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Abstract Localised synchronisation protocols can support dis-
tributed applications that would otherwise fail without a
Sensornets must allocate limited computation and en-global clock. We would like to arrange the timing of pe-
ergy resources efficiently to maximise utility and lifetime riodic events such that the delay between any two consec-
This task is complicated by the need to coordinate activ- utive events is identical, and the ordering of events within
ity between nodes as sensornets are necessarily real-timeeach system epoch is identical. Under these conditions we
collaborative systems. In this paper we present and evalu-can build protocols, such as the Cyclic Duty Allocation Pro-
ate lightweight adaptive protocols based on pulse-coupledtocol [14], upon this primitive which exhibit regular, pre-
oscillators to synchronise tasks within a unicellular sers  dictable and fair allocation of duties. Long-term stafilit
net. A near-optimal schedule is constructed and dynami-can be achieved despite imperfect clocks and connectivity.

cally maintained under non-ideal network conditions. This paper addresses the following problems which rep-
) resent novel contributions. We implement a lightweight
1 Introduction feedback-driven protocol to build and maintain a cycligdut

Sensornets are bound to the physical environment intoSchedule based on a variant of the biologically-inspytt
which they are deployed, implying real-time requirements chronisationphenomenon [11]. We show that this protocol
on the sensornet and the distributed application it support Works well under ideal network conditions, and propose im-
[7]. Sensornet application designers must establish whenProved versions that also perform well under adverse net-
network nodes are available to send, process or receive mes¥ork conditions. The protocol is scalable and effective in
sages. Reliability is important in achieving probabitisti Mobile networks where nodes join and leave cells unpre-

guarantees of real-time behaviour, as lost messages may imdictably. The work makes no assumptions about the low-
ply delays, missed deadlines and wasted energy. level communications mechanisms, is stateless with regard

In a general network we might coordinate distributed t© knowledge shared between motes, and does not require a
behaviour through distributed scheduling and routing pro- global clock or internode synchronisation of local clocks.
tocols. This is typically difficult to achieve in a sensor- ~ This paper is structured as follows. Section 2 places this
net. Motes are generally equipped with the bare minimum Work in the context of the relevant literature. Sections 3
resources required to support the distributed application t0 8 examines theesynchronisatioprimitive and propose
Lightweight protocols with probabilistic success measure improved versions, with section 9 examining these experi-
are typically favoured over heavier but more reliable alter mentally. Section 10 summarises the findings of the work.
nauves [6]. No glqbal clock eX|sts_, with distributed schkd 2 Related work
ing rendered difficult by many independent local clocks
steadily drifting out of synchronisation [12]. Many sensornet tasks and data flows are at least approx-

Consider a situation in which we have a finite set of imately periodic [1], typically as a consequence of peigodi
nodes with each node capable of broadcasting in a sharednteraction with the physical environment. In this paper
wireless medium, located such that they form a fully- we consider distributed synchronisation protocols applie
connected network cell [1]. These broadcasts can be re-in closed finite systems of cooperating sensornet nodes. We
ceived by any member of the cell which is listening to the wish to synchronise cyclic duty periods in strict roundirob
medium, or by any nearby external entities. Communica- order within a larger system period known asegroch
tion may occur with the cell, or with neighbouring cells and A rich and diverse body of literature exists on the
base stations to exchange data and tasking messages. scheduling of periodic tasks in general systems; a compre-
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hensive survery can be found in [8]. The periodic nature of signals are exchanged with peers defined by physical con-
sensornets suggestsyclic scheduleather than griority- nectivity rather than logical network topology. The relati

driven or deadline-drivenapproach. Adistributed algo- phase of signals measured within cyclical epochs is used
rithm is necessary without a central controller to enforce to dynamically correct perceived error. Rapid convergence

shared scheduleynamicalgorithms are required where
motes are mobile or unreliable.

Caccamet al. [1] propose a hybrid scheduling approach
for multicellular sensornets. &requency Division Multi-

on a stable limit-cycle is guaranteed under ideal condstion

but disproportionately lengthy restabilisation perioesuit

from small signal timing perturbations or network errors.
Christenseret al. [2] suggest that similar approaches

plex(FDM) strategy allocates different channels to adjacent can be applied in self-configuring systems of highly mo-

cells by map colouring. Within each system-wide epoch
anEarliest Deadline Firs{EDF) algorithm, distributed and

bile robots. The physical topography of the implicit net-
work can change very quickly owing to the high mobility of

replicated exactly at each node in a cell, allocates a propor nodes. These self-organising strategies are particudarly

tion of equal-length frames to intra- and inter-cellulafr
fic. Traffic between adjacent cell pairs is managed unde
strict geographicyclic executive

PalChaudhurét al. [12] define a protocol for clock syn-
chronisation which isdaptiveto the needs of a distributed
application. It supporteelative synchronisatiowhere net-
work nodes minimise the relative difference between local
clocks, andexternal synchronisatiorirhe overhead is rela-
tively high; during each synchronisation iteration eactieo
requiresO(n?) bidirectional data packet exchange with all
neighbours, and execution of a linear regression calauati
This cost is justified if the application requires nodes th co
laborate at &pecifidime, rather than the lesser requirement
that they collaborate at treametime.

