
An Improved Lightweight Synchronisation Primitive For Sensornets

Jonathan Tate and Iain Bate
Department of Computer Science

University of York
York, United Kingdom

{jt | iain.bate}@cs.york.ac.uk

Abstract

Sensornets must allocate limited computation and en-
ergy resources efficiently to maximise utility and lifetime.
This task is complicated by the need to coordinate activ-
ity between nodes as sensornets are necessarily real-time
collaborative systems. In this paper we present and evalu-
ate lightweight adaptive protocols based on pulse-coupled
oscillators to synchronise tasks within a unicellular sensor-
net. A near-optimal schedule is constructed and dynami-
cally maintained under non-ideal network conditions.

1 Introduction
Sensornets are bound to the physical environment into

which they are deployed, implying real-time requirements
on the sensornet and the distributed application it supports
[7]. Sensornet application designers must establish when
network nodes are available to send, process or receive mes-
sages. Reliability is important in achieving probabilistic
guarantees of real-time behaviour, as lost messages may im-
ply delays, missed deadlines and wasted energy.

In a general network we might coordinate distributed
behaviour through distributed scheduling and routing pro-
tocols. This is typically difficult to achieve in a sensor-
net. Motes are generally equipped with the bare minimum
resources required to support the distributed application.
Lightweight protocols with probabilistic success measures
are typically favoured over heavier but more reliable alter-
natives [6]. No global clock exists, with distributed schedul-
ing rendered difficult by many independent local clocks
steadily drifting out of synchronisation [12].

Consider a situation in which we have a finite set of
nodes with each node capable of broadcasting in a shared
wireless medium, located such that they form a fully-
connected network cell [1]. These broadcasts can be re-
ceived by any member of the cell which is listening to the
medium, or by any nearby external entities. Communica-
tion may occur with the cell, or with neighbouring cells and
base stations to exchange data and tasking messages.

Localised synchronisation protocols can support dis-
tributed applications that would otherwise fail without a
global clock. We would like to arrange the timing of pe-
riodic events such that the delay between any two consec-
utive events is identical, and the ordering of events within
each system epoch is identical. Under these conditions we
can build protocols, such as the Cyclic Duty Allocation Pro-
tocol [14], upon this primitive which exhibit regular, pre-
dictable and fair allocation of duties. Long-term stability
can be achieved despite imperfect clocks and connectivity.

This paper addresses the following problems which rep-
resent novel contributions. We implement a lightweight
feedback-drivenprotocol to build and maintain a cyclic duty
schedule based on a variant of the biologically-inspiredsyn-
chronisationphenomenon [11]. We show that this protocol
works well under ideal network conditions, and propose im-
proved versions that also perform well under adverse net-
work conditions. The protocol is scalable and effective in
mobile networks where nodes join and leave cells unpre-
dictably. The work makes no assumptions about the low-
level communications mechanisms, is stateless with regard
to knowledge shared between motes, and does not require a
global clock or internode synchronisation of local clocks.

This paper is structured as follows. Section 2 places this
work in the context of the relevant literature. Sections 3
to 8 examines thedesynchronisationprimitive and propose
improved versions, with section 9 examining these experi-
mentally. Section 10 summarises the findings of the work.

2 Related work

Many sensornet tasks and data flows are at least approx-
imately periodic [1], typically as a consequence of periodic
interaction with the physical environment. In this paper
we consider distributed synchronisation protocols applied
in closed finite systems of cooperating sensornet nodes. We
wish to synchronise cyclic duty periods in strict round-robin
order within a larger system period known as anepoch.

A rich and diverse body of literature exists on the
scheduling of periodic tasks in general systems; a compre-

448

hensive survery can be found in [8]. The periodic nature of
sensornets suggests acyclic schedulerather than apriority-
driven or deadline-drivenapproach. Adistributed algo-
rithm is necessary without a central controller to enforce
shared schedules.Dynamicalgorithms are required where
motes are mobile or unreliable.

Caccamoet al. [1] propose a hybrid scheduling approach
for multicellular sensornets. AFrequency Division Multi-
plex(FDM) strategy allocates different channels to adjacent
cells by map colouring. Within each system-wide epoch
anEarliest Deadline First(EDF) algorithm, distributed and
replicated exactly at each node in a cell, allocates a propor-
tion of equal-length frames to intra- and inter-cellular traf-
fic. Traffic between adjacent cell pairs is managed under
strict geographiccyclic executive.

PalChaudhuriet al. [12] define a protocol for clock syn-
chronisation which isadaptiveto the needs of a distributed
application. It supportsrelative synchronisationwhere net-
work nodes minimise the relative difference between local
clocks, andexternal synchronisation. The overhead is rela-
tively high; during each synchronisation iteration each node
requiresO(n2) bidirectional data packet exchange with all
neighbours, and execution of a linear regression calculation.
This cost is justified if the application requires nodes to col-
laborate at aspecifictime, rather than the lesser requirement
that they collaborate at thesametime.

Synchronisationanddesynchronisationare biologically-
inspired primitives in which a closed finite system of peri-
odic oscillators converge to a steady equilibrium state. Sys-
tem level coordination is an emergent property of indepen-
dent agents implementing simple rules. Undersynchroni-
sationall oscillators fire simultaneously in the steady state
[11], whereas underdesynchronisationthe oscillator firing
times are evenly distributed in time in the steady state [4].

Wang and Aspel [16] observe that these primitives con-
verge rapidly without global clocks, adapting automatically
to changing cell population. Unlike thePhase-Locked Loop
(PLL) and Delay-Locked Loop(DLL) approaches, which
offer similarly predictable and lightweight synchronisation
behaviour, there is no requirement to maintain continuous
contact between peers in the wireless medium.

