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Abstract

Contour mapping is an important technique for Wireless
Sensor Networks (WSNs) in environmental monitoring to
abstract the information of a monitored field. State-of-the-
art approaches for contour mapping, however, are neither
energy-optimized, nor capable of handling heterogeneous
user requests. In this paper, we develop a novel energy-
efficient On-demand Active Contour Service (OACS) for
power-constrained WSNs. OACS regresses the field inten-
sity function with kernel Support Vector Regression (SVR), a
novel machine learning tool that flexibly handles both con-
tour line and contour map requests. OACS also adaptively
accommodates a wide range of contour line/map precision
requirements: (1) For applications of low precision, only a
minimum set of nodes are scheduled in working mode while
others are sleeping for conserving energy. (2) For appli-
cations of high precision, through an active and progres-
sive learning algorithm, OACS determines the best set of
nodes that should be turned on for improving the contour
line/map precision. Evaluation based on diverse realistic
models demonstrates that OACS provides quality and seam-
less contour services for various application requirements
yet significantly conserves energy.

1. Introduction

In-situ sensing with wireless sensor networks (WSNs) is
a promising technique for environmental monitoring appli-
cations [1, 22]. In these applications, the major task of a
WSN is to measure, process, and convey the sensor data to
a data sink so that the sink can reconstruct the information
of a scalar field of interest, e.g., the temperature distribu-
tion throughout a monitored space, or the boundary where
the concentration of a toxic gas reaches a dangerous level.
Since such a field is continuous in nature, contour mapping
turns out to be a natural and necessary service: Based on
the in-situ sensor readings, the sinks of WSNs can construct
contour lines or contour maps to present the information of
the scalar fields. A contour line is a line along which the

intensity of the field is a constant value. The value is hence
called the value of the contour line. A contour map is a map
illustrated with a set of such contour lines.

Contour mapping has long been recognized as an impor-
tant approach for WSN applications [18], e.g., to locate and
monitor an event of interest [31] and to capture the WSN
system life conditions such as the energy levels of the nodes
[33]. It can also provide instant and user-friendly visualiza-
tion of the scalar field of interest [17, 30].

One challenge faced by contour mapping in WSNs is
how to handle diverse contour requests from users. A user
may request a single contour line to obtain the information
of a boundary, or request a contour map to obtain the in-
formation of the entire field of interest. Moreover, the user
may also have different requirements on the precision of a
contour line/map. For example, he/she may be interested in
observing more details of the field when a particular event
takes place and hence may require the network to produce a
finer map. However, a contour service that can handle such
diverse user requests with energy-efficiency is still at large
in the current state of the art.

The existing contour mapping approaches are generally
optimized for either contour line (e.g., [17, 25, 30]) or con-
tour map (e.g., [18, 23]) requests, but not for both. More
importantly, they largely ignore the fact that the users may
have different requirements on the precision of a contour
line/map. Their focus is to minimize the number of pack-
ets that should be reported to the sink for achieving energy
efficiency. They generally require each in-network node to
sense the environmental data of interest, although the sensor
readings are processed in the network and some are possi-
bly suppressed. As a result, they are essentially best-effort
approaches and lack a scheme for tuning the precision of
the line/map by controlling the number of working nodes
[9, 17, 18, 25, 30]. Such precision tuning, however, is not
just a marginal service consideration, but very crucial for
energy saving. With such a scheme, we can put some in-
network nodes into sleeping mode and thus save more en-
ergy when low precision is acceptable.

To address this critical challenge, we develop a novel
energy-efficient contour service, namely, On-demand Ac-
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tive Contour Service (OACS), for WSNs to seamlessly han-
dle diverse user requests. OACS first divides the network
area into clusters. It then regresses a field intensity function
in each cluster by taking sensor readings with sensor loca-
tions as input samples. This provides the flexibility to han-
dle contour line and contour map requests adaptively. For a
contour line request, what we focus is to let the regression
result accurately represent the reality in the area around the
contour line. Hence, only the sensor readings close to the
contour line value are required for the regression. Whereas
for contour map requests, since the contour lines of interest
are spreading throughout the network area, the regression
result is important at everywhere of the network. Hence
more sensor readings can be involved in the regression.

To deal with different requirements on contour line/map
precision, OACS initially requires only a minimum set of
nodes on duty while putting the rest in sleeping mode.
According to the precision requirement, OACS then pro-
gressively activates sleeping nodes to enhance the preci-
sion expected by the users. To this end, it incorporates a
comprehensive set of selection algorithms for the nodes-
to-be-activated, which are enlightened by the recent ad-
vances in active learning [28]. This novel two-step design
of OACS seamlessly accommodates request diversity yet
significantly conserves energy.

