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Abstract—We pinpoint a new sensor self-deployment problem,
constructing focused coverage around a Point of Interest (POI),
and introduce an evaluation metric, coverage radius. We pro-
pose two solutions, Greedy Advance (GA) and Greedy-Rotation-
Greedy (GRG), which are to our knowledge the first sensor self-
deployment algorithms that operate in a purely localized manner
and yet provide coverage guarantee. The two algorithms drive
sensors to move along a locally-computed equilateral triangle
tessellation (TT) to surround POI. In GA, nodes greedily proceed
as close to POI as they can; in GRG, when their greedy advance is
blocked, nodes rotate around POI to a TT vertex where greedy
advance can resume. They both yield a connected network of
TT layout with hole-free coverage; GRG furthermore assures
a hexagon coverage shape centered at POI. We prove their
correctness and analyze their coverage radius property. Our
study shows that GRG guarantees optimal hexagonal coverage
radius and near optimal circular coverage radius. Through
extensive simulation we as well evaluate their performance on
convergence time, energy consumption, and node collision.

I. INTRODUCTION

Sensor self-deployment is an important research issue that

deals with autonomous coverage formation in mobile sen-

sor networks (MSN). Considering network scalability, unpre-

dictable node failure, dynamic topological change, and narrow

network bandwidth, a solution algorithm should be carried out

in a localized manner. Term “localized” means that each node

makes its self-deployment decision independently, using its k-

hop neighborhood information for a constant k. When k = 1,
we call the algorithm strictly localized.

There exist a class of sensor network applications, where

sensors are designated to monitor concerned events or envi-

ronmental changes around a given strategic site, called Point

of Interest (POI). One example are sensors scattered around

a chemical plant to monitor its distance-dependent pollutional

impact on the soil/air in the vicinity. They uniquely require

that an area close to POI have higher priority to be covered

than a distant one. We call the coverage of such a surrounding

network focused coverage. In this paper, we address how to

achieve optimal focused-coverage by sensor self-deployment.

A. Focused coverage evaluation

The coverage region of a sensor network is the region

enclosed by the outer boundary of the network. A sensing

hole is a closed uncovered area inside the coverage region.

The coverage of a sensor network is measured by area. It is
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defined as the subtraction of the total area of sensing holes

from the area of the coverage region. Area and sensing holes

are two key evaluation metrics for traditional area coverage.

They reflect the sensitivity of a sensor network over a Region

of Interest (ROI). An ideal area coverage has maximized

area and no sensing hole. In the focused coverage problem,

measuring area and hole existence is no longer sufficient,

because distance from POI to uncovered areas also makes

significant sense and must be taken into consideration. In this

case, we introduce an additional metric, coverage radius.

Definition 1 (Coverage Radius): The radius of a focused

coverage is the radius of the maximal hole-free disc enclosed

by sensors and centered at POI.

Optimal focused coverage has maximized radius. In con-

tinuous domain, there exists a sensor node at every point

in the coverage region, and the maximum hole-free disc

therefore has a circular shape. In this case, coverage radius

is called circular radius and measured by Euclidean distance.

In discrete domain, the shape of the disc is however not

circular but polygonal, and coverage radius is thus referred

to as polygonal radius and alternatively measured by layer

distance. Layer distance, also called convex layers in compu-

tational geometry or Tukey’s depth in statistics, represents the

number of successive complete convex polygons adjacently

surrounding POI. More precisely, we consider a discrete set

of convex polygons Pi (i = 1, 2, · · · ) composed of sensors,

centered at POI, and having a diameter of i ∗ d for some

constant d. We count the total number of such polygons lying

completely in the sensor network’s coverage region.

B. Problem statement

We consider an asynchronous MSN of unknown size ran-

domly dropped in a 2D free field (e.g., an area on ocean

surface in practice) and may possibly be disconnected at

initiation. Sensors bear the same communication radius rc

and the same sensing radius rs. They move asynchronously

possibly at different speeds. Sensors know the location of POI,

denoted by P . Because the global coordinate system can be

easily (through trivial local processing) converted to one with

P as origin, we use (0, 0) as P without loss of generality.