A decentralised algorithm is defined by Lucarelli and
Wang [9] in which a sensornet of arbitrary logical topology
applies a variant of the synchronisation-seeking algorithm
defined in [11]; it is not required that the network graph
is fully connected. Each sensornet node acts as a periodic
oscillator but propagates its synchronisation signal onlyto
nodes that are one hop away in the network topology. Over
time, the entire system converges on asynchronisedstate.

DESYNC-TDMAis a TDMA algorithm based ondesyn-
chronisationto perfectly interleave periodic events to oc-
cur in a round-robin schedulein a fully-connected network
[4]. Each node acts as a periodic oscillator. Synchronisation

signals are exchanged with peers defined by physical con-
nectivity rather than logical network topology. The relative
phase of signals measured within cyclical epochs is used
to dynamically correct perceived error. Rapid convergence
on a stable limit-cycle is guaranteed under ideal conditions,
but disproportionately lengthy restabilisation periods result
from small signal timing perturbations or network errors.

Christensenet al. [2] suggest that similar approaches
can be applied in self-configuring systems of highly mo-
bile robots. The physical topography of the implicit net-
work can change very quickly owing to the high mobility of
nodes. These self-organising strategies are particularlyben-
eficial in highly dynamic and unpredictable situations, such
asVehicular Ad-Hoc Networks, where less agile approaches
would struggle to maintain coordinated schedules.

3 The desynchronisation primitive
In this section we consider the elements of thedesyn-

chronisationprimitive [4], and the properties of the con-
verged equilibrium state. We use the standard definitions
of pulse-coupled oscillator systems [11], but rephrase these
from a global system viewpoint to a local node viewpoint as
individual nodes do not have complete system knowledge.

3.1 Building blocks
Assume we have a setΣ of nodesS1 · · ·Sn wheren ≥ 2;

if n = 1, there is obviously no need for internode coordina-
tion. Each nodeSi acts independently but shares an identi-
cal set of behavioural rules. The running time of the system
is divided into a set of systemepochsof equal periode such
that ∀j : Ej = e. The sequence of system epochsEj is
defined by the natural ordering ofj ∈ N.

Within each system epochEj it is required that each
nodeSi ∈ Σ shall execute a single instance of a periodic
eventVi exactly once. All eventsVi are periodic with iden-
tical periodpi = e. The occurrence of a specific event at
a specific nodei within a specific system epochj is la-
belledVij . It is required that all eventsVij are executed
within epochEj . These events need not be related to any
functionality of the sensornet application. However, if the
application naturally produces periodic events of this type,
perhaps as part of a distributed sensing function, then these
application events can be reused for synchronisation.

Distributed protocols and applications can use the result-
ing stream of observeable synchronisation events, occurring
everyt time units, as the foundation for coordinated activ-
ity. Periodic application events required to occur with fre-
quencyf = 1/t can be triggered directly by observed syn-
chronisation events. Application events specified at other
frequencies may use harmonics of the synchronisation fre-
quencyf ; other arbitrary relationships can be supported.

Between observed events nodes must use a local clock.
During this period it is possible that the local timer of each
node may drift by varying amounts, until the next observed

449

event corrects the effects of this drift. However, it is rea-
sonable to assume that commodity timers based on quartz
crystals offer acceptably small and predictable drift between
observed events [13] as typical drift rates are very small [3].
The impact of clock drift is evaluated in section 9.5.

3.2 Equilibrium state properties
For adesynchronisedsystem in a stable state, the order-

ing of eventsVi is stable from epochEj to Ej+1 and the
elapsed time between any two consecutive events is equal
to e/n. A stable state conformant to these specification
is known as anequilibrium state; as time is continuous, if
there exists at least one equilibrium state there exists an in-
finite number of such states. Fortunately, all equilibrium
states are equivalent and equally acceptable.

Before the system reaches the equilibrium state it is pos-
sible that the inter-event time can change; when the equilib-
rium state is reached, it can not. The specific stable ordering
is unimportant, though it is a deterministic consequence of
the initial state of the system and the set of shared rules, but
the inter-event timet is alwayst = e/n.

Although we have defined that the period of all eventsVi

is equal such that∀i : pi = e, we do not explicitly define
the offsetoi of each periodic eventVi within a stable epoch;
this is a deterministic consequence of running a coordina-
tion protocol based on thedesynchronisationprimitive as
described below. The order of offsetsoi within an epoch
Ej defines the order of eventsVij , but any ordering offers
equivalent coordination behaviour within the network cell.

As each epochEj is of equal lengthe, and each event
Vi is periodic, for a given epoch we can define thephaseof
each event relative to the epoch start. Iftij is the time from
the start of epochEj to eventVij then phaseψij = tij/e.
For a stable system the identity of the epoch is not relevant,
soψi = ti/e. This gives phase measurements defined in
the rangeψ ∈ [0, 1). Any valueψ /∈ [0, ψmax) is equiv-
alent toψ mod ψmax as a consequence of modular arith-
metic inherent in phase calculations. Equivalent behaviour
is observed if all values ofψ are scaled linearly with max-
imum phaseψmax taking some arbitrary real value, so we
will useψmax in the analysis but use the explicitψmax = 1
when presenting experimental results.

If we now consider the inter-event timet in terms of
phase, we find that the phase difference between any two
consecutive eventsVx andVy is ∆ψ = (eψmax)/n. To
achieve this equal∆ψ we must schedule the eventsVi

evenly in time throughout an epoch. This schedule must
also ensure a margin of∆ψ exists between the last event of
the previous epoch and the first event of the given epoch,
and between the last event of the given epoch and the first
event of the following epoch. Within a given epoch the time
before the first event and the time after the last event must
sum to∆ψ to provide sufficient margin.