The rest of this paper is organized as follows. Section 2
studies the related work. In Section 3, we provide a system-
level overview of our contour service. Section 4 analyzes
the contour mapping problem and a two-step regression ap-
proach is illustrated. Section 5 reports the performance
study results and Section 6 provides the conclusion remarks.

2. Related Work

Contour mapping has long been studied by geography
and geology researchers [6, 8], where their concern is
mainly on how to generate a contour map with all data at
hand. A straightforward application to WSNs is that the
sink collects all individual sensor readings and then builds
the map centrally (e.g., with linear interpolation such as
Kriging [15]). Such an approach, although simple, incurs
too much energy consumption as every node has to sense
and report data to the sink. It does not fit WSNs due to their
energy constraints. This leads to the design of many dis-
tributed approaches. Some propose that only the nodes with
readings close to the value of the contour lines report their
readings to the sink (e.g., [17, 25]). In other approaches, a
network is divided into clusters. In each cluster, segments of
contour lines are constructed at its cluster head and reported
to the sink instead of all the sensor readings(e.g. [30]).

The idea of using machine learning techniques in con-
tour mapping is recently suggested in [30]. It formulates
the problem of constructing a segment of a contour line as

a non-linear classification problem. A severe algorithmic
inadequacy of this approach is that it relies heavily on the
shape of the distribution of the node’s location, while dis-
regarding the sensor readings. As a result, it may generate
biased contour lines and generate the same curve for the
contour lines with different values. In addition, The appli-
cation of linear regression to contour mapping is proposed
in [17]. But a contour line is non-linear in nature. Such a
linear approximation generates results that are either inac-
curate or with too many parameters. Moreover, a mobility-
assisted approach is proposed in [26], which studies how to
design the tracks of a set of mobile nodes to detect a contour
line. The problem context, however, is quite different from
that studied in this paper.

Note that the above schemes are essentially optimized
for calculating a single contour line. When an entire con-
tour map is required, they usually need to construct each
contour line separately and eventually the resulting lines
are combined into one map [17, 25, 30]. This is actually
very inefficient. Neighboring contour lines usually exhibit
space correlations, and hence it is possible to construct and
represent them in a better way. Taking this into account,
many approaches try to exploit such spatial correlations in
building an entire map. The idea to abstract a field with
isobars (i.e., rectangle area where the field intensity is close
to a value) is suggested in [20] for boundary detection, and
Hellerstein et al propose to build such an isobar map based
on a routing tree [12]. Gandhi et al suggest summarizing a
contour map with a topologically equivalent family of poly-
gons [9]. Silberstein et al [23] and Meng et al [18] investi-
gate algorithms for spatial and temporal suppression . Their
focus is a data aggregation scheme for minimizing energy
consumption of communication. Similarly for efficient data
management, Guestrin et al propose to compress spatiotem-
porally correlated sensor data with a distributed regression
[11]. These approaches, however, are not efficient for cal-
culating a single contour line since they aim at abstracting
all in-network sensor readings.

To the best of our knowledge, no comprehensive yet
adaptive treatment to both contour line and contour map re-
quests is presented in the literature. Moreover, the existing
approaches are best-effort only: There is no mechanism for
energy conserving when lower precision contour line/map
is acceptable. Finally, they lack a proper scheme to actively
select sensor nodes in calculating contour lines/maps.

3. System-level Overview of On-demand Active
Contour Service

This section provides an overview of the OACS approach
in a system perspective. We first identify its working envi-
ronments. Then we discuss the user requirements and how
we encode them in OACS’s user enquiries. Finally, we brief
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OACS’s major work flow in processing its user enquiries.

3.1. Preliminaries

We consider a WSN consisted of N stationary sensor
nodes {sj}N

j=1 randomly deployed in a 2-dimensional net-
work area φ (i.e., φ ⊂ R2). Like work in [30], we con-
sider the network consists of K clusters and there is a head
hi for each cluster i [4, 32]. Cluster heads are in charge of
constructing the segments of contour lines/maps inside their
clusters and reporting the results to the sink. They are gen-
erally equipped with a high computational capability hard-
ware platform, e.g., the Crossbow imote2 [5]. Cluster mem-
bers, on the other hand, can be relatively low-capability
nodes such as micaz motes. Let Si denote the set of the
nodes in cluster i, i.e., sj is in cluster i if and only if j ∈ Si.
ni is the node number in Si. Lj denotes the location of
sj . Location-awareness is a basic requirement for contour
mapping approaches [9, 17, 18, 25, 30, 31]: We consider
that each node is aware of its own location, which can be ob-
tained by a light-weighted localization approach (e.g., Cala-
mari [29] distributed with TinyOS [27]). Cluster heads thus
know the locations of their cluster members.

