a single hop network with the sink as theyonllof frequencies. We observe that multiple frequencies help i
parent. We also observe that for sparser networks there iggycing the schedule length, and this effect dominatels wit
significant gap between the upper bound and the LDF schefRgreasing network size as the curve for single frequendy an
as compared to that in denser networks. This is becauseygse for multiple frequencies diverge from each other. 18 a
sparser settings there are many parents, resulting in highgte that the schedule lengths with three or more frequencie
A(Ge), and assigning a distinct frequency to the largegly not differ much, implying that for larger networks the
degree parent according to LDF removes more interferinglingchedule length is constrained by the number of children any

at every step than it does for denser settings when the sar@teiver has rather than the number of secondary integferin
are fewer and have similar degrees. links.

L L L |
abhwWNE

o

401

351

301

251

Schedule length

2) Minimum Interference TreeSince interference is one
B. Schedule Length of the limiting factors in minimizing the schedule lengthe w
We evaluate the performance of our greedy algorithmf study the performance of our approximation algorithms on
Theorem 4 forl = 200 on shortest path trees amdinimum interference-optimal trees. We use an existing greedy-algo
Interference TreegMIT). We note that the constant factorrithm LIFE [4] to construct minimum interference spanning
approximations in our algorithms depend on the parameter trees. LFE uses a particular interference model, in which the
which decreases with decreasing However, the smallest outgoing edge interferencg,,:(e) for an edgee = (u,v) is
for which Lemma 4 holds is 2. Thus, in our experiments weefined as the number of nodes covered by the union of the
chosea = 50, which is again scaled up 25 times, as is thievo disks centered at and v, each of radiuguv|, where
UDG. We do not present our evaluation results on general disky| denotes the Euclidean distance betweemand v. The
graphs due to lack of space. interferencel,,.(G) of a graphG is defined as the maximum
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