Conversely, undersynchronisationwe would require that

all periodic events occur simultaneously within each epoch.
Whereas this would also be usable as the foundation for co-
ordinated distributed activity, the duration between observe-
able synchronisation events would ben times longer than
underdesynchronisation. This would increase the risk of er-
rors deriving from clock drift and other timing inaccuracies,
but offers no saving in energy consumption or overhead.

3.3 Attaining equilibrium state
Sections 3.1 and 3.2 describe the system from the view-

point of an external observer with access to the entire sys-
tem. Now consider the viewpoint of a participating nodeSi

which can observe events occurring at other nodes but has
no other information. Each node tracks the passage of time
using its internal clock, corresponding to a local measure of
phaseφi in the range[0, φmax) whereφmax = ψmax as
given above. Each nodeSi applies the algorithm indepen-
dently, so we can define this algorithm using only locally-
available data and assume that each participating node exe-
cutes the same algorithm in parallel.

The difference betweenψ andφ is thatψ gives a system-
wide measure of the passage of time as measured in phase
units, whereasφi gives the local measure of the passage of
time as experienced by a single nodeSi. This is significant
because each nodeSi does not have omniscient access to
information available to any other node, and does not have
access to any system-wide overview. As protocol designers
we can use system-wide information to measure the effec-
tiveness of a network design, but the nodes upon which the
protocols are implemented have access only to information
learned from their environment.

Consider an arbitrary epochEj . Whenφi = φmax the
eventVi is triggered at nodeSi andφi is reset to 0. Each
nodeSi is aware of the time at which its own eventVi ex-
ecutes, and the times at which the instantaneously preced-
ing and following eventsViβ andViγ occur. The nodeSi

does not know, and does not need to know, the identity of
the other nodesSiβ andSiγ , the phase neighboursof Si,
at whichViβ andViγ occur respectively. However,Si will
influence and be influenced by its phase neighbours.

Assume a nodeSi executes eventVi, and observes pre-
ceeding eventViβ and succeeding eventViγ which may
or may not occur in the same epochEj . NodeSi mea-
sures the durationtiβ betweenViβ and Vi, and the du-
ration tiγ betweenVi and Viγ , using its internal clock.
We convert these timings into relative phase differences as
φiβ = −(tiβ/φmax), andφiγ = (tiγ/φmax). Note thatφiβ

is negative as the predecessor phase neighbour eventViβ

must occur beforeVi, but is nevertheless equivalent to the
positive value(φiβ mod φmax) ∈ [0, φmax).

In the equilibrium state described in section 3.2, all
eventsVi will be equidistant between preceeding eventViβ

and succeeding eventViγ . We definephase errorfor node
Si asθi = φiβ + φiγ , which is the phase amount by which

450

the timing of eventVi differs from the desired stable state
value. When a equilibrium state is attained,∀i : θi = 0.

The phase error for nodeSi can also be found asθi =
(tiγ − tiβ)/φmax by substituting the definitions ofφiβ and
φiγ given above; this alternative notation is equivalent but
may be easier to implement directly where nodes sleep for
periods during which local phaseφi is not monitored.

As soon as nodeSi becomes aware of succeeding event
Viγ during each epoch, nodeSi can execute the phase ad-
justment procedure. Recall that nodeSi has an internal
clock which it uses to maintain a measure of local phaseφi.
NodeSi evaluates its phase errorθi when succeeding event
Viγ is observed. We now useθi to adjustφi by thephase
changeamount∆φi, which will either enlarge or contract
the duration until the next execution of eventVi. This is
achieved by immediately setting∀i : φinew = φiold +∆φi.
Note that this+∆φi adjustment must also be applied to any
phase measurements of other events stored within nodeSi.

We define∆φi = −fαθi wherefα ∈ (0, 1] represents
the feedback proportion. Higherfα values give faster con-
vergence but less stability, whereas lowerfα values give a
system which takes longer to reach a equilibrium state but
is more stable to the deleterious effects of noise.

This local phase correction directly changes the be-
haviour of nodeSi and indirectly changes the behaviour of
phase neighboursSiβ andSiγ ; during the following epoch
all eventsVi will be closer to their equilibrium-state equi-
librium phaseψi. Given an otherwise unchanging network,
∀i : ||∆φij || → 0 asj → ∞ in successive epochs [11]. If
θi = 0 then the phase change∆φi = 0 as well; no special
action needs to be taken. Note that systems implementing
this primitive may be sufficiently converged to support use-
ful application work before reaching full convergence.

4 Measuring solution quality
Recall from section 3.2 that upon reaching a equilibrium

state the set of events has an even temporal distribution. For
a given nodeSi we know that when local phaseφi = 0 the
eventVi is exactly equidistant from bothVβ andVγ , and we
know that the relative phase difference betweenVβ andVγ

is given by2(φmax/n). It is therefore possible to measure
the observed behaviour against this defined ideal to obtain
estimates of solution quality at any given instant.

Each node can calculate these metrics using locally
available data, perhaps using these to moderate local ap-
plication behaviour. Ideally, all nodes would have the ideal
value of all metrics.
M1: Allocated timeslot length.In the equilibrium state

each node is allocated communication duty for an
equal proportion of each epoch. The metric is cal-
culated for each nodeSi asM1i = tiβ + tiγ and is
measured inseconds. The ideal value isM1 = e/n.

M2: Asymmetry.In the equilibrium state each node broad-
casts its synchronisation pulse exactly equidistant from

those of its phase neighbours with perfect symme-
try. The metric is calculated for each nodeSi as
M2 = ||tiβ − tiγ || and is measured inseconds. The
ideal value isM2 = 0.

M3: Node population estimate.In the equilibrium state
each node has sufficient information to accurately esti-
mate the cell population, and hence to decide whether
it should participate. The metric is calculated for all
nodes asM3 = [e/(tiβ + tiγ)], and is measured in
nodes. The ideal value isM3 = n.