Suppose among all nodes in a cluster, there are a portion
of on-duty nodes, i.e., those that are not in sleeping mode,
which maintain the normal sensing task of the network1.
Let λ denote the percentage of the on-duty nodes in a clus-
ter. We assume that there is a mechanism for cluster heads
to let any of its sleeping cluster members change to work-
ing mode. This can be done via an active scheme like that
proposed in [10] with which a node can be turned on by
radio, or a passive scheme in which a sleeping node period-
ically turns itself on and enquires whether it should change
to working mode.

zj denotes the sensor reading of node sj when sj is
working. We consider that zj ∈ R, i.e., zj is a 1-
dimensional scalar value, i.e., the measured intensity of one
scalar field. This is assumed without loss of generality:
If there are multiple co-existing fields, zj is then multi-
dimensional. Then the contour maps are multiple, each cor-
responding to one dimension.

3.2. Contour Enquiries

We consider two natural user requirements of contour
mapping service. The first one is that a user wants to ob-
tain one single contour line with a given value. Identifying
an event boundary (e.g., the boundary of a pollution area as
considered in [26]) is an example. The second one is that
the user requires a contour map of the whole network area,

1The roles of being on-duty and being sleep can be rotated for all in-
network nodes based on a node grouping mechanism (e.g., [16, 34]) to
balance the residual energy of the nodes or to maintain coverage.

for example, for visualization of the information of the en-
tire field of interest. Hence, user enquiries are divided into
two types, namely, line-enquiries and map-enquiries (L-
enquiries and M-enquiries). In an L-enquiry, a user should
give the value of the requested contour line. While in an
M-enquiries, since the user requests the network to abstract
the entire field information, no specific values are required.

Another important issue is the precision of the contour
line/map a user requests. During a WSN system run-time,
a user may require contour lines/maps with different preci-
sions. For example, a user may ask the system to generate
some coarse-grained contour maps periodically for logging
the changes of a field. Whereas during a particular time in-
terval (e.g., when an event takes place), the user may need a
finer map for more details of the field.

Since neither the actual field intensity nor even its dis-
tribution is a priori knowledge, it is impossible to adopt
traditional precision metrics such as mean square error
(MSE) for presenting the precision of a calculated contour
line/map: For example, if a user needs a contour line with
its value being 10 and MSE being 0.5. After calculating a
contour line with sensor readings, no one can tell whether
its MSE satisfied the requirement or not since there is no
way to know the ground-truth contour line. This poses a
challenging problem: The precision requirement of an en-
quiry has to be defined in a way that it should not only make
sense of how well a contour line/map matches the reality but
also be a calculable value.

Note that the most precise contour line/map segment a
cluster head hi can get is the one constructed based on the
readings of all nodes in Si. A contour service can gener-
ally provide a more precise result if it takes the readings of
more nodes into account in constructing a contour line/map.
Hence, the number of the involved nodes is naturally a good
index to the precision of the result. The more the number
of nodes involved is, the more precise the result is, whereas
the more energy is required since more nodes are needed to
sense and report their readings. Tuning the number of in-
volved nodes provides the flexibility for a user to trade off
energy and the precision of the result.

Hence, the formats of enquiries are as follows. An L-
enquiry is a 2-tuple L=[cv, p] and an M-enquiry is denoted
by M=[p], where cv is the value of the requested contour
line, and p is the precision requirement, which is the per-
centage of the sensor node number in each cluster that the
user requires to build a contour line/map.

3.3. Service Overview

Our contour service is an on-demand service: A user-
enquiry can be directly broadcast to the sensor nodes by
the sink with its powerful antenna, or can be broadcast
through multi-hop. When receiving an M-enquiry, all work-
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ing nodes report their readings to their cluster heads, while
when receiving an L-enquiry [cv, p], only those working
nodes whose readings are close to the contour value cv re-
port their readings to their cluster heads.

Each cluster head then knows the intensity of the field at
a set of in-network locations. With these data, it computes
the contour line/map segment inside its corresponding clus-
ter with a Support Vector Regression (SVR) kernel-based
regression technique.

