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Abstract—The inherent properties of Wireless Sensor Net- to be over-constrained in order to support exact timeliness
works (WSN) disqualify most classic methods targeting timkness  analysis. These impositions are typically related to statid
guarantees. Assumptions of such methods as well as a resti@ o413y topologies, symmetry of the radio propagation pat-
notion of timeliness borrowed from classic real-time systas clash . . .
with the indeterminism of realistic scenarios. terns [3] or absgnce of gnv.lr(_)nmental mterference.s. Asqaly

In this paper, we introduce a generalized notion of timelines based on deadlines for individual messages conflict with the
which allows to provide meaningful performance metrics uneér large number of limitations preventing temporal guarasiee
unreliable conditions, common in WSN. We present a probabis-  \WSN [4].

tic metric to capture the level of confidence for the timelinss In this paper we exploit a generalized timeliness notion
performance without restricting its applicability. It con sists of

the estimation of the end-to-end delay distribution functon by 'ntrOduced '_n [5] which provides enou_gh f'ex'b"'tY to sdﬁet_

using current local state information of intermediate hops which ~ characteristics of WSN. Instead of aiming at strict deatin

requires low memory and computational resources. for individual messages, the generalized notion focuseb®n
This metric represents a hook to adaptive QoS as it is timeliness capacity of a sequence of messages. The geeerali

constantly updated at run-time and reflects the actual netwk — \ion aliows to express the end-to-end timeliness require
status. Extensive simulation results underline the validy of the

method and its applicability. ments by means of a target time interval and a confidence
Index Terms—Wireless Sensor Networks, end-to-end, latency, level. Hence, it is possible to relax the requirements iregos
estimation, probabilistic. by methods based on strict deadlines while still providialidv

means to evaluate timeliness performance.
We introduce a probabilistic approach based on the gen-
Timeliness guarantees are of special interest in the areae@dlized notion, which approximates the end-to-end delay
Wireless Sensor Networks (WSN) [1]. Unfortunately, the nadistribution of a routing path by performing statisticabéysis
tion of timeliness borrowed from classic real-time syst¢#js of local information gathered at intermediate hops. It\afio
clashes with the unfeasibility of WSN to guarantee bounded estimate the probability that a sequence of messages is
response times for the basic network operations, which és dwansmitted through a network path within a time intervadeT
to, among others, ad-hoc infrastructure and strong enengy cprobabilistic method allows applications to exploit qtialbf
straints imposed by limited battery capacities. Neveeb®l service trade-offs based on meaningful timeliness progsert
existing methods aim at strictly satisfying predefined diead and adapts well to the principles of WSN.
for individual messages. The rest of the paper is organized as follows: Section Il ex-
As an example, bounded response times at the MAC laysiores the related work in this field. The generalized notibn
may be achieved with periodic sensing of the medium anigheliness is detailed in Section I, followed by the dégtion
neighborhood synchronization. Unfortunately, these dteno of the probabilistic approach in Section 1V. Simulationuis
not affordable in terms of energy. Ad-hoc network topologyalidating the presented method are discussed in Section V.
forces the dynamic reorganization of routing paths, préagn Finally, Section VI concludes the paper.
end-to-end message scheduling which is also inhibited by th
impossibility to store global knowledge (i.e. routing ) in Il. RELATED WORK
the limited memory capacity of nodes. Similarly, strategie Ongoing research to introduce real-time guarantees in WSN
based on resource reservations over-constrain the netwirkarried out at many different levels. In [6] a survey of the
capacity up to the point of loosing feasibility. current state-of-the-art is presented. Additionally, aBreiew
Alternative approaches try to derive offline analytical modf the problems in combined soft and hard real-time solgtion
els to extrapolate the timeliness performance at runtimesvering the whole network stack as well as open challenges
However, despite the validity of their conclusions, modelge are discussed.
_ _ , , e At the routing level, work in [7] and [8] assign velocities to
This work is partially financed by the European Commissiordeun . ; . . .
the Framework 6 IST Project "Wirelessly Accessible Sensopufations messages which must be kept in order to fulfill their timedge
(WASP)". requirements. However, both assume static networks angsnod
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equipped with localization capabilities. In [9], delay gaml- 1. NOTION OF TIMELINESS
tees are provided by means of a TDMA scheme at the expens