5 Implementing the primitive
Networks in which this primitive is applied can be mod-

elled as a fully connected graphG = (V , E), whereV rep-
resents the set of network nodes andE represents the set of
possible pairwise communication exchanges. We assume
signal propagation, though not packet propagation, is in-
stantaneous in the wireless medium. We cannot assume an
atomic publisher-subscriber model in non-ideal networks.

The eventsVij executed by nodesSi ∈ Σ as described
above are shortpulseswhich are broadcast by a sender node
Sα and received by all other nodesSi ∈ (Σ\Sα). The edges
E of the graphG can be thought of as representing com-
munication channels which are often unused, but through
which a single bit of information will periodically be trans-
mitted when apulsetransmission occurs. Recipients will
use the time at which thepulseis received, rather than in-
formation encoded into the signal itself.

Precisely how thispulse is implemented is irrelevant
to the content of this paper, because any implementation
which successfully distributes the single bit messages at the
appropriate times would convey the same source informa-
tion to the algorithm. However, a typical implementation
would be the transmission of the shortest possible header-
only packet achievable under a given network stack. The
minimal time required for this stub packet to traverse the
network stack of the sender and the receivers,κ, represents
the limit of convergence. In an ideal systemκ = 0 such
thatM1 − M3 approach their ideal values as system time
t→ ∞. In a realistic non-ideal systemκ > 0, so we expect
M1 andM2 to converge within±κ. AsM3 is rounded to
the nearest integer we would expect it to converge on the
correct integer ifκ is sufficiently small.

6 Tuning
There are three parameters of thedesynchronisation

primitive; the number of nodes,n, the system epoch length,
e, and the feedback proportion,fα. Achieving accept-
able network performance requires the setting of appropri-
ate values ofn, e and fα. Appropriateness is defined in
application-dependent and -independent factors.

The hardware in the deployment network may affect the
possible range ofn. This is particularly important where
nodes are mobile or fragile; applications should continue to

451

perform correctly when a single node leaves the cell. Appli-
cation requirements may specify a minimum and/or maxi-
mum number of nodes to give a probabilistic guarantee of
coverage of the physical region covered by the sensornet
cell. n can never be higher than the number of nodes de-
ployed into the environment, and can never be lower than 1
for any non-degenerate case, but between these bounds the
appropriate value ofn is application dependent. We con-
clude thatn is significant but not tunable.

The network designer is largely free to setfα to any de-
fined value to obtain a reasonable tradeoff between respon-
siveness and stability. We examine the effect of different
fα values in section 9.2. Usuallyfα is set to a high value
to achieve good responsiveness, shortening the time to at-
tainingequilibrium state. However, non-ideal network con-
ditions can lead to inaccurate, noisy or missing inter-node
synchronisation data. Unfortunately, thedesynchronisation
algorithm will respond as quickly to noise as to accurate
data, harming solution stability. Network designers can re-
ducefα, reducing feedback and increasing systemicdamp-
ing, to minimise this effect at the cost of reduced respon-
siveness to real system changes. A better solution is given
by the improved protocol variants defined in section 7.

The behaviour of the primitive is independent ofe; vir-
tually any value might be selected provided thate ≥ nκ
to allow all n synchronisation messages to be transmitted
within each epoch. Within each epoch, the proportion of
time consumed by synchronisation is given bynκ/e. Larger
values ofe assign a greater proportionp = 1 − (nκ/e) of
each epoch for application usage rather than synchronisa-
tion; p → 1 ase → ∞. As the number of epochs required
for the system to reach the required level of convergence is
independent ofe, if e is large then so is the wall time implied
by these epochs. In highly mobile networks it is therefore
useful to keepe relatively small, but sufficiently large for
application-specified tasks to complete. However, synchro-
nisation messages are typically very small; even relatively
smalle values are orders of magnitude greater thanκ, such
thatp is insignificant and convergence is fast.

7 Improved variants of the primitive
In section 6 we observe that low values offα damp

the response of thedesynchronisationprimitive, which im-
proves resilience to transient errors and network conditions
at the expense of responsiveness to real network changes.
In this section we propose an alternative approach.

Recall from section 3 that each nodeSi can disregard all
observed synchronisation events other than the phase neigh-
bours of its synchronisation eventVi, and that the sources of
these phase neighbour events do not change between system
epochs. Normally nodeSi will use exactly one instance of
the predecessor eventViβ and the successor eventViγ in cal-
culating∆φi. These single instances are most recent obser-
vations, which will occur atφiβ = φmax(e/2n) mod φmax

andφiβ = −φmax(e/2n) mod φmax respectively in the
equilibrium statefrom the local viewpoint of nodeSi.

Rather than use the most recently observed values ofφiβ

andφiγ , we propose that each node maintains amoving av-
erageover the most recentm complete epochs, stored in
two queue buffers of sizem at each node. Each queue is
initially populated withnil values which do not contribute
to the moving average. During each epoch the new value is
pushed on the head of the appropriate queue, and the old-
est value is popped off the end of the queue. If no phase
neighbour events are observed in a given epoch, anil value
is pushed on the queue instead of a measurement. This is
required for well-defined behaviour in the degenerate case
where node movement temporarily impliesn = 1.

For a queue containingν non-nil values, thefill ratio π =
ν/m increases in[0, 1] asν → m. The minimumfill ratio
πmin required to calculate meaningful moving averages is
specified by the application designer; larger values imply
a greater delay until noise rejection behaviours are active,
but have more data with which to work and hence are less
susceptible to the influence of outliers.

When the nodeSi is required to amend its local phase,
as per section 3.3, the relative phasesφiβ andφiγ of phase
neighbour events are calculated as the arithmetic mean of
the associated buffer of recent historical values ifπ ≥ πmin;
otherwise, we revert to the original strategy of using the
most recent observations directly. The underlying primi-
tive remains fundamentally unaltered in this improved algo-
rithm and hence retains its convergence properties, but op-
erates on higher-quality source data. The network designer
must still set an appropriate value offα.