Synchronisatiomnddesynchronisatioare biologically-
inspired primitives in which a closed finite system of peri-
odic oscillators converge to a steady equilibrium states- Sy
tem level coordination is an emergent property of indepen
dent agents implementing simple rules. Undgnchroni-
sationall oscillators fire simultaneously in the steady state
[11], whereas undedesynchronisatiothe oscillator firing
times are evenly distributed in time in the steady state [4].

Wang and Aspel [16] observe that these primitives con-

verge rapidly without global clocks, adapting automatical
to changing cell population. Unlike th#hase-Locked Loop
(PLL) and Delay-Locked LooDLL) approaches, which
offer similarly predictable and lightweight synchronisat

eficial in highly dynamic and unpredictable situations,tsuc
rasVehicular Ad-Hoc Networksvhere less agile approaches
would struggle to maintain coordinated schedules.

3 The desynchronisation primitive

In this section we consider the elements of thesyn-
| chronisationprimitive [4], and the properties of the con-
verged equilibrium state. We use the standard definitions
of pulse-coupled oscillator systems [11], but rephrassehe
from a global system viewpoint to a local node viewpoint as
individual nodes do not have complete system knowledge.

3.1 Building blocks

Assume we have a sEtof nodesS; - - - S,, wheren > 2;
if n = 1, there is obviously no need for internode coordina-
tion. Each nodeS; acts independently but shares an identi-
cal set of behavioural rules. The running time of the system
is divided into a set of systespochf equal period such
“thatVj : E; = e. The sequence of system epodhisis
defined by the natural ordering ¢fe N.

Within each system epoch) it is required that each
nodesS; € X shall execute a single instance of a periodic
eventV; exactly once. All event¥; are periodic with iden-
tical periodp; = e. The occurrence of a specific event at
a specific node within a specific system epochis la-
belledV;;. It is required that all event¥;; are executed
within epochE;. These events need not be related to any
functionality of the sensornet application. However, i th

behaviour, there is no requirement to maintain continuousapplication naturally produces periodic events of thisetyp

contact between peers in the wireless medium.

A decentralised algorithm is defined by Lucarelli and
Wang [9] in which a sensornet of arbitrary logical topology
applies a variant of the synchronisation-seeking algorith
defined in [11]; it is not required that the network graph
is fully connected. Each sensornet node acts as a period
oscillator but propagates its synchronisation signal aaly
nodes that are one hop away in the network topology. Ove
time, the entire system converges osyachronisedtate.

DESYNC-TDMAs a TDMA algorithm based odesyn-
chronisationto perfectly interleave periodic events to oc-
cur in a round-robin schedulim a fully-connected network
[4]. Each node acts as a periodic oscillator. Synchromigati
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perhaps as part of a distributed sensing function, therethes
application events can be reused for synchronisation.
Distributed protocols and applications can use the result-
ing stream of observeable synchronisation events, ocaurri
everyt time units, as the foundation for coordinated activ-
igty. Periodic application events required to occur with-fre
quencyf = 1/t can be triggered directly by observed syn-
rchronisation events. Application events specified at other
frequencies may use harmonics of the synchronisation fre-
qguencyf; other arbitrary relationships can be supported.
Between observed events nodes must use a local clock.
During this period it is possible that the local timer of each
node may drift by varying amounts, until the next observed



event corrects the effects of this drift. However, it is rea- all periodic events occur simultaneously within each epoch
sonable to assume that commaodity timers based on quartiVhereas this would also be usable as the foundation for co-
crystals offer acceptably small and predictable driftkew  ordinated distributed activity, the duration between obse
observed events [13] as typical drift rates are very small [3 able synchronisation events would hdaimes longer than
The impact of clock drift is evaluated in section 9.5. underdesynchronisationThis would increase the risk of er-
rors deriving from clock drift and other timing inaccuragie

32 Equilibrium state properties but offers no saving in energy consumption or overhead.

For adesynchronisedystem in a stable state, the order- o o
ing of events; is stable from epoct; to E,,, and the 3.3 Attaining equilibrium state
elapsed time between any two consecutive events is equal Sections 3.1 and 3.2 describe the system from the view-
to e/n. A stable state conformant to these specification point of an external observer with access to the entire sys-
is known as arequilibrium state as time is continuous, if  tem. Now consider the viewpoint of a participating ndtje
there exists at least one equilibrium state there exista-an i which can observe events occurring at other nodes but has
finite number of such states. Fortunately, all equilibrium no other information. Each node tracks the passage of time
states are equivalent and equally acceptable. using its internal clock, corresponding to a local measéire o
Before the system reaches the equilibrium state it is pos-phaseg; in the rang€l0, ¢a.) Whered,oe = Ymaz aS
sible that the inter-event time can change; when the equilib given above. Each node applies the algorithm indepen-
rium state is reached, it can not. The specific stable orgerin dently, so we can define this algorithm using only locally-
is unimportant, though it is a deterministic consequence of available data and assume that each participating node exe-
the initial state of the system and the set of shared rulés, bucutes the same algorithm in parallel.
the inter-event time is alwayst = e/n. The difference betweep and¢ is thaty gives a system-
Although we have defined that the period of all evénts  wide measure of the passage of time as measured in phase
is equal such thati : p; = e, we do not explicitly define  units, wherea®, gives the local measure of the passage of
the offseto; of each periodic evenit; within a stable epoch; time as experienced by a single nagie This is significant
this is a deterministic consequence of running a coordina-because each nod$ does not have omniscient access to
tion protocol based on théesynchronisatiofrimitive as information available to any other node, and does not have
described below. The order of offseiswithin an epoch  access to any system-wide overview. As protocol designers
E; defines the order of events;, but any ordering offers ~ we can use system-wide information to measure the effec-
equivalent coordination behaviour within the network cell  tiveness of a network design, but the nodes upon which the
As each epoclE; is of equal lengtte, and each event  protocols are implemented have access only to information