of limiting the length of routing paths. The concept of timeliness currently exploited in WSN is

greatly influenced by the one originated in general purpose
Traffic regulation mechanisms are also explored as meanswgiworks. In particular, attention is centered around tenalp
provide end-to-end guarantees using queuing models. [ [1Quarantees of individual messages by means of fulfilling
the combination of queuing models and message scheduleansmission deadlines: each message receives an emd-to-e
turns into a traffic regulation mechanism that drops messagkeadline which delimits the time to reach the destinatibtind
when they loose their expectations to meet predefined emoessage has not been delivered after this instant, it ilyltke
to-end deadlines. Additionally, an example is given to appe dropped at one of the intermediate hops, depending on the
proximate the delay distribution of each hop in the event ofuting policy. Certain routing strategies will drop megss.
instability by means of a Gaussian distribution. before the expiration of the deadline if they estimate that t
Other probabilistic methods to achieve QoS have been afgadline cannot be met.
proached by different authors. For CPU scheduling, theonoti  Unlike in most general purpose networks, the ad-hoc topol-
of probabilistic deadlines and execution time distribotis ogy and the lack of resources of WSN prevents them from
explored in [11]. In [12], different levels of quality of ser being able to guarantee bounded delays for the basic network
vice are considered with respect to timeliness and reifgbil operations. This is particularly stressed in mobile neksor
providing probabilistic multi-path forwarding to ensumedeto- and noisy environments where even the connectivity of nodes
end delays. Note that despite these methods apply pradtabilicannot be taken for granted.
techniques to their algorithms, they all aim at satisfyitrics Secondly, the network connectivity and its capacity, suffe
deadlines for individual messages. from a high variability due to e.g. duty-cycle schemes, mo-
bfility of nodes and additional behaviors intrinsic to the{pr
cols. The fulfillment of end-to-end deadlines for individ

mobility in achieving timeliness guarantees. Additiogakh : - .
CL o .messages might become a useless objective as the network is
prioritized event transmission protocol based on a preacti :
generally deprived of enforcement tools.

routing protocol and resource reservation is foreseemgaéh . . ) . .
9p ag Thus, it appears more suitable to conceive a notion which

the authors take the assumption of a predictable medium . L .
measures the progression of timeliness, rather than meffe
access protocol. . L g . L
. L : tively enforcing individual deadlines. Moreover, this gtimess
A common notion of timeliness, based on the assignment

of strict end-to-end deadlines to each individual messat.xge”?d'c"jltor should be able to express the not-always-aceurat

applied in the work referred. Not surprisingly, they all geat temporal performance of WSN. Statistic analysis seems more

) . .gdequate to capture the timing necessities of sensor rietwor
a number of assumptions with respect to the network whic . . .
- . We explore the preliminary approach introduced in [5], to
limit their deployment.

achieve a better alignment between the network capabilitie
With respect to the MAC level, much of the existingand the desired timeliness requirements. Instead of @instr
research is based on TDMA scheduling of neighbor nodesy the methods to fulfill idealized timeliness properties
(e.g. [14]), hence constructing a schedule of transmissioth  propose to relax the concept of timeliness, to suit the parti
contention free periods. However, although valid resuits aularities of WSN. We consider the following requirements:
obtained in controlled environments, the common restmctif 1) The way in which timeliness requirements are expressed
these methods is the assumption of error-free communiatio should not encourage applications to demand unfeasible

Moreover, the complexity of such strategies, specially in  gegrees of performance that the network cannot provide.
mobile networks, forces the addition of global network coor Hence, given the unfeasibility of WSN to guarantee sin-

dinators, which discourages their use. Alternative apgiiea gle deadlines, applications should express their demands
exist, such as [15] which achieves hard real-time guarantee 4 5 higher level than individual messages.

given an hexagonal topology of static nodes. This requirgme 2) A notion of timeliness expressing only success or fajlure

In [13], the authors introduce an analysis of the impact

is later relaxed in [16] although it still relies on staticdes. i.e., deadline met or not, is of only limited value to WSN.