To improve responsiveness we use variants of the plain
moving average that give greater weighting to more recent
values, but can still operate effectively when the value for
the current system epoch is undefined as a result of a lost
pulse. Assume we label the non-null historical data values
in each buffer asx1, . . . , xm wherexm is the most recent.
We employ anexponentially weighted moving averagein
which the weightingw of historical data pointxy is given
aswy = yz wherez ∈ R is thescaling exponent. If z = 1
then we have the plain moving average. Ifz > 1 then newer
data are more significant, whereas ifz < 1 then older data
are more significant. Usuallyz > 1 will be selected to give
higher priority to newer data.

8 Cost analysis
The plain version of thedesynchronisationprimitive de-

fined in section 3 requires only two items of data to be
stored. As the local phaseφi increases from0 to ψmax for
some given nodeSi any number of pulse events might be
observed, but only the first and last are retained. The first
corresponds to the successor pulse eventViγ , and the last
corresponds to the predecessor pulse eventViβ , that sur-
round the local pulse eventVi. We require storage space for

452

exactly two such timing data, as each value will be over-
written with new data during each epoch. Therefore, the
storage overhead isO(1) in node population,n. The algo-
rithmic complexity is alsoO(1) in n because the algorithm
requires a small fixed number of steps to be executed during
each epoch; there are no loops or other recursive constructs.
This low overhead is highly desirable in sensornet systems
which have few resources to allocate.

Now consider the moving average variants defined in
section 7. Storage and computation overheads remainO(1)
in node count as the algorithm continues to consider only
the two phase neighbour nodes, irrespective of any number
of other participating nodes which might be present. How-
ever, we must now consider the number of event observation
timing values,m, which contribute to the moving average
on each execution of the algorithm. Note that this applies
only to the calculation of the effective phase of eventsViβ

andViγ ; the phase adjustment algorithm is unaffected.
There exist algorithms to calculate simple moving av-

erages that areO(1) in storage and computation overhead,
and if these are employed it is obvious that the moving av-
erage offers significantly improved performance with min-
imal increased overhead. However, a general moving aver-
age algorithm may be worse thanO(1) but no worse than
O(m) in storage and computation and overhead, the latter
being observed if the algorithm must consider allm con-
tributing data on each execution.

We observe that each execution of the algorithm at each
node is guaranteed to terminate inO(1) time. However, the
algorithm is executed once at each node during each epoch,
so in this sense the algorithm never terminates. This latter
condition is essential if the algorithm is to remain respon-
sive to changing network conditions; it is obvious that no
algorithm could respond after terminating.

For systems expected to be deployed into highly pre-
dictable and rarely changing environments, non-terminating
algorithms may not be the most efficient choice. However,
sensornets are typically deployed in highly unpredictable
and changeable environments, and mobile ad-hoc networks
are characterised by continual change; the algorithms de-
scribed in this paper are an appropriate choice. For moder-
ately changing environments, these primitives can be ex-
ecuted until equilibrium is reached, then cyclically sus-
pended for significant periods then executing for short pe-
riods. During suspended periods the extant event schedule
can be reused without incurring overhead, with schedule re-
pair and recalibration occurring during execution periods.

9 Experimental results
We model the Crossbow MICA2 mote in our experi-

ments. We setκ = 1 × 10−3s as the time required for
a synchronisation pulse transmission-reception pair to com-
plete, and hence take this as the threshold deviation from the
ideal value of metricsM1 andM2 within which we consider

a systemconverged. As metricM3 is inherently rounded we
require the measured value to exactly match the ideal value.
Each metric is measured at all nodesSi ∈ Σ. We count the
elapsed time in system epochs from network initialisation to
the point at which the mean, minimum and maximum val-
ues measured across the participating nodes all fall within
the defined threshold.

Unless stated otherwise we use a fixed cell population
n = 10 nodes because this is an energy-efficient clus-
ter size for typical 1000-node sensornets [15]. We select
epoch lengthe = 10s so that epochs are large compared to
k and long enough for realistic tasks to complete between
synchronisation events in timee/n. We select feedback
fα = 0.9. We label the plain desynchronisation algorithm
asA, thebasic moving averagevariant asB, and theexpo-
nentially weighted moving averagevariant asC. For vari-
antsB andC we set buffer sizem = 10 andπmin = 0.5.
For variantC we specify scaling exponentz = 2. We do
not claim that these parameters are optimal; selecting ap-
propriate values is an optimisation problem that is beyond
the scope of this paper. However, these selected values are
typical and illustrative.

To model other hardware platforms substitute a differ-
ent κ, and to model other networks different values ofn,
e andfα can be used; the results are qualitatively equiva-
lent but quantitatively different. Note that metricsM1 and
M2 approach theirκ convergence limits asymptotically; it
is possible to achieve a looser but acceptable degree of con-
vergence in significantly shorter time. Network designers
must tradeoff solution quality against algorithm efficiency
when specifying network requirements.

Section 9.1 models coordinated and uncoordinated net-
work deployment scenarios. Section 9.2 models networks
of differing cell size and responsiveness requirements. Sec-
tion 9.3 models situations in which mobile nodes enter or
leave the physical region covered by a network cell, suspend
or wake in response to duty cycle management protocols,
or leave the network owing to hardware failure. Section 9.4
models networks where malfunctioning hardware, environ-
mental obstacles or deliberate sabotage disrupts inter-node
communications. Section 9.5 models networks where mal-
functioning hardware, poor application design or extreme
ambient temperature induces local timing errors.