The goal is to develop a strictly localized sensor self-

deployment algorithm that yields a network surrounding P
with an equilateral triangle tessellation (TT) layout. The rea-

sons why this TT layout is required are that it maximizes the

coverage area of a given number of nodes without coverage

466



gap when nodal separation is equal to
√

3rs [1], [11], [14],

and that it automatically maintains network connectivity when

rc ≥
√

3rs. As an additional requirement, the final network

should have maximized coverage radius with respect to P .
We consider this sensor self-deployment problem under

the following common assumptions: (1) rc ≥
√

3rs; (2)

sensors know their own spatial coordinates by GPS devices or

any effective localization algorithm; (3) through lower-layer

protocols (minor modification may apply), sensors have the

information about their 1-hop neighbors, i.e., location, moving

status, and movement destination (if moving).

C. Our contributions

In this paper, we identify a new sensor self-deployment

problem, achieving focused coverage around a Point of In-

terest (POI), and introduce an evaluation metric, coverage

radius, that reflects the significance of distance from POI to

uncovered areas. We propose two strictly localized solution

protocols, Greedy Advance (GA) and Greedy-Rotation-Greedy

(GRG), which convert the area coverage problem to a vertex

coverage problem over a locally-computable equilateral tri-

angle tessellation (TT). In the two algorithms, self-governing

sensors relocate themselves on the TT grid and move from

vertex to vertex to surround POI, according to their one-hop

neighborhood information only. Specifically, in GA, nodes

greedily proceed as close to POI as they can; in GRG, when

their greedy advance is blocked, nodes rotate around POI

to a TT vertex where greedy advance can resume. In both

algorithms, when sensors are compactly placed or collide,

they may move away from POI. Both GA and GRG yield

a connected network of TT layout with hole-free coverage;

GRG furthermore assures a hexagon coverage shape centered

at POI. Thanks to their purely localized nature, the two

algorithms are resilient to node addition and removal (failure)

and work regardless of network disconnectivity. We prove

their correctness and analyze their coverage radius property.

Our study shows that GRG guarantees optimal hexagonal

coverage radius, and near optimal circular coverage radius. We

finally evaluate their performance on convergence time, energy

consumption, and node collision through extensive simulation.

II. RELATED WORK

To our knowledge there is no previous work addressing the

focused coverage formation problem. Sensor self-deployment

algorithms for area coverage over ROI with no particular

coverage focus exist in the literature. Below we will review

some of these related work at very short length. An extensive

survey can be found in our recent article [10].

The most known sensor self-deployment approach is vector-

based approach. Algorithms that belong to this category in-

clude [5], [8], [11], [12], just to name a few. The basic idea

is: each node computes movement vectors for its neighbors in

rounds using their relative position and then moves according

to the vector summation.

Howard et al. [7] proposed an incremental sensor self-

deployment algorithm. In this algorithm sensors are deployed

Fig. 1. Triangle Tessellation

one at a time using an occupancy/configuration grid, based on

the information collected from previously deployed sensors.

This is a centralized algorithm.

Heo and Varshney [6] presented a Voronoi diagram based

algorithm. This algorithm enables sensors to identify local

sensing holes using Voronoi diagram and align their sensing

range along its Voronoi polygon for minimizing uncovered

area. Similar algorithms include [4], [12].

Chellappan et al. [3] presented a centralized algorithm for

mobility-limited sensors. They divide the target field into

weighted regions and model the sensor self-deployment prob-

lem as a minimum-cost maximum-flow problem.

Yang et al. [13] presented a scan-based sensor deployment

scheme (SMART). By this scheme, the target field is parti-

tioned into a 2D mesh, and nodes are treated as load. The

goal is then converted to load balancing among mesh cells

through multi-rounds of scan.

Bartolini et al. [2] presented a snap and spread self-

deployment scheme. Sensors simultaneously construct a

hexagonal tiling portion for ROI by pushing and pulling

sensors to hexagon centers. Tilling portions of different sensors

merge when they meet.

These existing algorithms, when used for focused coverage

formation, have no guarantee on coverage radius (in worst

case, the resulting coverage radius can be as bad as 0). Besides,
they have major weaknesses such as unrealistic assumptions

(e.g., initial connectivity out of randomized placement or

fixed network size), requirement for global computation (e.g.,

Voronoi diagram construction or clustering), vulnerability to

node failure, and so on. The unsuitability and the incomplete-

ness of previous work motivate our research presented here.