Besides, both methods are built on the assumptions of baunde  Rather, a continuous function to embody the level of

network density and optimum communication conditions. conformance with respect to the timeliness performance
Analytical solutions have also been studied. In this dicagt is more suitable to the properties of WSN.

[17] approaches a sufficient schedulability condition tagu 3) The ability of WSN to enforce strict end-to-end time-
antee end-to-end delays in multi-hop WSN. Nevertheless, it liness requirements is limited and variable at run-time.
is based on specific assumptions on the message transmission Hence, a meaningful notion of timeliness should allow
times and channel transmission speeds, as well as network @applications to express a level of confidence for the
density and path lengths. Moreover, it is practically usfeke aimed timeliness performance.

to produce analytical models capable to capture the dyrsamithe generalization of the notion of timeliness that we psgpo
of a real WSN. Assumptions, again, are necessary in ordersigpports these requirements and is composed of the folipwin
adjust reality to the models. parts:
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1) Our notion expresses timeliness properties of a sequence | Q () bop
of messages, which makes it possible to cope with the A" &Y destination fsink
indeterminism of individual delivery delays in WSN Q el _
and still provide meaningful values. By sequence of routing path
messages we refer to a number of consecutive messaCD~ e tink
following the same end-to-end route, without any impli-
cation on their content or additional constraint. '

2) Atime interval(t;,t;) with t; > t; > 0, which sets the ~— "
acceptable end-to-end delay bounds for a sequence of Q
messages.

3) The level of confidence for the required end-to-end
interval, expressed by means of a probability p < 1 Q
of successful arrivals within the interval.

4) The end-to-end delay distribution function, used as a
timeliness indicator, which allows to capture the prob-
ability density of the sequence of messages arriving
within the interval. The function, obtained at run-time,
provides sufficient information to determine the prob;

i . . A. Notation and definitions
ability of sequences of messages arriving within the

specified interval. A WSN, as shown in Figure 1, is represented as a graph
5) The selection of probability level and length of thé+(IN, L) formed by a set of node¥ and a set okingle-hop
interval allows the specification of strict timeliness yelinks L. Two nodeshop;, hop; € N are directly connected
providing additional levels of flexibility which suits theat a given time if there is a link € L, | = (hopi, hop;)
particularities of WSN. Thus, our notion is a generaisuch thathop; andhop; can send and receive messages from
ization of the classic timeliness notion. each other. For the sake of simplicity, the time instance of

By analyzing a sequence instead of individual messages, i/friables that change over time are only represented when
possible to take into consideration the indeterminism ofwvsthey are significant to the analysis.

and still provide meaningful values. Furthermore, theatida  © C 1V IS the subset of sinks. Sinks may outperform nodes
of the probability level and the length of the interval allow With reéspect to resources and energy availability.

the specification of strict timeliness, yet providing aduigl A (routing) path rp is a sequence of nodes
levels of flexibility which adapt to the peculiarities of WSN (hop1, hopz, ..hopg—1,hopy) & N such that each pair
This notion is adequate to evaluate the end-to-end timedind: = (hopi; hopit1) € L, thus providing amulti-hop link
performance as well as to express requirements in a way tRgiween hop, (source) and hop, (destination or sink).
does not demand excessive levels of precision that the nietwdNe length of a path is equal to its number of links
cannot achieve. (IrPhops hop, | = @)-