It then examines whether the precision requirement of
the results matches the user requirements p with the initial
working nodes. If the answer is no, it will employ an active
machine-learning based algorithm to select a set of sleeping
nodes, turn them on, obtain their readings, and refine the
results of the kernel SVR scheme, until the results are satis-
factory. Finally, after the results are reported to the sink for
combining into an overall contour line/map, the additional
working nodes go back to sleep mode.

4. Regression-based Contour Mapping Algo-
rithms

Since the cluster heads play important roles in our con-
tour service, in this section we focus on how a cluster head
constructs the part of the contour line/map that is located in
its cluster.

4.1. Contour Mapping with Kernel SVR

The intensity z of a scalar field is essentially an un-
known continuous function f(x) defined on φ, where x is
a 2-dimensional vector denoting a location in the network
area:

z = f(x) (x ∈ φ). (1)

An actual contour line with value cv is then a curve where
the points on the curve satisfy f(x) = cv. While an entire
contour map is composed by a lot of such curves (with val-
ues forming an arithmetic sequence) spreading throughout
the network area. Given an estimation of the function f(x),
we can easily find out a contour line/map.

The sensor readings can be deemed as the sample values
of the function f(x) where the nodes locate. Note that these
sensor readings, however, are subject to measurement errors
due to the influence of noise. Hence, contour mapping is es-
sentially a procedure we regress f(x) based on these noisy
sample values.

Formally, for each cluster i, give hi a set of samples, i.e.,
the mappings {Lk 7→ zk}∀k∈Wi

where Wi is a subset of
all nodes in Si. Its goal is a function f̃i(x) to estimate f(x)
in its cluster area, which satisfies f̃i(Lk) = zk + εk. Here
εk is the error of sensor sk. We assume the error{εj}∀j∈Si

are independent and identically-distributed (i.i.d) according

(a) Sensor readings are not linear to their locations. (b) Map sensor loca-
tions to another space, where sensor readings are linear to their locations.

Figure 1. An example of space mapping

to a zero-mean Gaussian distribution with variance σ2, i.e.
εj ∼ N(0, σ2).

To make this problem tractable, we need to assume a
form of the function f̃i(x). Work in [17] adopts a linear
form to study this problem. Although linear functions are
the simplest for this problem, they are not good candidates
since the intensity of a field is generally non-linear in nature
(and contour lines are generally not straight line segments).
A better way is to use a combination of polynomial func-
tions or Gaussian functions to represent f̃i(x). This can be
handled by kernel SVR [7]. We briefly present the approach
as follows.

4.1.1 Theoretical Foundation

The idea of kernel SVR is employing space transform
to map the original non-linear function f(x) to another
space where the function can be deemed as a linear func-
tion, which is then easy to be regressed. Figure 1 demon-
strates a simple example of how space mapping works. In
the network area, the sensor readings and their locations are
not linearly-related. Whereas with a non-linear mapping
y1=x2

1-2x1 and y2=x2
2-8x2+15, a location x=(x1, x2) in the

original space is then mapped to a location y=(y1, y2) in an-
other 2-dimensional space where z is then a linear function
of y, i.e., z=y1+y2+2. The result can be projected back to
the original space, i.e., z=(x1-1)2+(x2-4)2.

Let us suppose Φ is an R2 7→ Rd mapping that maps a
point x in the network area φ to a point x in a d-dimensional
space Rd. Consider z as a linear function of y = Φ(x), i.e.,

z = w · y + b = w · Φ(x) + b, (2)

where w ∈ Rd, b ∈ R, and · denotes the inner product of
two vectors. Then the canonical SVR formulation of this
problem is:

minimize
w,b

1
2 ||w||

2,

subject to
{

zk − (w · Φ(Lk) + b) < εk

(w · Φ(Lk) + b)− zk < εk .

(3)
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The idea of this formulation is to regress the field intensity
as a linear function of node locations in the new space Rd.

This problem can be worked out by solving its dual prob-
lem with a quadratic programming formulation. It turns out
that only the inner product K(x1, x2) = Φ(x1) · Φ(x2) in
Rd, but not Φ(x), is involved in the optimization procedure
and the result [24]. This greatly simplifies the optimization
process as we do not need to know what the mapping ac-
tually is. K(x1, x2) is called a kernel. With such a ker-
nel SVR approach, f̃i(x) can be represented by a set of
locations {Lm}∀m∈SVi

(called support vectors) and their
weights {αm}∀m∈SVi

, where SVi is a subset of Wi:

f̃i(x) =
∑

m∈SVi

zmαmK(Lm, x)− b. (4)

In general, kernel SVR is to find out a subset of node lo-
cations (i.e., support vectors) and node readings that best
represent the field intensity function with a kernel function.