9.1 Cell initial configuration
We defineinitial configurationas the set of initial node

phases relative to the start of the first system epoch. In
randominitial configurations these starting phases are ran-
domly distributed in the interval[0, ψmax). In ideal case
initial configurations these starting phases are evenly dis-
tributed in time, identical to thedesynchronised equilibrium
state. In worst caseinitial configurations all starting phases
are equal, identical to thesynchronised equilibrium state.

We begin by illustrating convergence of metrics from a

453

randominitial configuration. Figure 1 shows the mean val-
ues of metricsM1−M3 across all nodes, with all measured
values normalised to the range[0, 1]. Metrics were sampled
at the end of each of the first 100 system epochs under the
original algorithm variant A. Similar plots are obtained for
variants B and C but are omitted owing to lack of space.

All metricsM1−M3 can be approximated by sequences
of the formf(j) = 1/j + c in epochj wherec is some
constant. We observe thatM1 very quickly approaches its
limiting value. As epochj increases the valueM1j alter-
nates between higher and lower than the limitM1∞ with
the difference||M1j −M1∞|| quickly becoming small.M3

also approaches its limiting valueM3∞ quickly, though not
as quickly asM1, with relatively large perturbations from
the idealised hyperbolic form explained by the quantisation
of individual measurements to integral values (see section
4).M2 converges more slowly thanM1 orM3 but declines
smoothly and monotonically toward the limitM2∞.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100 110

N
or

m
al

is
ed

 m
ea

n
m

et
ric

s
M

1-
M

3

Epoch

Normalised mean metrics M1-M3 versus epoch

M1 M2 M3

Figure 1. Normalised metrics for variant A

Table 1 presents the time required for metricsM1 −M3

to converge. Consider the behaviour when the system starts
in thebest-caseconfiguration, equivalent to anequilibrium
stateof the algorithm. We see that the system maintains this
ideal configuration for all metricsM1 −M3. This simply,
but importantly, indicates that the algorithm will not takethe
system from anequilibrium stateto anon-equilibrium state.
We need not consider thebest-caseconfiguration further.

Now consider theM1 metric. We see thatM1 reaches its
converged value very quickly for all algorithm variants and
all initial configurations. We conclude that all variants are
highly capable in this regard under ideal network conditions
and need not consider this metric further.

For all variantsA−C, we see that all metricsM1 −M3

will converge in finite time starting from arandomisedor
worst-caseinitial configuration. In all experiments, reach-
ing the convergence limit required more epochs from a
worst-caseinitial configuration. This is unsurprising as the
worst-caseconfiguration is further from thebest-casecon-
figuration than almost everyrandomisedconfiguration, ex-
ceptingrandomisedconfigurations that are alsoworst-case.

The number of epochs required to reach the conver-
gence limitM3∞ is nearly the same for each algorithm
variantA − C. This is a consequence of the calculation
of M3 rounding intermediate values to the nearest integral
value, an effect which will dominate small variation in pre-
rounded intermediate values as these converge.

Now consider theM2 metric, which in all cases is the
slowest to reach the convergence limit and therefore defines
the point at which cells reach anequilibrium state. Start-
ing with a randomisedinitial state we observe the epochs
required for convergence is of the same order of magni-
tude for each algorithm variant, but convergence is reached
somewhat faster under variantA thanB orC; a smaller dif-
ference exists between values for variantsB andC. This
is explained by hysteresis effects; variantB calculates new
values using historical data and variantA does not, so the
output of variantB lags behind that ofA. VariantC is
somewhere betweenA andB both in the influence of histor-
ical data and the corresponding measured responsiveness.

We conclude that all algorithm variantsA−C are effec-
tive under ideal network conditions.

Initial Algorithm Epochs to convergence
state variant M1 M2 M3 MAX

A 3 25 11 25
Random B 3 38 21 38

C 3 37 21 37
A 1 1 1 1

Best B 1 1 1 1
C 1 1 1 1
A 3 35 21 35

Worst B 3 56 24 56
C 3 54 24 54

Table 1. Convergence times for metrics

9.2 Cell composition
In this section we measure the epochs required for all

metricsM1 −M3 to converge to anequilibrium state. Fig-
ure 2 illustrates the relationship betweenfα and the number
of system epochs,y, which must elapse before the system
reaches anequilibrium stateunder algorithm variantsA and
B; the trace for variantC is very similar to that ofB and is
omitted for clarity. Each value offα was evaluated with an
identicalworst-caseinitial configuration

TracesA andB are similar, though not identical, for
fα ∈ (0, fcritical) wherefcritical ≈ 0.91. Up to this point,
both A andB describe approximately hyperbolic traces
such that the relationship betweenfα and epoch ofequilib-
rium statecan be approximated by the formf(j) = 1/j+ c
in epochj wherec is some constant. A difference in be-
haviour is noted forfα > fcritical; traceB continues its
original hyperbolic path, whereas traceA grows quickly
with fα ∈ [fcritical, 1]. Two distinct effects must be con-
sidered to understand this relationship.

454

In each epoch each nodeSi amends its local phase by
∆φi = −fαθi whereθi is the perceived phase difference
between the local synchronisation event atφi = ψmax and
the midpoint of the phase neighbour events. The greater the
value offα, the greater the proportion of perceived differ-
ence that is fed back into the system, pushing the system
toward theequilibrium statemore quickly. This explains
the shape of traceB for fα ∈ [0, 1], and the shape of trace
A for fα ∈ [0, fcritical].

Now consider traceA for fα ∈ [fcritical, 1]. θi is con-
tinuously variable butκ, the time for a pairwise exchange
of synchronisation event, is constant. Convertingκ from
time units to phase units, the magnitude||∆φi|| becomes
small compared to the magnitude||κφmax||. As the magni-
tude ||κφmax|| defines the uncertainty of the phase neigh-
bour event midpoint measurement, it follows that the mag-
nitude of the measurement error becomes significant com-
pared to the magnitude||∆φi||. This causes convergence to
slow as the limit is approached. Each iteration of the pro-
cedure must attempt to correct for previous measurement
errors within the new phase difference measurement.