Fig. 1. Wireless Sensor Network scenario

IV. ESTIMATION OF END-TO-END DELAY DISTRIBUTION B. Calculation of single hop forwarding delay

In this paper, we target wide-area WSN such as those relategl gt hopi,hops € N be two nodes such that there exists
to environment monitoring (e.g. fire detection, structunahi- one link; e L , | = (hop1, hops). Then, we definéDy,,,, as
toring of buildings, etc.) with specific timeliness sensttlata the random variableRV which characterizes the forwarding
acquisition (e.g. fire or intrusion alarms, structural dgma latencys of a message fromop; to hop, andFp,,, as the
etc.). cumulative probability functiorfcdf) such thatf'p,,, (¢) =

Our objective is to compute the probability that a sequenggp,,,, < ¢); the probability thathop, introduces a delay
of messages can be transmitted through a given routigfat moste in forwarding a message.
path within a bounded time interval. Unfortunately, it has \ve define the forwarding latency as the time interval
been argued in Section IIl that the indeterminism of WSNetween the message arriving in nagg (either because the
does not allow exact analysis without introducing resiréct application layer sets a new message to be sent, or because th
assumptions. However, we show that it is possible to perforgiac layer receives a message which has to be forwarded),
estimations (_)f such distributions with satisfying accyrand gng the reception of an acknowledgment from the receiver
low complexity. . tqcr- Note that this calculation is pessimistic as it introduces

The end-to-end delay experienced by a message througfh@ additional time to receive the acknowledgment. Dependi
routing path can be decomposed into the individual forwaydi o, the MAC protocol, this may be relatively small and can be
delays originating at each node. neglected, but in any case it should be possible to estimate

We first analyze the forwarding delay at each intermediafis time as a constant. Hence, we adjusi to:
hop and then proceed with the composition of an approximate

end-to-end distribution for the path latency. §=tack — tin — ¢ (1)
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The above calculation is updated at each hop every timeofithe CLT' states that the sum of a numbeék) (of RVs

message goes through. Then, an increasing sequence of vaith approximately the same distribution, non-negativel an

8o, --, 0k, Which represents samples of the random variabteutually independent tends td\mrmaldistribution NV (y, ).

Dpop, for that node is generated. A cumulative method tdhe argumentation to accept the premises of similarity and

avoid storing the whole sequence of values will be introducéndependence are exposed in section IV-E.

in next section. The approximated end-to-end delay distribution, can be
characterized as:

C. End-to-end delay distribution Dy, = Z Dy, (4)

We now consider two cases to extend our analysis to the vherp

end-to-end distribution. At a first step, the simple casehwind,
one single link, and later on the general case Wil > 1. Fp,, (1) = P(Dyp <7) )

Simple case: one hopin the simplest case, a message igng the parameters,, ando? of D, are:
forwarded by one single node. Lébp; be that node, and i v r

I = (hop1, hop2) the link to the sink. Thus;p = (hop1, hop2) Prp R Tp,, = Z Thp,
and|rp| = 1). In this case, the end-to-end latency is equal to vnerp
the forwarding latency of the only hayp,,,, and, by extension crfp ~ SQD,‘p _ Z 5;21*13,1 (6)

the end-to-end delay distributiob,.. equals to its forwarding
distribution Dy, -

The cdf of the distribution depends on many factors whi
are generally out of our control, such as the link qualityc,

vnerp

Cﬁpplying the CLT, the probability introduced in Equation 5
onverges to:

T 2

environmental noise, and most relevant, the underlayingcMA b, (r) = 1 e dy
protocol. At this point, it is difficult to characterize the e Vor J_o ‘
distribution as it is not feasible to extrapolate its shajpe. Dyp — pip,,
any case, we can approximate the meanand varianced?) T= Tw @)

which will give a rough indicator of evolution of the link
performance over time.