4.1.2 Why Using Kernel SVR

Although SVR is proven effective in many disciplines
(e.g., [19, 21]), OACS is the first work that adopts kernel
SVR for contour mapping in WSNs. In this section, we
comprehensively justify the benefits to employ kernel SVR
in providing a contour service.

Let us first illustrate the superiority of kernel SVR com-
paring with the scheme adopted in CME [30], a recent ap-
proach for WSN contour mapping which also suggests us-
ing similar machine learning approaches. CME formulates
the problem of constructing a segment of contour line with
value cv as a classification problem. The nodes with read-
ings larger than cv are in class A, while the nodes with read-
ing less than cv in class B. Then a classification boundary
can be calculated by machine learning techniques and thus
deemed as the contour line segment. Although such an ap-
proach is similar to ours since non-linear machine learning
techniques are adopted, it relies simply on the shape of the
distribution of the nodes’ locations, while disregarding the
sensor readings in the same class. As a result, it cannot gen-
erate satisfying contour lines.

Figure 2 shows a typical result generated by CME. First,
CME generates the same curve for the requests with val-
ues between 80.0 and 90.0. This is because in this exam-
ple scenario class A and class B remain the same if the
values of the requested contour line are between 80.0 and
90.0, and consequently, the classification boundaries (i.e.,
the contour line) calculated by CME are the same. Second,
CME tends to generate a biased contour line. This is due
to the even distribution of the nodes in class A and class
B in the top-left part and the bottom-right part of the dot-
ted rectangle, respectively. CME does not consider the val-
ues of sensor readings. As a result, the nodes in class B in

CME

OACS

ReaI Contour

VaIue of the 

Contour Line = 90.0

Sensors in CIass B: Their readings 

are Iess than the contour vaIue

Sensors in CIass A: Their readings 

are Iarger than the contour vaIue

Figure 2. An example of the results generated
by CME and OACS

the top-right and bottom-left corners, although with smaller
readings, attract the classification boundary to go along top-
right to bottom-left. OACS with kernel SVR which takes
into account the sensor readings but not merely their loca-
tions, on the contrary, does not face these algorithmic inad-
equacies. Hence it can generate a more accurate result as
demonstrated in the figure.

Besides its advantages comparing with the scheme
adopted in CME, kernel SVR has many merits per se. First
of all, it can equip OACS with a flexible method to deal
with L-enquiries and M-enquiries. Examining its theoreti-
cal foundation, we can find that kernel SVR is a scheme that
learns an output function based merely on its input samples,
i.e., Wi. Therefore, by controlling the set of input samples,
we can adapt it well to L-enquiries or M-enquiries. For L-
enquiries, since we require f̃i(x) to approximate f(x) well
in only the area around the contour line, Wi can be selected
so that {zk}∀k∈Wi are close to the contour value. Whereas
for M-enquiries, many contour lines are required simulta-
neously and they are spreading throughout the cluster area;
therfore, the regression result is important at anywhere of
the network. Hence a larger Wi with node more evenly dis-
tributed can be the input for kernel SVR. Adaptively serv-
ing both types of enquires is a novel consideration of OACS
in contrast to the current approaches which aim at either
drawing a contour line efficiently or drawing a contour map
efficiently, but not both.

Second, kernel SVR can conveniently handle the non-
linear nature of contour lines. Observe from Equation (4)
that f̃i(x) is a combination of kernel functions K(Lm, x). If
we want to represent the field as a combination of polyno-
mial functions with degree d, we only need to assign a poly-
nomial kernel K(x1, x2)=(x1 ·x2 +1)d for the kernel-SVR.
Similarly, if we want to represent the field as a combination
of Gaussian functions, we just need a Radial Basis Function
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(RBF) kernel with the form K(x1, x2)=e−γ||x1−x2||2 , where
e is the base of the natural logarithm. This provides a user
the flexibility to select different non-linear curve functions
according to the features of different sensing applications.
Most importantly, the non-linearity of the results can thus
be easily generated by applying the kernel method without
causing much computational burden. The computational
load of SVR is quite acceptable for a cluster head equipped
with typical sensor platform such as Crossbow imote2 with
a 400MHz MCU, since it just needs to solve a small-scale
quadratic problem.

Finally, the result of kernel SVR is simple in represen-
tation. According to Equation 4, f̃i(x) can be represented
by a set of support vectors and their weights. A packet of a
few tens of bytes is enough to encapsulate the result. OACS
favors such a simple result since a cluster head hence only
needs to send a single packet to the sink, which avoids high
communication costs.