If fα is small, the proportion of this measurement error
fed back into the system is also small, so its effect is in-
significant. Asfα grows so does the proportion of measure-
ment error feedback. Under variantB the measurement er-
ror is found in all stored samples. Although the error values
are not explicitly available, as they derive from consecutive
system epochs they are likely to be of similar magnitude,
and they are as likely to be positive as to be negative. Tak-
ing the average of the samples will approximately cancel the
measurement errors, so the effect of these errors does not
become dominant. Under variantA there is no such cancel-
lation effect, hence the effect of these errors becomes dom-
inant. Defining convergence limits of significantly larger
magnitude thanκ would hide this phenomenon without ac-
tually addressing the underlying issue.

 0

 100

 200

 300

 400

 500

 600

 700

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
po

ch
s

Feedback, fα

Epochs to equilibrium state

Variant A
Variant B

Figure 2. fα versus epochs to equilibrium

Figure 3 illustrates the relationship betweenn and the
number of system epochs,y, which must elapse before the
system reaches anequilibrium stateunder algorithm variant

A. Similar plots are observed for variantsB andC but are
omitted for brevity. As the celln increases the general trend
is that y increases too. It is notable that this increase is
not monotonic, and does not conform readily to any well-
known relationship. Despite the guarantee that the system
will converge [11] it is difficult to predict the time required.
This is a consequence of algorithm variantsA−C defining
feedback-driven systems, in which the relationship between
input and output is deterministic yet difficult to predict [5].

 10

 20

 30

 40

 50

 60

 70

 2 4 6 8 10 12 14 16 18 20

E
po

ch
s

Node count, n

Epochs to equilibrium state

Epochs

Figure 3. n versus epochs to equilibrium

Larger networks may be divided into multiple cells.
Extensions based onentrainmenthave been implemented
which progressively synchronise equivalent transmissions
in adjacent cells. This enables intercellular co-operation,
mitigates the risk of clashing behaviour, and enables effi-
cient handover of mobile nodes between cells. However, a
detailed description is beyond the scope of this paper.

9.3 Cell population change
In this section we consider algorithm performance for

cells starting in a stablebest-casewhere a node is either
added or removed from the cell population. We then mea-
sure the time required to reach a newequilibrium state
where all metricsM1 −M3 are converged. We plot met-
ric M2 against epoch as this is the slowest to converge.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 10 20 30 40 50 60 70 80

A
sy

m
m

et
ry

 (
s)

Epoch

Adding node in equilibrium state

Variant A
Variant B
Variant C

Figure 4. Adding node to stable system

Figure 4 shows a node being added to a stable 5-node
system. VariantA requires 21 epochs to re-establish the

455

equilibrium state, variantB requires 58 epochs, and vari-
ant C requires 57 epochs. Figure 5 shows a node being
removed from a stable 5-node system. VariantA requires
16 epochs to re-establish theequilibrium state, variantB
requires 47 epochs, and variantC requires 46 epochs. The
node removal experiments re-establish theequilibrium state
more quickly because the new stable system is smaller than
the new stable system in the node addition experiments.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

A
sy

m
m

et
ry

 (
s)

Epoch

Removing node in equilibrium state

Variant A
Variant B
Variant C

Figure 5. Removing node from stable system

In all cases theequilibrium stateis re-established in fi-
nite time. Note that decreasinge reduces this time linearly.
As the algorithm is capable of restabilising the cell sched-
ule when a single node is added or removed, it is capable
of dealing with multiple additions or removals as these can
be decomposed into an equivalent temporally ordered se-
quence of single additions and removals. This is particu-
larly helpful in networks of highly mobile nodes, in which
cell membership is expected to change frequently.

9.4 Radio error resilience

In this section we consider algorithm performance for
cells starting in a stablebest-casewhere network conditions
are non-ideal. It is possible that a synchronisation pulse
transmissionVij may fail to be heard at one or more of the
intended recipients; we call each instance alost pulse. Re-
ception will either succeed or fail independently and atom-
ically at each potential recipient. We measure performance
where reception of an arbitrary pulse at an arbitrary node
fails stochastically with probabilityp ∈ [0, 1].

In figure 6 we setp = 0.05. For each variantA − C
exactly the same synchronisation pulse transmitter-receiver
pairs were lost. We see that variantsB − C significantly
outperform the original variantA significantly, with much
smaller deviation in metricM2 from the ideal value of
M2 = 0. Although neither variantB norC cope perfectly
with pulse loss, and there is little to pick between them, they
offer substantially improved performance and stability.

Synchronisation pulses have minimal length and content;
a phantom pulseis feasible where radio noise or corrupted
packets are interpreted as a synchronisation pulse. We mea-

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 10 20 30 40 50

A
sy

m
m

et
ry

 (
s)

Epoch

Metric M2 versus epoch with lost pulses

Variant A
Variant B
Variant C

Figure 6. Lost pulses

sure performance where nodes observephantom pulsesdis-
tributed randomly in time with rater given ins−1.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10 20 30 40 50

A
sy

m
m

et
ry

 (
s)

Epoch

Metric M2 versus epoch with phantom pulses

Variant A
Variant B
Variant C

Figure 7. Phantom pulses

In figure 7 we setr = 0.1 s−1. For each variantA −
C exactly the same phantom pulses were heard by nodes.
Again, we observe that variantsB − C offer significantly
better stability and performance than variantA.