We will use the sample mean and sample variance?
as good estimators fqu and o2. Moreover, for the runtime
calculations, we propose thexponential weighted movingD. Selection ofx
average (EWMA [18], [19] as it requires litle memory  The exponential weighty controls the smoothing factor
utilization and has low computational overhead (Equatipn 3, the Equations 2. Lower values of increase the stability
The EWMA produces two new values; andsy", updated at of the measurements as they smoothen the reaction due to
each iterations being the index of the iteration (i.e. numbegma| variations with respect to the averaged value. This is
of sample). The equations fay; ands;™ are: the desired effect to avoid insignificant imprecisions doe t

7 = ad, + (1 — a)z" oscillations on the sequence of megsuremen'gs. On the other
¢ K F hand, large values af tune the equations to quickly adapt to
Sf* = 2—8? (2) changes and forget the past values with more celerity.
@ Figure 2 shows the evolution af* for different values of
Note parameter (0 < o < 1), which is set to weigh the actuala during a short interval of time. Despite the benefit of the
measurements with respect to the previous, hence smoothéngbothing qualities of a low for the mean sampled value,
the consequences of past trends and punctual abnormalitiess not the case for the calculation of the sample variance
The discussion of the selection of its value follows in Se¢Equation 2). In this case, the variability of values neexdbe
tion 1V-D. captured as it plays an important role in the estimation ef th

To calculate the sample varianc€ ( without requiring the final distribution.

whole set of samples to be stored in memory, we can takeAfter performing extensive simulations [22], we observed

Note that the computation of Equation 7 is only performed
at the sink, which in general outperforms other nodes with
respect to energy and computation capacity.

advantage of the following iterative Equation 3: that it is better to reflect the variability of the data in arde
i1 1 to obtain accurates?, than to obtain a stable value af.
52 = - s2 |+ ﬁ(& — Z;)? (3) Nevertheless, EWMA still proves effective to reduce theeff

of punctual overestimations of the forwarding delay. Hence
Equation 3 and 2 can be computed at each node every timeusi experiences [22] show that a large valuecoproduces
message is forwarded through it, hence updating its loag stacceptable results for most cases. For that reason, and base
information. on our experience, we chose= 0.9.
General casek hops: To compose the RV of the forward- | _ _
Although the CLT is commonly applied to large nhumber of sampln

ing Iaten(_:y _at intermediate hOPS' we take _advantage .Of té‘l}sumentation about good approximations for smaller suhRVs is given
Central Limit Theorem{20] (CLT). The classic formulation in [21].
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situations of very high network saturation they might arise
The evaluation in Section V will show whether this assumptio
is appropriate and if not, how significant the effects are.

F. Applicability

The timeliness performance metric described in this paper
allows multiple application scenarios. Firstly, the infa-
tion regarding hop forwarding latency (i.€*, s**) can be
concatenated to each message (or special control messages)
allowing the recipient to capture the probabilistic estilas.

As an example of such an application, {&be a sink of the
end-to-end pathrp with the requirement that approximately
80% of the messages are delivered within the time interval
(0.8s,1.2s). If the accumulated parameters receivediuf.e.

T*, s77) result in a distribution that satisfies this probability fo
the given time interval, then there is a probabilistic gntea
that the condition will hold.

It is possible to adapt existing tree-routing protocols][24
to choose the relaying hops based on this metric, hence maxi-
mizing the value of the end-to-end parameters (e.g. aatgevi
the best end-to-end distribution). Note that the elabonadf
a routing protocol is beyond the scope of this paper.

delay(ms)

1020 1025 1030 1035
Time(s)