III. EQUILATERAL TRIANGLE TESSELLATION

An equilateral triangle tessellation (TT) is a planar graph

composed of congruent equilateral triangles. Given an orien-

tation, say north, and edge length le, each sensor is able to

locally compute a unique TT containing P as vertex. Denote

the TT graph by GTT . In our work, le is set to
√

3rs. It

is because we want to finally locate sensors on vertices of

GTT , and this particular edge length ensures connectivity and

minimizes sensing range overlapping [1], [11], [14].
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Let SP (u, v) represent the shortest path connecting two

vertices u and v in GTT . Then the TT distance between u

and v is defined as the number of edges in SP (u, v) and

referred to as |SP (u, v)|. There are 6i vertices with equal TT

distance i to P in GTT . They constitute a distance-i hexagon,

denoted by Hi. These H hexagons are concentric to P . The
total number ν(i) of vertices enclosed by Hi (inclusive) is

ν(i) = 1 +

i
∑

q=1

6q = 3i(i + 1) + 1 . (1)

We call the vertices located at hexagon corners corner

vertices, the others edge vertices. Corner vertices form 6
rays R0, . . . ,R5, in counterclockwise order, jointing at P
with mutual angle of π

3 and divide the entire plane evenly

into 6 sectors. The sector toward south is named “Sector 0”
and denoted by S0; the other sectors are named after their

sequence number after S0 in counterclockwise direction. For

0 ≤ j ≤ 6, Sj is defined by two rays Rj and R(j+1)%6, where

% stands for modulus operation; its clockwise next sector

and counterclockwise next sector are S(j+5)%6 and S(j+1)%6,

respectively. GTT is drawn in Fig. 1, where sectors and rays

are labeled, and H hexagons are highlighted.

We assign every vertex v on Hi an in-hexagon index and an

in-sector index. The former, denoted by k′ (0 ≤ k′ < 6i), is

equal to the TT distance from v to R0 along Hi in clockwise

direction; the latter, referred to as k (0 ≤ k < i), is equal to

the TT distance from v to Rj along Hi in clockwise direction

within its residing sector Sj . Notice that k′%i = 0 and k = 0
if v is corner vertex. We can uniquely address v using either a

pair 〈i, k′〉 or a triple 〈i, j, k〉, which are mutually convertible
by k′ = ij + k, j = ⌊k′

i
⌋, and k = k′%i. Figure 1, displays

the addresses of vertices on H3 in both formats.

In the sequel, a vertex’s address will be expressed in the

format of 〈i, j, k〉. We define the address of P as 〈0, ⋆, 0〉,
where ⋆ can be any non-negative integer less than 6. The
geographic coordinate of any 〈i, j, k〉 can be easily computed.

IV. LOCALIZED SELF-DEPLOYMENT ALGORITHMS

Recall the problem statement given in Sec. I-B. If we deploy

sensors at the vertices around P in the GTT introduced in Sec.

III, we automatically obtain a network with the required TT

layout; if we further assure that no empty TT vertex exist

in the coverage region, and that the coverage region have an

(approximate) circular shape centered at P , we as well achieve
the desired focused coverage with no sensing hole and with

(near) maximized radius. By this means, we convert the area

coverage problem to a vertex coverage problem over GTT .

Based on the above intuition, we propose two strictly

localized sensor self-deployment algorithms, Greedy Advance

(GA) and Greedy-Rotation-Greedy (GRG), which are both

resilient to node failure and able to operate regardless of

network partition. The two algorithms are composed of a set

of simple hop selection rules. By these rules, nodes make their

self-deployment decision using merely 1-hop neighborhood

information and move asynchronously toward P step by step.

They stop when no next hop is available.

Fig. 2. Hop selection in GA

For simplicity, a TT vertex v is said to be occupied by

a node if the node is not moving and is located in close

proximity to v, or if the node is moving toward v; P is

also considered occupied in the case that it is not physically

occupiable. We assume for the time being that sensors are all

initially located at distinct vertices of GTT . This temporary

assumption will be relaxed immediately after, in Sec. IV-D.