4.2. Precision Tuning via Active SVR-
Based Approaches

Since there is no a priori knowledge on the requested
contour line/map, initially, OACS lets λ percentage of nodes
be on duty and then calculates the contour line/map based
on these nodes. If the precision of the result does not match
the user requirement (i.e., λ<p), it will open a set of sleeping
nodes and re-calculate the results based on the newly-added
readings from this set of nodes.

Let Di denote the set of sleeping nodes in cluster i, i.e.,
Si=Di ∪Wi. A straightforward way to select the set of to-
be-opened nodes is to randomly select (λ-p)ni nodes from
Di and recalculate the contour line/map based on their read-
ings. However, this scheme is inefficient. For example, for
an L-enquiry, it may select the nodes far away from the ac-
tual contour line, but these nodes are almost useless. For
an M-enquiry, it may select two nodes near each other, but
they are redundant. To avoid such situations, the way to
select these (λ-p)ni nodes should be carefully studied.

For classification problems in machine learning, a simi-
lar concern is how to select a set of training samples for en-
hancing the classification precision. Many active learning
schemes have been proposed in recent approaches which
actively select training samples for text [13, 28] or image
classification problems [3]. Although these algorithms are
specifically designed for classification problems, their un-
derlying idea, i.e., selecting the samples that can provide
most information, sheds light on solving our problem. We
hence tailor two active learning schemes for processing L-
enquiries and M-enquiries to select (λ-p)ni nodes, as de-
scribed in what follows.

4.2.1 L-enquiry Case

Consider the space Rd where the locations of nodes are
projected by Φ. The contour line with value cv found by
kernel SVR is hence an estimated hyperplane Pe in Rd,
where the points inside satisfy:

w · y + b = cv ⇒ w · Φ(x) + b− cv = 0. (5)

Since Pe is an estimation of the actual hyperplane Pa

mapped from the actual contour line, it inevitably deviates
from Pa. Let us consider a point y1 that is to one side of
Pe and let d denote the distance from y1 to Pe. Note that
the closer y1 is to Pe, the more likely y1 may actually be to
the other side of Pa, i.e, the more uncertain for us to know
whether y1 is actually on which side of Pa.

The distance dj in Rd between a node sj to the estimated
hyperplane Pa is:

dj =
∣∣∣∣w · Φ(Lj) + b− cv

w

∣∣∣∣ (6)

We then select a node st ∈ Di as a to-be-opened node if it is
the nearest sleeping node to the hyperplane since the uncer-
tainty of whether the node is to the other side of the actual
contour line is the maximum. In other words, its reading
can potentially change the shape of the calculated contour
line the most, and thus can best improve the accuracy of
kernel SVR at the locations around the actual contour line.
Formally,

t = argmin
∀j∈Di

dj = argmin
∀j∈Di

∣∣∣∣w · Φ(Lj) + b− cv

w

∣∣∣∣
⇒ t = argmin

∀j∈Di

|w · Φ(Lj) + b|

⇒ t = argmin
∀j∈Di

∣∣∣f̃i(Lj)
∣∣∣ (7)

where the first transform is because |w| and cv are the same
for all nodes in Di and the second is based on the mecha-
nism of kernel SVR. See Figure 3(a) for an example where
the value of the contour line requested is 20.0. The sleeping
node, where the estimated field intensity 18.3 is closest to
the contour value 20.0, should be opened to obtain its read-
ing. This is because it is the most uncertain one regarding
whether the node is to which side of the actual contour line.

Note that only f̃i(x) is involved in solving Equation (7).
This is very convenient since the f̃i(x) in Equation (4) esti-
mated by kernel SVR is already at hand based on the read-
ings of Wi.

Then st is turned on and added to Wi. Kernel SVR runs
again to update the contour line. The above procedure can
be iterated until the precision of the generated contour line
reaches the requirement, i.e., pni nodes have been consid-
ered in producing the contour line.
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(a) (b)SIeeping Node
Working Node

Estimated

ActuaI

(a) In processing an L-enquiry, the sleeping node, where the estimated field
intensity 18.3 is the closest to the contour value 20.0, should be selected
as a to-be-opened node. This is because it is the most uncertain regarding
whether the node is to which side of the actual contour line. (b) In pro-
cessing an M-enquiry, the sleeping node in the bottom-left corner is the
farthest from the working nodes. It is the most uncertain one for the field
intensity at that location. Hence it should be opened to obtain its reading.