Fig. 2. Effect of different values of

E. Assumptions on the premises of the CLT V. EVALUATION

Message latencies across a network might experience deperfo evaluate the timeliness performance we run extensive
dencies under certain circumstances forcing events todmpgimulations with the simulation tool Omnet++ [25] with the
in a non-independent way (i.&[V,, Vb] # E[V.] - E[V3]]).  Mobility Framework [26]. We chose WiseMAC [27] as an
For instance, dependencies may appear when a messageenergy-efficient MAC protocol specially designed for WSN.
causes additional delay to a message which messagen,  Each run simulated a period of 10 days.
would not have experienced in isolation.
These circumsta_nces may occur due to medium access (& gy aluation criteria
back-offs) or buffering constraints (e.g. messages drdpjoe
to buffer overflows) and are likely to manifest proportidpal ~Under static network conditions, the effective end-to-end
to the network load. In networks with low traffic load, thedelay @) and the accumulated parameters estimated at each
probability of dependencies being significant are praltficahop (Az, A,: for simplicity) would be representative of the
negligible. Contrarily, it is possible that in loaded WSNetheffective distribution and the estimated Normal distribot
dependencies are reflected on the estimations. N(Az,A,z2). Therefore, a sequence of messages large enough
In any case, it is relevant to note that dependencies will F@nsmitted along the path would suffice to estimate the
accounted for at runtime as the delay distribution at eagh hdistributions and allow a direct comparison between them.
is continuously estimated from their timeliness perforacman  However, each time that a message is forwarded by a hop,
Thus, the estimated parameters for a certain hop will vary fi§ recalculates its parameters and s>*. Thus, a message
different network loads as well as the composed end-to-efmdwarded by any of the intermediate links of the path, will
delay distribution. produce a change in the accumulated end-to-end parameters.
Numerous studies relax the premises of the CLT (e.g. [23]h other words, the network conditions are different at gver
However, the prerequisites of these reformulated versiomstant that a message is being forwarded.
of the theorem impose new premises which are difficult to A consequence of the above, is that for each instance
guarantee without analytical models for the network. of a message going through the analyzed path we capture
To overcome this situation, we decided to take the premisas effective end-to-end dela®’ and a set of parameters
as valid with the expectation that the spatial distribut@fn A, A%, which are not directly comparable to those originated
nodes and the typical low throughput of WSN minimizes thiey previous or following messages. This way, with only
dependencies, and even in situations of high load, these #dependent sets of samples it cannot be extrapolated aheth
not significant to the desired accuracy of approximation. their approximation taV(Az, A,2) is accurate or not.
After performing simulations, we believe that the depen- To overcome this problem we perform two complementary
dencies are not of relevance in the general case and onlytésts:

427



Test 1: Normalize each sample of the effective end-to-

end distribution to the standard Normal distributidi(0, 1). < |
Given, ° I."’ \‘\_ —— estimation histogran
m \ — estimated pdf
X ~ N(,u, 02) N ' |-~ reference N(O,1)
then, X
5 o
7z - Xo# g
g 9}
Z ~ N(0,1). S
3 N |
This way, instead of comparing each individual sample °
a N(u,o) with different parameters, we can compare ak
samples against &(0,1). Thus, the expectation is that the§
distribution of the normalized samples approximat@g@,1). £
Test 2: Compare the number of “hits” of each interval |
determined by the distaneefrom the center point). This is
known to be around 68%, 27%, 4.2% and 0.2% respectively
for the intervalsl; = (—o,0), Is = (—20,—0) U (0,20),
I3 = (=30, —20)U(20,30) and Iy = (—oo0, —30) U (30, 00). S

T T T T

If the estimated distribution is accurate, the number ofgam -4 -2
falling in each of these intervals should approximatelydiel
similar proportions.

Normalized end-to—end delay

Fig. 3. Normalized histogram and estimatedf vs N (0, 1), with |[rp| = 5
B. Scenario

We simulated traffic messages from a sender nboe
to a sink hop, with the interference of cross-traffic coming

from neighbor nodes as depicted in Figure 1. The motivations |

for the chosen scenario is partially motivated by the sdesar
described in WASP [28]. A common setup for each simulation

[

—— estimation histogran
— estimated pdf
---- reference N(0,1)

run was chosen with variation in the length of the path and

cross-traffic parameters: > 2
« path length:rp| = {5, 10}, g
« n; sending periodic messagessavith period7 = 30s, £
o messages aggregate the estimated parameters at @agh
intermediate link (Equation 6). é o
e =20.9 é‘
« effective end-to-end transmission latency experienced Ey

each message is capturedsat

« each hop in the path has two neighbors simulating cross>
traffic following a Poisson distribution with parameter
A = {30s,60s, 120s, 480s, 12005},

o radial dlstance between nodes following a uniform distri-
bution with range 8 to 20 meters, 3