A. Greedy Advance (GA)

In GA, a node moves greedily along TT edges as close to

P in terms of TT distance as it can. It has one and only one

possible next hop 〈i− 1, j, k〉 if its residing vertex 〈i, j, k〉
is a corner vertex (i.e., k = 0), or two possible next hops

〈i− 1, j, k − 1〉 and 〈i− 1, j, k〉 if, otherwise, it is an edge

vertex (i.e., 0 < k < i). Figure 2 shows six nodes and their

possible next hops, which are marked by thick arrowed lines.

Each node chooses from its next hop candidates one that will

not cause node collision according to its best local knowledge.

If no such a next hop is available, it stays still. A still node

resumes greedy advance whenever possible.

Consider an arbitrary edge vertex, say 〈4, 0, 3〉. It has two
possible previous hops 〈5, 0, 3〉 and 〈5, 0, 4〉. Examine the

example scenario given in Fig. 2. If 〈4, 0, 3〉 is chosen as

next hop by node 6 and another node (which is not shown

in the figure) at 〈5, 0, 3〉 at the same time, node collision will
likely occur. However, since the two nodes are neighboring

each other, they know about the potential collision and thus

can prevent it from actual happening by the following rule:

Rule IV-A.1 (Priority Rule): If two nodes are greedily

moving to 〈i, j, k〉 from 〈i + 1, j, k〉 and 〈i + 1, j, k + 1〉 (or
〈i + 1, (j + 5)%6, i〉 if k = 0), the one from 〈i + 1, j, k + 1〉
(resp., 〈i + 1, j, k〉) has higher priority to proceed.

Special attention should be paid to any corner ver-

tex 〈i, j, 0〉 that has totally three possible previous hops

〈i + 1, (j + 5)%6, i〉, 〈i + 1, j, 0〉, and 〈i + 1, j, 1〉. Let us

again examine the scenario in Fig. 2. By the priority rule,

neither nodes 4 and 5 nor nodes 5 and 6 may collide at corner

vertex 〈4, 1, 0〉. But nodes 4 and 6 may, if they simultaneously

move to 〈4, 1, 0〉, and the collision is not locally avoidable

since the two nodes are not aware of each other. To eliminate

this undesired situation, we can simply force node 4 not to

take 〈4, 1, 0〉 as next hop by the following rule:
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Fig. 3. Hop selection in GRG

Rule IV-A.2 (Forbiddance Rule): A node located at vertex

〈i + 1, j, 1〉 does not chose vertex 〈i, j, 0〉 as greedy next hop.
In Fig. 2, hop selection that is forbidden by the forbiddance

rule is shown by dashed arrowed lines.

P has six possible previous hops, i.e., the six vertices onH1,

in total. Consider a scenario where H1 is fully occupied, and

P is not occupied. In this particular case, a deadlock occurs

due to the priority rule, and none of the six occupant nodes

on H1 will attempt to move to P . To avoid this deadlock, we
define an additional rule as follows:

Rule IV-A.3 (Innermost-Layer Rule): A node located at

〈1, j, 0〉 moves to P as long as P is not occupied.

The innermost-layer rule may cause node collision at P .
However, such a collision takes place at most once, because

a node will stay at P after it reaches P and no node will try

to move to P once P is occupied.

B. Greedy-Rotation-Greedy (GRG)

GRG involves not only greedy advance but also a new type

of node movement - rotation, which forms the final network

in a shape of hexagon centered at P . An arbitrary node, when
its greedy advance is blocked, tries rotation around P along

its residing hexagon without increasing its TT distance to P .
Note that rotation should be restricted to a particular, say

counterclockwise, direction so as to avoid collision among

rotating nodes. Formally speaking, a node at 〈i, j, k〉 chooses
only 〈i, j, k + 1〉 (or 〈i, (j + 1)%6, 0〉 if k = i−1) as rotation
next hop. Figure 3 shows six nodes and their possible next

hops, among which rotation next hops and greedy next hops

are differentiated using different colors. A node stops rotating

when it reaches a vertex where greedy advance can resume,

or when it returns to the vertex where it starts rotating. To

properly react to its neighborhood change (due to sensor

deployment or node failure), a return node resets its rotation

starting point to null whenever it finds that its rotation next

hop becomes occupied.