Figure 3. Demonstration of the active node
selection schemes.

4.2.2 M-enquiry Case

For processing an M-enquiry, the situation is a little bit
different from how to process an L-enquiry discussed in
Section 4.2.1. What we care now is to enhance the precision
of kernel SVR everywhere in the cluster area. We discuss
how to select a to-be-opened node as follows.

Consider again the space Rd. The distance dkj between
two nodes sk and sj in Rd is:

dkj = ||(Φ(Lk)− Φ(Lj)||2

=
√

K(Lk, Lk) + K(Lj , Lj)− 2K(Lk, Lj) (8)

Since f̃i(x) is predicted by kernel SVR with the read-
ings of the working nodes, the farther a location x from the
working nodes is, the more uncertain the f̃i(x) is. There-
fore, to improve the accuracy of f̃i(x), we should choose to
open a sleeping node far away from the working nodes. We
define the distance between a sleeping node to Wi as the
minimum distance between it and all nodes in Wi, i.e., in
Rd it is min

∀k∈Wi

dkj . We select a sleeping node st ∈ Di that

has the maximum distance to Wi. Formally,

t = argmax
∀j∈Di

( min
∀k∈Wi

dkj) (9)

Note that if we use an RBF kernel in SVR, K(x, x)
=e−γ||x−x||2=1. Equation (9) can be reduced to:

t = argmax
∀j∈Di

( min
∀k∈Wi

(−2K(Lk, Lj)))

= argmax
∀j∈Di

( min
∀k∈Wi

||Lk − Lj ||), (10)

which is exactly the same as selecting a sleeping node that
has the maximum distance to Wi in the original space R2.

See Figure 3(b) for an example where the sleeping node
in the bottom-left corner is the farthest from the working
nodes. It is the most uncertain one for the field intensity
at that location. Hence it should be opened to obtain its
reading.

5. Performance Study

To study the effectiveness of OACS in addressing the
WSN contour mapping problem, we simulate a WSN. With-
out loss of generality, clusters are formed by evenly divid-
ing the network into grids and their heads are randomly se-
lected, which is similar to the scheme in [30]. The grid
numbers are also selected based on the scheme in [30]. A
widely-adopted SVR solver in SVMlight [14] is employed
to solve our kernel SVR problems for cluster heads2.

Table 1. Simulation Settings
Area of sensor field 320m × 320m

Rode deployment scheme
Randomly deployed
in a uniform manner

Communication range Rc 30m
Decay factor α and k 3 and 0.01

Packet size 48 bytes

The field intensity is generated by the model adopted
in [18, 30], which is briefed as follows. M sources are
randomly distributed in the network area, the locations of
which are denoted by T ={Tm}M

m=1. Then the field inten-
sity f(x) at location x is determined by the summation of
the diffusion from the sources:

f(x) =
∑

Tm∈T

1
(k||x− Tm||+ 1)α

. (11)

Note that this is a realistic model since in general the field is
a cumulative result by several sources (e.g., those that emit
heat) while the effect of a source decays exponentially with
a factor larger than 2 in space. The reading of a sensor si is
then given by f(Li) + ε.

The details of our network settings are shown in Table
1, which is a typical WSN setting similar to that adopted in
[30]. Accuracy of a contour line/map is calculated based on
the MSE of the results with respect to the actual line/map.
In our following performance study, for each setting we
adopt different random seeds in every run and the results
are averaged.

2The algorithm is implemented in C. It can easily be ported to current
platforms of cluster heads, e.g. LiteOS [2].
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Figure 4. Accuracy comparisons between
OACS and CME in processing L-enquiries

5.1. The Advantages of Kernel SVR

We first study the accuracy of our OACS in process-
ing the L-enquiries, comparing with the recent CME ap-
proach proposed in [30]. For each L-enquiry [cv, p], cv is a
randomly-selected field intensity value. We set p=100% for
fairness consideration as in this case OACS would not take
any advantages of its active node-selection schemes. Our
purpose is to compare the performance of our kernel-SVR
algorithm and the classification algorithm adopted in CME.

We change the node density in processing L-enquiries.
Figure 4 demonstrates an example result where M=3. We
can see that OACS greatly outperforms CME especially
when the node density is low. This is not surprising: CME
relies only on the node-location distribution. It can gener-
ate accurate results only if the node density is very high. In
contrast, OACS considers sensor readings in its kernel-SVR
algorithm, which adapts well to low node density.

Note that the energy required for processing an L-
enquiry for both CME and OACS is almost the same in
this experiment (where the precision requirement p=100%).
This is because both approaches let the nodes with readings
close to the contour value report to their cluster heads.