« radio interface according to the specification of the RFM -4 -2 0 2 4
TR1100 radio transceiver. Normalized end-to-end delay

Hence, the results of ten different simulation runs with the
combination of parameters and |rp| are presented. Notice
that the process of building the routing path is not congider
at this moment. The purpose of the simulations is to evaluate

the validity of the method to obtain the end-to-end dela§f the standard NormaN (0, 1). The depicted graphics have
distribution. been cropped at the intervét-4,4).

) ) At first sight, two questions arise: the difference between

C. Simulation results the two curves at the central point and the larger tail on the
We first show two representative cases: for the experimeaight side. Both effects are related to each other and can be
with |rp| = 5, Figure 3 shows the histogram aptbbability explained by the nature of the experiment measurements. In
density function (pdfafter normalization compared to tipelf fact, the values represented come from measured end-to-end

ig. 4. Normalized histogram and estimagedf vs N (0, 1), with |rp| = 10
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Fig. 6. Estimated cdfs vs N(0,1), withrp| = 5

Fig. 8. Estimated cdfs vs N(0,1), withrp| = 10

delays. This necessarily introduces a tail effect, as tieee

clear limit on the possible values from the left side (i.eadi a maximum value close t&0Oms.

delays cannot be negative) but none on the right side. Note that thea value performing the EWMA is responsible,
With respect to the range of absolute values, havingima certain way, of this effect. A lower acts as a filter for

mean sample value df.5ms very few messages achieved aigher sampled values and hence, reduces the tail on thee righ

delay less than or equal tns and the distance between theside. However, this also affects the sample variariceas the

minimum value and the mean is approximatelys. However, estimated values get closer to each other. Thus, low valies o

on the right side, this distance goes up to aro@#dhs, with « introduce a distortion on the estimated distribution which
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results in "thinner” curves. On the other hand, higher valu@above the expected end-to-end delay). However, the sanse doe

of a reduce the smoothing effect of the EWMA but produceot happen, except for the case of very low traffic, in the kiwe

a more accurate estimation of the sample variance. Thispiart of the curve. This means that the estimated probability

reflected on the peak of the estimated distribution, althougor end-to-end delays below the expected value do not over-

at the same time, produces thicker distribution shape.dBase estimate the capacity of the path.

experience and previous simulations [22], we chase 0.9, It is important to remember at this point that the objective

which has provide accurate estimation without introducingf this method is not to estimate the probability of indivadu

excessive distortions on the final distributions. message delays but of delays falling within a time interval.
Thus, deviations with respect to the reference distrilousice,

A I Iy I3 Iy ;
NO.1) | (68%) (27%) (4.29%) (0.29%) in ggneral, acceptable. . .

Figures 7 and 8 repeat the same experiment with a path
30 66.5% (-1.5) | 21.5% (-5.5) | 6.8% (+2.6) | 5.2% (+5) length |rp| = 10. In this case, a general better fitting of the