V; is periodic, for a given epoch we can define feaseof learned from their environment.
each event relative to the epoch start; Jfis the time from Consider an arbitrary epodhi;. Wheng; = ¢pq. the
the start of epoclE; to eventV;; then phase);; = t;;/e. eventV; is triggered at nodé&; and¢; is reset to 0. Each

For a stable system the identity of the epoch is not relevant,node.S; is aware of the time at which its own eveékit ex-
so; = t;/e. This gives phase measurements defined in ecutes, and the times at which the instantaneously preced-
the rangey € [0,1). Any valuey ¢ [0, Ymnqs) IS €qUiv- ing and following eventd/;3 andV;, occur. The node;
alent toy) mod v,,,4, @s a consequence of modular arith- does not know, and does not need to know, the identity of
metic inherent in phase calculations. Equivalent behaviou the other nodes;s and S;,, the phase neighbouref .S;,
is observed if all values of are scaled linearly with max-  at whichV;g andV;,, occur respectively. Howeves; will
imum phase)..... taking some arbitrary real value, so we influence and be influenced by its phase neighbours.
will use ¥4, in the analysis but use the expligit,, ., = 1 Assume a nodé; executes everit;, and observes pre-
when presenting experimental results. ceeding evenV;s and succeeding evenf,, which may
If we now consider the inter-event timein terms of or may not occur in the same epodlj. NodeS; mea-
phase, we find that the phase difference between any twosures the duration;s betweenV,z and V;, and the du-
consecutive event®, andV,, is Ay = (e¥mqsz)/n. TO ration ¢;, betweenV; and V;,, using its internal clock.
achieve this equalAyy we must schedule the events We convert these timings into relative phase differences as
evenly in time throughout an epoch. This schedule must¢;s = —(ti3/maz), ANdPiy = (tin/Pmaz)- NOte thatp;s
also ensure a margin df¢ exists between the last event of is negative as the predecessor phase neighbour &yent
the previous epoch and the first event of the given epoch,must occur beford’;, but is nevertheless equivalent to the
and between the last event of the given epoch and the firstpositive valug¢;g mod ¢masz) € [0, Pmaz)-
event of the following epoch. Within a given epoch thetime  In the equilibrium state described in section 3.2, all
before the first event and the time after the last event musteventsV; will be equidistant between preceeding evep
sum toAs) to provide sufficient margin. and succeeding evemi,. We definephase errorfor node
Conversely, undesynchronisationve would require that ~ \S; ast; = ¢;3 + ¢4, Which is the phase amount by which
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the timing of event/; differs from the desired stable state
value. When a equilibrium state is attaingd, 6; = 0.

The phase error for nodg; can also be found a& =
(tiy — tig)/ dmax DY Substituting the definitions af;3 and

¢~ given above; this alternative notation is equivalent but Ms:
may be easier to implement directly where nodes sleep for

periods during which local phasgg is not monitored.

As soon as nod§; becomes aware of succeeding event
Vi, during each epoch, nods; can execute the phase ad-
justment procedure. Recall that nodg has an internal
clock which it uses to maintain a measure of local phiase
NodeS; evaluates its phase errérwhen succeeding event
Viy is observed. We now ugg to adjustg; by thephase
changeamountA¢;, which will either enlarge or contract
the duration until the next execution of evérit This is
achieved by immediately setting : ¢inew = Giotd + A
Note that this+- A¢; adjustment must also be applied to any
phase measurements of other events stored within Spde

We defineA¢; = —f,0; wheref, € (0,1] represents
thefeedback proportionHigher f,, values give faster con-
vergence but less stability, whereas lowgrvalues give a

those of its phase neighbours with perfect symme-
try. The metric is calculated for each nodg as
M, = ||tig — ti]| @and is measured iseconds The
ideal value isM; = 0.
Node population estimateln the equilibrium state
each node has sufficient information to accurately esti-
mate the cell population, and hence to decide whether
it should participate. The metric is calculated for all
nodes asMs = [e/(tis + tiy)], and is measured in
nodes The ideal value id//3 = n.
Implementing the primitive

Networks in which this primitive is applied can be mod-
elled as a fully connected gragh= (V, £), whereV rep-
resents the set of network nodes @hckpresents the set of
possible pairwise communication exchanges. We assume
signal propagation, though not packet propagation, is in-
stantaneous in the wireless medium. We cannot assume an
atomic publisher-subscriber model in non-ideal networks.