We then compare OACS and CME in handling M-
enquiries. Similar to the previous experiment, we also set
p=100%. We change the node density and study the ac-
curacy of the maps generated by OACS and CME. The
accuracy results are demonstrated in Figure 5 where we
randomly place six sources (i.e.,M=6) in the network. It
shows that OACS also outperforms CME. The total number
of packets that need to be sent by all in-network nodes are
compared in Figure 6. We can see that if we need to gen-
erate a contour map with more contour lines, CME spends
more energy than OACS does since CME has to calculate
each contour line separately. In contrast, the number of
packets remains constant for OACS since it generates the
same result for an M-enquiry with the same p.

These simulations show that OACS outperforms CME in
processing both L-enquiries and M-enquires in terms of ac-
curacy of the results, while OACS is more energy-efficient
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Figure 5. Accuracy comparisons between
OACS and CME in processing M-enquiries

Packet number 

0

50

100

150

200

250

2                        4                        6                           8                         10    

# of contour lines

OACS

CME

Figure 6. Total packet numbers sent by OACS
and CME in processing M-enquiries

when calculating the contour map. Note that in these simu-
lations, we set p=100%. In case that the user does not need
such a high p, obviously OACS can conserve much more
energy since it has a scheme to let some nodes sleep. CME,
however, lacks such a scheme and as a result all nodes have
to be in working mode. The energy consumption results are
hence omitted when p<100%. In conclusion, we verify the
advantages of employing kernel SVR in contour mapping.

5.2. The Advantages of Active Node Selec-
tion Scheme

Now we investigate how well our active node selection
scheme performs in handling different user requirements on
contour line/map precisions. We randomly place six sources
(i.e.,M=6) and deploy 400 nodes in the network area. Two
approaches are adopted: One is OACS with our active node
selection scheme, while the other is another OACS version
without such a scheme in which pni nodes are selected ran-
domly from all the in-network nodes. We set λ=12% for
OACS, i.e., initially, 12% of in-network nodes are on-duty.

We study the accuracy of the results on L-enquiries and
M-enquiries, in which we change the precision requirement
p from 12% to 40%. Figures 7 and 8 show the results.
We can see that OACS with an active node scheme per-
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Figure 8. Accuracy as a function of precision
requirement: M-enquiry case

forms much better than that without such a scheme3. This is
also a natural result since our active node selection scheme
aims at minimizing the uncertainty of the generated contour
lines/maps. As a result, it can select the best set of to-be-
opened sleeping nodes.

With the same setting, we further vary the node density
and study how OACS with an active node selection scheme
performs in processing M-enquiries. Figure 9 demonstrates
the results, which show that the higher the node density, the
more accurate the results. This is because when the node
density is high, more candidates are available, and conse-
quently a better set of to-be-opened nodes can be selected.
Hence, the accuracy increases as the node density increases.

Finally, to study how OACS performs when the field
intensity becomes more irregularly-distributed, we deploy
400 nodes in the network area and increase the number of
sources M . Let OACS perform M-enquires with p=32%.
Figure 10 shows that the accuracy of OACS almost remains
unchanged when the source number increases. This demon-
strates that the performance of OACS does not vary with
how the field intensity is distributed, which verifies the nice
adaptivity attribute of OACS.

3Note that the accuracy results of both schemes when p=12% are the
same as in this case p=λ, which means that no sleeping nodes need to be
turned on. As a result, the node selection schemes do not have any effects.
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6. Conclusion and Future Work

In this work, we presented OACS as a promising contour
mapping tool in handling diverse user requests. We showed
that OACS can handle requests for both contour line and
contour map energy-efficiently. Most importantly, it is in-
telligent in energy saving when providing users the flexibil-
ity to request contour lines/maps with different precision.

Our work demonstrated that the active learning and ker-
nel SVR techniques from the machine learning field can be
powerful tools for the contour mapping service in WSNs.
There are, however, many remaining issues to be explored.
We are particularly interested in developing on-line algo-
rithms for contour mapping, where a contour line/map can
be incrementally polished based on new sensor readings in-
stead of re-running kernel SVR. We also intend to inves-
tigate how OACS performs if we adopt a batch mode ac-
tive learning scheme [13] where all the to-be-opened nodes
are selected simultaneously, instead of selecting the to-be-
opened node one by one. Finally, how to calculate time-
variant contour line/map is also of interest: A powerful con-
tour service that can well exploit the temporal-correlations
of sensor readings is still at large.
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