?cz)o gﬁﬁjg E:g:gg 3‘7‘;‘132;3 E;Zd.41)) ;;]/%o/z’f;g')g) 2:;22 E:i:g; estimated curves, as suggested in Figure 4, is visible.dt ha
480 53.3% (-14.7) | 27% (=) 8% (+3.8) 7.7% (+7.5)  been already argued that longer paths are expected to produc
1200 | 50.8% (-17.2)| 25.6%(-1.4) | 11.9% (+7.7)| 11.8% (+11.6) more accurate results. However, the curves for the expatine
TABLE | with higher I_evels of cross-_traﬁit = 30, 60 draw the attention
PERCENTAGE OF HITS PERr-INTERVAL WITH PATH LENGTH 5. IN both for their accuracy with respect to the shape as well as
BRACKETS, DEVIATION WITH RESPECT TON (0, 1). for being shifted to the right. In Figure 8 this shift clearly
shows a constant underestimation of the end-to-end deky (i
pessimistic predictions).
In this case, the difference with respect to the reference
/I\\|01 Iégo/ 1570/ ‘ Iz - ‘ 161 oo curve become relevant, as the estimation will be sensibly
3(§ 1) (55.7;2) (123) gO.li’% G (11'% ‘?+6_8) g.'z%°)(+3) pessimistic. The explanation of this effect lies in the feigh
60 62.4% (-5.6) | 24.9% (+2.1) | 9.2% (+5) | 3.5% (+3.3) amount of missed acknowledgments for this experiment. When
‘lég gi"/:(;-ﬁ)sﬁ %éi’f (:(llé) g-ggjo (3-5) 223;" (12-4) an acknowledgment is missed, the sender considers that the
1200 | 8070% 5:7:33 28 90% E+1:9)) 2 5% E+3:4; > 8% §+2?6) message was not received, and hence proceeds with its re-

transmission. However, the message was properly delivered
and the receiver is ready to forward it further. The result is
that the calculated latency of the message at the sendelisiode
notably worse than the real delay experienced by the message
Such phenomenon are expected to happen in WSN, and this

_ result shows that measures must be taken to countermeasure
Figure 4 shows the same results for the casept= 10|. i effects.

This results do not differ much from the previous ones, ekcep taple | and Table II present the results for the second

that it is noticeable that the estimatedf is slightly more ot with the reference to the standard Normal in brackets.
centered than it was in the previous case. This again, is 'Kﬁain, the tail effect can be seen as the interiiareceives

an unexpected result as it was already expected that longfefificantly more hits than expected. Similarly, intenval
paths would produce better estimated distributions. H@NeV afiects a lower percentage of hits, which agrees with the
it is remarkable that even with paths as short as five hOpSpFevious figures.

is possible to obtain relatively accurate results.
Figure 5 and Figure 6 show respectively the probability dgns
and cumulative distribution functions (i.@df and cdf) of
all cases with|rp| = 5 and variations in the cross traffia ( In this paper we presented a new approach to probabilistic
parameter). timeliness performance metric in Wireless Sensor Networks
As can be observed, accuracy increases proportionalleto ffhe paper motivates the use of probabilistic approachésdads
cross-traffic parameters. This is due to the fact that thidrig of methods aiming at hard real-time by means of adding
the amount of messages going through the network, the memnstraints and hence reducing its applicability.
frequently intermediate nodes refresh their local esionat We introduced a generalized notion of timeliness which
In other words, if the traffic is too low, the estimated valaés allows capturing the level of confidence for the temporal
the arrival of a message loose accuracy by the time the neerformance and a probabilistic method which allows the
message is received. estimation of end-to-end delays. It estimates the densitg-f
In Figure 6, the “lower peak” described before can bgon of the end-to-end latency of a routing path with low
appreciated from the point of view of the estimated proligbil computational demands. The analysis of single-hop message
The higher part of the curve is visibly below the referenc®rwarding latencies is combined into a metric which evedga
curve, which means that the estimation becomes pessimistie probability of a sequence of messages achieving end-to-
(i.e. the method will predict a lower probability for delaysnd latencies within a time interval.

TABLE Il
PERCENTAGE OF HITS PERr-INTERVAL WITH PATH LENGTH 10. IN
BRACKETS, DEVIATION WITH RESPECT TON (0, 1).

VI. CONCLUSIONS AND FUTURE WORK

430



Simulations results for a set of different scenarios urnider! [11]
the validity of this method.

Future work in this area includes the consideration of globgy,
energy consumption (i.e. energy-timeliness trade-offs)dy
of node configurations to achieve local improvements on the
metric values (e.g. back-off exponents, size of preamieles,
as well as the adaptation of existing routing protocols f{a3]
take advantage of this metric. Additional possibilitiestine
the presented method, such as the dynamic adaptation of

L. Abeni and G. Buttazzo, “Qos guarantee using prolthil dead-
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