The eventd/;; executed by nodeS; € ¥ as described
above are shopulseswhich are broadcast by a sender node

system which takes longer to reach a equilibrium state butS« and received by all other nodés € (£\ S5, ). The edges

is more stable to the deleterious effects of noise.

This local phase correction directly changes the be-

haviour of nodeS; and indirectly changes the behaviour of
phase neighbourS;s and.S;.; during the following epoch
all eventsV; will be closer to their equilibrium-state equi-
librium phasey;. Given an otherwise unchanging network,
Vi : ||Agij|| — 0asj — oo in successive epochs [11]. If
0; = 0 then the phase changep; = 0 as well; no special

& of the graphG can be thought of as representing com-
munication channels which are often unused, but through
which a single bit of information will periodically be trans
mitted when gpulsetransmission occurs. Recipients will
use the time at which thpulseis received, rather than in-
formation encoded into the signal itself.

Precisely how thispulseis implemented is irrelevant
to the content of this paper, because any implementation

action needs to be taken. Note that systems implementingVhich successfully distributes the single bit messageseat t

this primitive may be sufficiently converged to support use-
ful application work before reaching full convergence.

4 Measuring solution quality
Recall from section 3.2 that upon reaching a equilibrium

appropriate times would convey the same source informa-
tion to the algorithm. However, a typical implementation
would be the transmission of the shortest possible header-
only packet achievable under a given network stack. The
minimal time required for this stub packet to traverse the

state the set of events has an even temporal distribution. Fo network stack of the sender and the receivergepresents

a given node5; we know that when local phagg = 0 the
eventV; is exactly equidistant from bott; andV/,, and we
know that the relative phase difference betwégrandV/,

is given by2(¢,q./n). Itis therefore possible to measure

the limit of convergence. In an ideal system= 0 such
that My, — M3 approach their ideal values as system time
t — oo. In a realistic non-ideal system> 0, so we expect
M; and M, to converge withintx. As Mj is rounded to

the observed behaviour againSt this defined ideal to Obtainthe nearest integer we would expect it to converge on the

estimates of solution quality at any given instant.

Each node can calculate these metrics using locally
available data, perhaps using these to moderate local ap

plication behaviour. Ideally, all nodes would have the Idea

value of all metrics.

Mji: Allocated timeslot length.In the equilibrium state
each node is allocated communication duty for an
equal proportion of each epoch. The metric is cal-
culated for each nod8§; as My; = tig + tiy and is
measured isecondsThe ideal value is\/; = e/n.

Msy: Asymmetryln the equilibrium state each node broad-

correct integer if< is sufficiently small.
6 Tuning

There are three parameters of tbesynchronisation
primitive; the number of nodes, the system epoch length,
e, and the feedback proportiorf,,. Achieving accept-
able network performance requires the setting of appropri-
ate values ofn, e and f,. Appropriateness is defined in
application-dependent and -independent factors.

The hardware in the deployment network may affect the
possible range of.. This is particularly important where

casts its synchronisation pulse exactly equidistant from nodes are mobile or fragile; applications should contimmue t
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perform correctly when a single node leaves the cell. Appli- and ¢;g = —@maz(e/2n) mod ¢umq, respectively in the
cation requirements may specify a minimum and/or maxi- equilibrium statefrom the local viewpoint of nodg;.
mum number of nodes to give a probabilistic guarantee of  Rather than use the most recently observed valuggsof
coverage of the physical region covered by the sensorneand¢;,, we propose that each node maintaimsaving av-
cell. n can never be higher than the number of nodes de-erageover the most recent» complete epochs, stored in
ployed into the environment, and can never be lower than 1two queue buffers of size: at each node. Each queue is
for any non-degenerate case, but between these bounds thaitially populated withnil values which do not contribute
appropriate value of is application dependent. We con- to the moving average. During each epoch the new value is
clude that is significant but not tunable. pushed on the head of the appropriate queue, and the old-
The network designer is largely free to ggtto any de- est value is popped off the end of the queue. If no phase
fined value to obtain a reasonable tradeoff between responneighbour events are observed in a given epodiil, zalue
siveness and stability. We examine the effect of different is pushed on the queue instead of a measurement. This is
fa values in section 9.2. Usuall, is set to a high value  required for well-defined behaviour in the degenerate case
to achieve good responsiveness, shortening the time to atwhere node movement temporarily implies= 1.
tainingequilibrium state However, non-ideal network con- For a queue containingnon-il values, théill ratio = =
ditions can lead to inaccurate, noisy or missing inter-node v/m increases if0, 1] asv — m. The minimumfill ratio
synchronisation data. Unfortunately, tdesynchronisation  ,,;, required to calculate meaningful moving averages is
algorithm will respond as quickly to noise as to accurate specified by the application designer; larger values imply
data, harming solution stability. Network designers can re a greater delay until noise rejection behaviours are gctive
ducef,, reducing feedback and increasing systedamp- but have more data with which to work and hence are less
ing, to minimise this effect at the cost of reduced respon- susceptible to the influence of outliers.
siveness to real system changes. A better solution is given When the nodé; is required to amend its local phase,
by the improved protocol variants defined in section 7. as per section 3.3, the relative phaggsand¢;, of phase
The behaviour of the primitive is independentepivir- neighbour events are calculated as the arithmetic mean of
tually any value might be selected provided that n«x the associated buffer of recent historical values ¥ m,,;,;
to allow all n» synchronisation messages to be transmitted otherwise, we revert to the original strategy of using the
within each epoch. Within each epoch, the proportion of most recent observations directly. The underlying primi-
time consumed by synchronisation is givervlyy/e. Larger tive remains fundamentally unaltered in this improved algo
values ofe assign a greater proportign= 1 — (n«x/e) of rithm and hence retains its convergence properties, but op-
each epoch for application usage rather than synchronisaerates on higher-quality source data. The network designer
tion; p — 1 ase — oo. As the number of epochs required must still set an appropriate value ff.
for the system to reach the required level of convergence is To improve responsiveness we use variants of the plain
independent of, if e is large then so is the wall time implied moving average that give greater weighting to more recent
by these epochs. In highly mobile networks it is therefore values, but can still operate effectively when the value for
useful to keepe relatively small, but sufficiently large for  the current system epoch is undefined as a result of a lost
application-specified tasks to complete. However, synchro pulse. Assume we label the non-null historical data values