In an asynchronous environment, a rotating node on Hi

may never be able to move onto Hi−1 despite the vacancies

on Hi−1, if its neighboring nodes on Hi−1 rotate together

with it and keep blocking its greedy advance. To prevent this

problematic situation, we define the following rule:

Rule IV-B.1 (Suspension Rule): A node located on Hi−1,

before starting next rotation step, checks if there is any

neighbor rotating on Hi. If yes, it gives up its rotation plan.

Consider node 4 in Fig. 3. Suppose that 〈3, 0, 0〉 and 〈4, 0, 1〉
are both occupied, and that 〈3, 0, 2〉 and 〈4, 0, 2〉 are both

empty. In this case, the greedy advance of node 4 is blocked.

According to the suspension rule, node 4 does not rotate to

〈3, 0, 2〉. The intuition is that the node knows that, if it itself

stays put, the node at 〈4, 0, 1〉 will rotate to 〈4, 0, 2〉 and then

greedily advance to 〈3, 0, 2〉. By the suspension rule, a rotating
Hi node will either meet an empty vertex on Hi−1, surpassing

some Hi−1 nodes in between, or find no vacancy on Hi−1 and

stops at its rotation starting point.

Rule IV-B.2 (Competition Rule): In the case that a greedily

advancing node and a rotating node are targeting at the same

vertex, the former proceeds as usual, while the latter changes

its deployment decision accordingly.

In GRG, each non-POI vertex 〈i, j, k〉 has two pos-

sible previous hops 〈i + 1, j, k〉 and 〈i + 1, j, k + 1〉 (or,

〈i + 1, (j + 5)%6, i〉 if k = 0) for greedy advance and

one previous hop 〈i, j, k − 1〉 (resp., 〈i, (j + 5)%6, i− 1〉)
for rotation. As we discussed in Sec. IV-A, greedy-greedy

collision does not happen at 〈i, j, k〉, because the two previous
greedy hops are neighboring each other. Observe that vertices

〈i + 1, j, k〉 and 〈i, j, k − 1〉 (or, 〈i + 1, (j + 5)%6, i〉 and

〈i, (j + 5)%6, i− 1〉 if k = 0) are also each other’s neighbor.

Thus the greedy-rotation collision caused by nodes from these

two vertices can be locally avoided as well, by the competition

rule. Let us examine the greedy-rotation collision due to nodes

from 〈i + 1, j, k + 1〉 and 〈i, j, k − 1〉 (or, 〈i + 1, j, k〉 and

〈i, (j + 5)%6, i− 1〉 if k = 0). Because the two nodes are

out of each other’s communication range, the collision can not

be inferred by them from their local knowledge. Depending

on the way of handling this situation, GRG has two variants:

Collision alloWance (CW) and Collision aVoidance (CV).

1) GRG-CW: In this variant, no additional restriction is

applied; greedy-rotation collision is allowed. During a greedy-

rotation collision, the rotating node is required to make its

next deployment decision first, which immediately affects the

other’s motion plan. The reason why the rotating node is given

priority is to prevent collision loop caused by endless rotating-

retreating role switch. We will come back to this in Sec. IV-D,

when introducing retreat movement for collision resolution.

Through ordered decision making, greedy-rotation collision

could appear as a transient phenomenon. For example, in the

scenario given in Fig. 4(b), collision between nodes 2 and 6
takes place at d and is then automatically resolved. However,

there is no assurance that collision does not remain permanent

(this drawback will be resolved later, in Sec. IV-D).

2) GRG-CV: In this variant, greedy-rotation collision be-

comes impossible due to the edge rule and the corner rule to

be introduced below. The purpose of the two rules is to restrict

greedy advance to rotation direction, i.e., counterclockwise di-

rection. The intuition stems from the observation that locally-

unknown greedy-rotation collision occurs only when greedy

advance and rotation are opposite to each other. For example,
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(a) GA (b) GRG-CW (c) GRG-CV

Fig. 4. Final node distribution after sensor self-deployment

in Fig. 3, node 4 and 5 have a potential collision at 〈3, 0, 2〉;
node 5 and 6 have a potential collision at 〈4, 1, 0〉.
Rule IV-B.3 (Edge Rule): A node located at edge vertex

〈i, j, k〉 only takes 〈i− 1, j, k〉 (or 〈i− 1, (j + 1)%6, 0〉 if

k = i− 1) as the next hop of its greedy advance.