9.5 Clock error resilience

In this section we consider algorithm performance for
cells starting in a stablebest-casewhere timings are not ac-
curate. Jitter in synchronisation pulse transmission times
may result from non-ideal task scheduling algorithms or
preemption by higher priority tasks at the sender node. Al-
though many definitions are possible [8] we define the jit-
ter ι of a given synchronisation pulse as the difference be-
tween the intended and actual transmission times, whereι
is distributed normally asι ∼ N(µι, σ

2
η). Transmission jit-

ter affects both phase neighbours of the transmitter node,
whereas individual radio error affect only a single receiver.

In figure 8 we setµι = 0s, as early transmission is as
likely as late transmission, andση = 0.1s. For each vari-
antA − C pulse transmission times are subject to exactly
the same jitter. We observe that variantsB − C show sig-
nificantly better stability and performance than variantA.

456

Under variantsB − C the uncorrected error component is
of the same order of magnitude as jitter standard deviation.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 10 20 30 40 50

A
sy

m
m

et
ry

 (
s)

Epoch

Metric M2 versus epoch with transmission jitter

Variant A
Variant B
Variant C

Figure 8. Jitter

Clock drift is observed if local node clocks are imperfect.
As one second passes in the physical world the clock may
measure more or less than one second passing, governed by
a scaling factorη > 0. Perfect clocks haveη = 1; manufac-
turing imperfections and variation between calibration and
operational temperature tend to giveη 6= 1 [10]. We assume
each node clock has constantη [13], distributed normally
asη ∼ N(µη, σ

2
η). We setµη = 1 to model clocks equally

likely to run fast as to run slow. We setση = 1 × 10−3,
modelling drift rates with standard deviation several orders
of magnitude greater than the1× 10−6 seconds per second
drift typical of commodity quartz crystal timers [3]. Figure
9 shows variantsA−C perform acceptably in rejecting drift
effects, with uncorrected error of the same order of magni-
tude as the drift. For variantsB − C we see some initial
stabilisation as drift-laden measurements fill the buffers.

 0.012

 0.013

 0.014

 0.015

 0.016

 0.017

 0.018

 0.019

 0.02

 0.021

 0 10 20 30 40 50

A
sy

m
m

et
ry

 (
s)

Epoch

Metric M2 versus epoch with clock drift

Variant A
Variant B
Variant C

Figure 9. Clock drift

10 Conclusions
The desynchronisationprimitive is lightweight and ef-

fective in coordinating activity within unicellular sensor-
nets. However, the original version is prone to instability
arising under common non-ideal timing and network condi-
tions. We defined improved primitives yielding significant

and measurable improvements in stability without sacrific-
ing performance. Algorithmic and storage overheads are of
the same order,O(1), in cell populationn as the original.

References

[1] M. Caccamo, L. Zhang, L. Sha, and G. Buttazzo. An implicit
prioritized access protocol for wireless sensor networks.In
Proc. Real-Time Systems Symposium, pages 39–48, 2002.

[2] D. Christensen, D. Brandt, U. Schultz, and K. Stoy.
Neighbor detection and crosstalk elimination in self-
reconfigurable robots. InProc. Robot Communication and
Coordination, pages 1–8, 2007.

[3] F. Cristian, H. Aghili, and R. Strong. Clock synchronization
in the presence of omission and performance failures, and
processor joins. InProc. 16th IEEE International Sympo-
sium on Fault-tolerant Computing Systems, July 1986.

[4] J. Degesys, I. Rose, A. Patel, and R. Nagpal. DESYNC:
self-organizing desynchronization and TDMA on wireless
sensor networks. InProc. Information Processing in Sensor
Networks, pages 11–20, April 2007.

[5] R. Devaney. A first course in chaotic dynamical systems.
Addison-Wesley, Reading, MA, 1992.

[6] D. Estrin, L. Girod, G. Pottie, and M. Srivastava. Instru-
menting the world with wireless sensor networks. InProc.
International Conference on Acoustics, Speech, and Signal
Processing, pages 2033–2036, 2001.

[7] T. He, J. Stankovic, C. Lu, and T. Abdelzaher. SPEED:
A stateless protocol for real-time communication in sensor
networks. InProc. IEEE International Conference on Dis-
tributed Computing Systems, pages 46–55, 2003.

[8] J. Liu. Real-Time Systems. Prentice Hall, Upper Saddle
River, NJ, 2000.

[9] D. Lucarelli and I. Wang. Decentralized synchronization
protocols with nearest neighbor communication. InProc.
SenSys’04, pages 62–68, 2004.

[10] D. Mills. Precision synchronization of computer network
clocks.Computer Communication Review, 24:28–43, 1994.

[11] R. Mirollo and S. Strogatz. Synchronization of pulse-
coupled biological oscillators.SIAM Journal Of Applied
Mathematics, 50(6):1645–1662, December 1990.

[12] S. PalChaudhuri, A. Saha, and D. Johnson. Adaptive clock
synchronization in sensor networks. InProc. Information
Processing in Sensor Networks, pages 340–348, April 2004.

[13] M. Sichitiu and C. Veerarittiphan. Simple, accurate time
synchronization for wireless sensor networks. InProc. IEEE
Wireless Communications and Networking Conference, vol-
ume 2, pages 1266–1273, March 2003.

[14] J. Tate and I. Bate. Energy efficient duty allocation proto-
cols for wireless sensor networks. InProc. IEEE Conference
on Engineering of Complex Computer Systems (to appear),
June 2009.

[15] D. Wang. An energy-efficient clusterhead assignment
scheme for hierarchical wireless sensor networks.Interna-
tional Journal of Wireless Information Networks, 15(2):61–
71, June 2008.

[16] X. Wang and A. Apsel. Pulse coupled oscillator synchro-
nization for low power UWB wireless transceivers. InProc.
50th Midwest Symposium on Circuits and Systems, pages
1524–1527, August 2007.

457