nisation messages are typically very small; even relativel in each buffer as;, ..., z,, wherez,, is the most recent.
smalle values are orders of magnitude greater thasuch We employ arexponentially weighted moving averaiye
thatp is insignificant and convergence is fast. which the weightingy of historical data point,, is given
7 Improved variants of the primitive asw, = y* wherez € Ris thescaling exponentlf z = 1

then we have the plain moving average: it 1 then newer

h In section GfWI el obserhve t_hat_low_ V‘f’!“es fﬁ (i]a_mp data are more significant, whereag ik 1 then older data
the respon_ls_e oft synct ronlsatloprm;nlve, w kIC M- are more significant. Usually > 1 will be selected to give
proves resilience to transient errors and network conuftio higher priority to newer data.

at the expense of responsiveness to real network changes. .
In this section we propose an alternative approach. 8 Cost analysis

Recall from section 3 that each nofgcan disregard all The plain version of theesynchronisatioprimitive de-
observed synchronisation events other than the phase-neighined in section 3 requires only two items of data to be
bours of its synchronisation evelit and that the sources of  stored. As the local phasg increases frond to 1,4, for
these phase neighbour events do not change between systesome given nodé&; any number of pulse events might be
epochs. Normally nod§; will use exactly one instance of observed, but only the first and last are retained. The first

the predecessor everily and the successor evany, in cal- corresponds to the successor pulse evént and the last
culatingA¢;. These single instances are most recent obser-corresponds to the predecessor pulse e¥ént that sur-
vations, which will occur ab;3 = ¢maz(e/2n) mod Gz round the local pulse eveft. We require storage space for
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exactly two such timing data, as each value will be over- a systentonvergedAs metricM; is inherently rounded we
written with new data during each epoch. Therefore, the require the measured value to exactly match the ideal value.
storage overhead 9(1) in node populationy. The algo- Each metric is measured at all nodgse . We count the
rithmic complexity is als@(1) in n because the algorithm elapsed time in system epochs from network initialisat@on t
requires a small fixed number of steps to be executed duringhe point at which the mean, minimum and maximum val-
each epoch; there are no loops or other recursive constructaues measured across the participating nodes all fall within
This low overhead is highly desirable in sensornet systemsthe defined threshold.
which have few resources to allocate. Unless stated otherwise we use a fixed cell population
Now consider the moving average variants defined inn = 10 nodes because this is an energy-efficient clus-
section 7. Storage and computation overheads reméiin ter size for typical 1000-node sensornets [15]. We select
in node count as the algorithm continues to consider only epoch lengtle = 10s so that epochs are large compared to
the two phase neighbour nodes, irrespective of any numbetk and long enough for realistic tasks to complete between
of other participating nodes which might be present. How- synchronisation events in time/n. We select feedback
ever, we must now consider the number of event observationf, = 0.9. We label the plain desynchronisation algorithm
timing values,m, which contribute to the moving average asA, thebasic moving averageariant asB, and theexpo-
on each execution of the algorithm. Note that this applies nentially weighted moving averag@riant asC. For vari-
only to the calculation of the effective phase of eveliis antsB andC we set buffer sizen = 10 andm,,,;, = 0.5.
andV;,; the phase adjustment algorithm is unaffected. For variantC we specify scaling exponent= 2. We do
There exist algorithms to calculate simple moving av- not claim that these parameters are optimal; selecting ap-
erages that ar@(1) in storage and computation overhead, propriate values is an optimisation problem that is beyond
and if these are employed it is obvious that the moving av- the scope of this paper. However, these selected values are
erage offers significantly improved performance with min- typical and illustrative.
imal increased overhead. However, a general moving aver- To model other hardware platforms substitute a differ-
age algorithm may be worse than(1) but no worse than  entx, and to model other networks different valuesrof
O(m) in storage and computation and overhead, the lattere and f,, can be used; the results are gualitatively equiva-
being observed if the algorithm must considerrallcon- lent but quantitatively different. Note that metri¢$;, and
tributing data on each execution. M, approach theik convergence limits asymptotically; it
We observe that each execution of the algorithm at eachis possible to achieve a looser but acceptable degree of con-
node is guaranteed to terminate(il) time. However, the  vergence in significantly shorter time. Network designers
algorithm is executed once at each node during each epochnust tradeoff solution quality against algorithm efficignc
so in this sense the algorithm never terminates. This latterwhen specifying network requirements.
condition is essential if the algorithm is to remain respon-  Section 9.1 models coordinated and uncoordinated net-
sive to changing network conditions; it is obvious that no work deployment scenarios. Section 9.2 models networks
algorithm could respond after terminating. of differing cell size and responsiveness requirements: Se
For systems expected to be deployed into highly pre-tion 9.3 models situations in which mobile nodes enter or
dictable and rarely changing environments, non-termigati  leave the physical region covered by a network cell, suspend
algorithms may not be the most efficient choice. However, or wake in response to duty cycle management protocols,
sensornets are typically deployed in highly unpredictable or leave the network owing to hardware failure. Section 9.4
and changeable environments, and mobile ad-hoc networksnodels networks where malfunctioning hardware, environ-
are characterised by continual change; the algorithms de-mental obstacles or deliberate sabotage disrupts intg-no
scribed in this paper are an appropriate choice. For modercommunications. Section 9.5 models networks where mal-
ately changing environments, these primitives can be ex-functioning hardware, poor application design or extreme
ecuted until equilibrium is reached, then cyclically sus- ambient temperature induces local timing errors.
pended for significant periods then executing for short Pe&-9 1 cellinitial configuration