Rule IV-B.4 (Corner Rule): A node located at corner ver-

tex 〈i, j, 0〉 performs no greedy advance.

Special attention should be paid to the nodes located on

H1. By the corner rule, none of these nodes will move to P ,
generating a sensing hole at P . Under this circumstance, we
appoint a particular vertex, denoted by Gate(P), on H1 the

gateway to P and allow only a gateway node to move to P .
Rule IV-B.5 (Gateway Rule): A node located on H1 per-

forms only greedy advance if its residing vertex is Gate(P),
or only rotation otherwise.

By the corner rule and the gateway rule, any H1 node not

located at Gate(P) has to first rotate to Gate(P) in order

to occupy P . A gateway node’s greedy advance is safe as no

other H1 node is moving to Gate(P) in the mean time.

Figure 3, where Gate(P) = 〈1, 0, 0〉, shows the possible

next hops of 6 nodes in GRG-CV with solid arrowed lines.

In the figure, dashed arrowed lines imply the hop selection

allowed in GRG-CW but forbidden in GRG-CV. Thanks to

the strict hop selection rules of GRG-CV, nodes are aware of,

thus able to avoid, any potential collision.

C. Execution examples

In the following, we will comparatively show how GA

and the two variants of GRG, i.e., GRG-CW and GRG-CV,

work through examples. Although they operate regardless of

network size and asynchrony, we consider for ease of under-

standing a simple fully synchronized scenario, where 7 nodes

initially placed at distinct TT vertices start the self-deployment

algorithms simultaneously, make deployment decision at the

same time, and move step by step at the same speed. In this

case, a sensor is not able to know where its neighbors are

moving and sometimes has to make conservative decision (by

assuming those neighbors are staying put). Figure 4 shows

the final node distribution obtained respectively by GA, GRG-

CW, and GRG-CV. In the figure, node trajectories are marked

by thick arrowed lines, pointing from initial position to final

position. Note that the initial position of node 1 is the final

position of node 3 in Fig. 4(a), and that the initial position of

node 4 is the final position of node 6 in Fig. 4(b) and of node

2 in Fig. 4(c). To have a clear view of node movement, we

focus only on nodes 2, 4 and 6.

Figure 4(a) indicates that, when GA is applied, the three

nodes 2, 4 and 6 move toward P and stop respectively at a,

P and b according to the forbiddance rule and the innermost-

layer rule. As shown in Fig. 4(b), when GRG-CW is employed,

node 4 proceeds in the same way as in GA; whereas, nodes

2 and nodes 6 travel along an extended path. Specifically,

after reaching a, node 2 finds that vertex d is occupied by

node 7, and that greedy advance to b is forbidden by the

forbiddance rule. Under this circumstance, it has to rotate

around P along its residing hexagon. When node 2 rotates

to c, node 6 arrives at b. At that moment, d becomes empty

due to node 7’s departure, and POI has been taken by node

4. Then node 2 decides to greedily proceed to d, and node

6 also decides to rotate to d. Because the two nodes are not

neighboring each other, they do not know each other’s motion

plan and consequently collide at d. Because a rotating node

is given priority to take the next deployment step in such a

greedy-rotation collision, node 6 continues its rotation, while

node 2 has to wait. Finally, node 6 rotates to its final position

f , passing by e; node 2 rotates to e after node 6 leaves e for f .

Observe Fig. 4(c) for GRG-CV. Because node 4 is not

allowed to move to P by the corner rule, it has to first rotate

to a particular gateway vertex (which is set to be g in this

example) and then greedily proceed to P by the gateway rule.

Node 7 can not start with greedy advance but has to perform

rotation first according to the corner rule, ending up with a

completely different trajectory, which directly affects node 2’s
deployment process: now, after reaching a, node 2 is able to

continue its greedy advance and immediately proceed to d

since no one is occupying d. When node 6 reaches b through

greedy advance, node 2 just arrives at d, and node 4 already got
to P . Then node 6 has to wait because its can perform neither

greedy advance or rotation in this case. The suspension of

node 6’s movement in turn affects nodes 3 and 5’s trajectories,
which we will not go through here. Finally, node 2 rotates to

f , and node 6 rotates to e. Notice that the collision between
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node 2 and 6 in GRG-CW does not occur in GRG-CV.