riods. During suspended periods the extant event schedule defineinitial f , h ¢ initial nod
can be reused without incurring overhead, with schedule re- Ve defineinitial configurationas the set of initial node
phases relative to the start of the first system epoch. In

pair and recalibration occurring during execution periods L ! . .
randominitial configurations these starting phases are ran-

9 Experimental results domly distributed in the interveD, v,,4.). In ideal case
We model the Crossbow MICA2 mote in our experi- initial configurations these starting phases are evenly dis
ments. We set = 1 x 10735 as the time required for tributed in time, identical to thdesynchronised equilibrium
a synchronisation pulse transmission-reception pairme-co  state In worst casenitial configurations all starting phases
plete, and hence take this as the threshold deviation frem th are equal, identical to th&/nchronised equilibrium state
ideal value of metricd/; andM, within which we consider We begin by illustrating convergence of metrics from a
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randominitial configuration. Figure 1 shows the mean val-
ues of metricd\/; — M5 across all nodes, with all measured
values normalised to the ranffe 1]. Metrics were sampled

The number of epochs required to reach the conver-
gence limit M5, is nearly the same for each algorithm
variant A — C. This is a consequence of the calculation

at the end of each of the first 100 system epochs under theof M3 rounding intermediate values to the nearest integral

original algorithm variant A. Similar plots are obtained fo
variants B and C but are omitted owing to lack of space.
All metrics My — M3 can be approximated by sequences
of the form f(j) = 1/j + ¢ in epochj wherec is some
constant. We observe thaf; very quickly approaches its
limiting value. As epocly increases the valug/,; alter-
nates between higher and lower than the lifit., with
the difference| M7 ; — M || quickly becoming smallM;
also approaches its limiting values.., quickly, though not
as quickly asM;, with relatively large perturbations from
the idealised hyperbolic form explained by the quantisatio

value, an effect which will dominate small variation in pre-
rounded intermediate values as these converge.

Now consider thel/, metric, which in all cases is the
slowest to reach the convergence limit and therefore defines
the point at which cells reach aquilibrium state Start-
ing with arandomisednitial state we observe the epochs
required for convergence is of the same order of magni-
tude for each algorithm variant, but convergence is reached
somewhat faster under variatthanB or C; a smaller dif-
ference exists between values for variaBt&ndC. This
is explained by hysteresis effects; varidghtalculates new

of individual measurements to integral values (see sectionvalues using historical data and variahidoes not, so the

4). M5 converges more slowly thall; or M3 but declines
smoothly and monotonically toward the limits.

Normalised mean metrics M1-M3 versus epoch
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Figure 1. Normalised metrics for variant A

Table 1 presents the time required for metids — M3

output of variantB lags behind that ofd. VariantC' is

somewhere betweetandB both in the influence of histor-

ical data and the corresponding measured responsiveness.
We conclude that all algorithm variants— C are effec-

tive under ideal network conditions.

Initial  Algorithm Epochs to convergence
state variant M, M Ms | MAX
A 3 25 11 25
Random B 3 38 21 38
C 3 37 21 37
A 1 1 1 1
Best B 1 1 1 1
C 1 1 1 1
A 3 35 21 35
Worst B 3 56 24 56
C 3 54 24 54

Table 1. Convergence times for metrics

to converge. Consider the behaviour when the system starts

in the best-caseonfiguration, equivalent to aquilibrium
stateof the algorithm. We see that the system maintains this
ideal configuration for all metricd/; — Ms. This simply,
butimportantly, indicates that the algorithm will not take
system from arquilibrium statedo anon-equilibrium state

We need not consider theest-caseonfiguration further.

Now consider thel/; metric. We see thal/, reaches its
converged value very quickly for all algorithm variants and
all initial configurations. We conclude that all variantg ar
highly capable in this regard under ideal network condgion
and need not consider this metric further.

For all variantsd — C, we see that all metricd/; — M3
will converge in finite time starting from eandomisedor
worst-casenitial configuration. In all experiments, reach-
ing the convergence limit required more epochs from a
worst-casdnitial configuration. This is unsurprising as the
worst-caseconfiguration is further from thbest-caseson-
figuration than almost evemandomisedconfiguration, ex-
ceptingrandomisedconfigurations that are alseorst-case
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9.2 Cell composition

In this section we measure the epochs required for all
metricsM; — M3 to converge to aequilibrium state Fig-
ure 2 illustrates the relationship betwegnand the number
of system epochs;, which must elapse before the system
reaches arquilibrium stateunder algorithm variantd and
B; the trace for varian€' is very similar to that ofB and is
omitted for clarity. Each value of,, was evaluated with an
identicalworst-casenitial configuration

TracesA and B are similar, though not identical, for
fo € (0, feriticar) Whereferizicar = 0.91. Up to this point,
both A and B describe approximately hyperbolic traces
such that the relationship betweénand epoch oéquilib-
rium statecan be approximated by the forfiij) = 1/j+c¢
in epochj wherec is some constant. A difference in be-
haviour is noted forf, > f.riticar; trace B continues its
original hyperbolic path, whereas tracke grows quickly
with fo, € [feritical, 1]. Two distinct effects must be con-
sidered to understand this relationship.



In each epoch each nodg amends its local phase by A. Similar plots are observed for variafsandC but are
A¢; = —f.0; whered; is the perceived phase difference omitted for brevity. As the celh increases the general trend
between the local synchronisation eventat= v, and is thaty increases too. It is notable that this increase is
the midpoint of the phase neighbour events. The greater thenxot monotonic, and does not conform readily to any well-
value of f,,, the greater the proportion of perceived differ- known relationship. Despite the guarantee that the system
ence that is fed back into the system, pushing the systemwill converge [11] it is difficult to predict the time requile
toward theequilibrium statemore quickly. This explains  This is a consequence of algorithm variadts- C' defining
the shape of trac® for f, € [0,1], and the shape of trace feedback-driven systems, in which the relationship betwee

Afor fo € [0, feritical]- input and output is deterministic yet difficult to predic}.[5
. Now consi_der traced for fu €| fcriticallv 1]-. 0; is con- Epochs to equiibrium state
tinuously variable butk, the time for a pairwise exchange 70

Eﬁochs |

of synchronisation event, is constant. Convertinfrom
time units to phase units, the magnituda¢;|| becomes
small compared to the magnitug,,....||- As the magni-
tude ||k¢maz || defines the uncertainty of the phase neigh-
bour event midpoint measurement, it follows that the mag-
nitude of the measurement error becomes significant com-
pared to the magnitud&\¢;||. This causes convergence to
slow as the limit is approached. Each iteration of the pro-
cedure must attempt to correct for previous measurement O T e 5
errors within the new phase difference measurement. Node count, n

If f, is small, the proportion of this measurement error
fed back into the system is also small, so its effect is in-
significant. Asf,, grows so does the proportion of measure-  Larger networks may be divided into multiple cells.
ment error feedback. Under variaBitthe measurement er-  Extensions based oentrainmenthave been implemented
ror is found in all stored samples. Although the error values Which progressively synchronise equivalent transmission
are not explicitly available, as they derive from consaauti  in adjacent cells. This enables intercellular co-openatio
system epochs they are likely to be of similar magnitude, mitigates the risk of clashing behaviour, and enables effi-
and they are as likely to be positive as to be negative. Tak-cient handover of mobile nodes between cells. However, a
ing the average of the samples will approximately cancel thedetailed description is beyond the scope of this paper.
measuremen_t errors, so the _effect of t_hese errors does nag 3 Cell population change
bepome dominant. Under variadtthere is no such cancel- In this section we consider algorithm performance for
!at|on effec_t, .hence the effect OT these errors _becomes dom-eyis starting in a stablbest-casevhere a node is either
inant. Defining convergence limits of significantly larger

itude th Id hide this oh ithout added or removed from the cell population. We then mea-
magnitude tham would hide this pnenomenon without ac- - ;0 the time required to reach a negquilibrium state
tually addressing the underlying issue.

where all metrics\M; — M3 are converged. We plot met-

Epochs

Figure 3. n versus epochs to equilibrium

Epochs to equiibrium state ric M5 against epoch as this is the slowest to converge.
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Figure 2. f, versus epochs to equilibrium Epoch

Figure 3 illustrates the relationship betweerand the Figure 4. Adding node to stable system

number of system epochg, which must elapse before the Figure 4 shows a node being added to a stable 5-node
system reaches aquilibrium stateunder algorithm variant ~ system. Variantd requires 21 epochs to re-establish the
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Metric M2 versus epoch with lost pulses

equilibrium state variant B requires 58 epochs, and vari-
ant C' requires 57 epochs. Figure 5 shows a node being
removed from a stable 5-node system. Varidntequires

16 epochs to re-establish tleguilibrium state variant B
requires 47 epochs, and variaritrequires 46 epochs. The
node removal experiments re-establishegeilibrium state
more quickly because the new stable system is smaller than
the new stable system in the node addition experiments.

Variant A ——
Variant B
Variant C

Asymmetry (s)

Removing node in equilibrium state

- ,’\e/\,'/’;\:' %
20 30
Epoch

Variant A ——
Variant B
Variant C

50

Figure 6. Lost pulses

Asymmetry (s)

sure performance where nodes obsgitventom pulsedis-
tributed randomly in time with rate given ins—1.

Metric M2 versus epoch with phantom pulses

0.8

10 20 30 40

Epoch

50 Variant A ——

Variant B

07 r Variant C

Figure 5. Removing node from stable system

In all cases thequilibrium stateis re-established in fi-
nite time. Note that decreasirgeduces this time linearly.
As the algorithm is capable of restabilising the cell sched-
ule when a single node is added or removed, it is capable

Asymmetry (s)

of dealing with multiple additions or removals as these can

be decomposed into an equivalent temporally ordered se-

guence of single additions and removals. This is particu-
larly helpful in networks of highly mobile nodes, in which
cell membership is expected to change frequently.

9.4 Radio error resilience

NN NN

20 40

Epoch

30 50

Figure 7. Phantom pulses

In figure 7 we set = 0.1 s—%. For each variantl —

C exactly the same phantom pulses were heard by nodes.
In this section we consider algorithm performance for Again, we observe that variants — C' offer significantly
cells starting in a stableest-casevhere network conditions  better stability and performance than variaint
are non-ideal. It is possible that a synchronisation pulse
transmissior’;; may fail to be heard at one or more of the
intended recipients; we call each instandest pulse Re- In this section we consider algorithm performance for
ception will either succeed or fail independently and atom- cells starting in a stableest-casavhere timings are not ac-
ically at each potential recipient. We measure performancecurate. Jitter in synchronisation pulse transmission times
where reception of an arbitrary pulse at an arbitrary node may result from non-ideal task scheduling algorithms or
fails stochastically with probability € [0, 1]. preemption by higher priority tasks at the sender node. Al-
In figure 6 we sep = 0.05. For each variand — C though many definitions are possible [8] we define the jit-
exactly the same synchronisation pulse transmittervecei ter. of a given synchronisation pulse as the difference be-
pairs were lost. We see that variaits— C' significantly tween the intended and actual transmission times, where
outperform the original variand significantly, with much s distributed normally as ~ N (y,,0;). Transmission jit-
smaller deviation in metrid\/, from the ideal value of ter affects both phase neighbours of the transmitter node,
M, = 0. Although neither varianB nor C cope perfectly  whereas individual radio error affect only a single receive
with pulse loss, and there is little to pick between themy the In figure 8 we sefu, = 0s, as early transmission is as
offer substantially improved performance and stability. likely as late transmission, and, = 0.1s. For each vari-
Synchronisation pulses have minimal length and content;ant A — C' pulse transmission times are subject to exactly
aphantom pulsés feasible where radio noise or corrupted the same jitter. We observe that variafts- C' show sig-
packets are interpreted as a synchronisation pulse. We meanificantly better stability and performance than varizint

9.5 Clock error resilience

456



Under variantsB — C' the uncorrected error component is and measurable improvements in stability without sacrific-
of the same order of magnitude as jitter standard deviation.ing performance. Algorithmic and storage overheads are of
the same order)(1), in cell population: as the original.
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Clock driftis observed if local node clocks are imperfect.

(1]

(2]

(3]

(4]

As one second passes in the physical world the clock may
measure more or less than one second passing, governed bys]

a scaling factor, > 0. Perfect clocks have = 1; manufac-

turing imperfections and variation between calibratiod an

operational temperature tend to giye~ 1 [10]. We assume
each node clock has constanf13], distributed normally
asn ~ N (i, 037). We setu,, = 1 to model clocks equally
likely to run fast as to run slow. We sef, = 1 x 1073,

modelling drift rates with standard deviation several osde
of magnitude greater than thex 10~% seconds per second

drift typical of commodity quartz crystal timers [3]. Figur

9 shows variantgl — C perform acceptably in rejecting drift
effects, with uncorrected error of the same order of magni-

tude as the drift. For variant®8 — C we see some initial
stabilisation as drift-laden measurements fill the buffers
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Figure 9. Clock drift

10 Conclusions

The desynchronisatioprimitive is lightweight and ef-
fective in coordinating activity within unicellular sernso

nets. However, the original version is prone to instability
arising under common non-ideal timing and network condi-
tions. We defined improved primitives yielding significant
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