D. Resolving node collision

We previously assumed that nodes are initially located at

distinct TT vertices, which however rarely happens in practice

because of randomized node distribution. This temporary

assumption can be readily relaxed by the following rule:

Rule IV-D.1 (Alignment Rule): A node located inside or on

the border of a TT triangle moves to the triangle vertex that

is occupied by the least number of nodes. If more than one

such triangle vertex exists, the closest is selected; a random

choice is made in case of tie.

The alignment rule is very likely to cause various node

collision. In the following, we shall introduce a new type

of movement - retreat - for collision resolution. Retreat is

opposite to greedy advance. It happens from a vertex on Hi

(i ≥ 0) to a vertex on Hi+1. With nodal retreat, permanent

collision no longer remains, and both GA and GRG gain the

ability to spread out compactly-placed sensors.

After some nodes collide at a TT vertex, they enter a

local ranking process. These colliding nodes are able to

do the ranking locally and independently because they are

neighboring each other. During this process, each of them is

assigned a rank based on either a random selection or certain

criterion (if available) such as residual energy or node ID or

the combination thereof. Then, the node with the highest rank

makes its next deployment decision first, and the others follow

in accordance with the decreasing order of their ranks. If the

t-th node decides to stay, every node with rank lower than t

retreats by the following rule:

Rule IV-D.2 (Retreat Rule): When a node located at a Hi

vertex decides to retreat, it retreats to one of its neighboring

Hi+1 vertices that is occupied by the least number of nodes.

In case of tie, a random choice is made.

In GRG-CW, retreat movement might cause greedy-rotation

collision loop and endless movement in some rare scenario as

shown in Fig. 5. Figure 5(a) shows that P and entire H1 have

been occupied, and that there is only one empty vertex b on

H2. Under this situation, node 1 (located at vertex a on H3)

decides to greedily move to b, and node 2 decides to rotate

to b. Because the two nodes are not neighboring each other,

they will collide at b as shown in Figure 5(b). Assume that,

after the collision, node 1 is assigned a higher rank than node

2. In this case, node 1 decides to stay at b, while node 2 has

to retreat onto Hk+1 by the retreat rule.

Suppose that node 2 happens to retreat to a and that node

1 meanwhile finishes one rotation step. We end up with

a scenario (see Fig. 5(c)) that is exactly the same as the

one given in Fig. 5(a). Since we are in an asynchronous

environment and we do not assume any specific ranking

method, it is possible that similar situation occurs when node

2 makes its greedy advance later on. If continuing that way,

each node on H2 will make full rotation and then retreat onto

H3 rather than stop at its rotation starting point; in the next

step the node returns to H2 again and starts the next rotation.

As a consequence, a greedy-rotation collision loop appears,

and all nodes are rotating along H2 infinitively often.

This collision loop is due to the problematic rotating-

retreating role switch, which refreshes the rotating node’s

rotation record. It will not take place if we prevent the rotating

node from being retreated outwards, which in turn can be

achieved by enforcing the following ranking policy: a node

that rotates is always assigned the highest rank in a local

ranking process. Notice that, whether the ranking policy is

applied or not, collision loop never occurs in GRG-CV where

no greedy-rotation collision is possible.

V. ANALYSIS

In this section, we will analyze the correctness and the

coverage radius properties of GA and GRG. Due to space

limitation, some proofs are sketched, and some are omitted.

Lemma 1: Both GA an GRG ensure that P be occupied by

a single node within finite time.

Proof: Because, after the initial node dropping, the dis-

tance from each node to its closest TT vertex is fixed, the

node alignment process will terminate within finite time. By

the alignment rule, P could be occupied by multiple nodes

during the initial node alignment. If P is still empty after the

alignment process terminates, it will be eventually occupied

by at least one node through greedy advance, because the

algorithms ensures there be a winer in every competition for

greedy advance. In any case, P becomes occupied within finite

time. Once P is occupied, no node will move to it. If multiple

nodes exist at P at some moment, one and only one of them

will stay, while the others will retreat to H1 according to the

retreat rule. Hence, the lemma holds.

Theorem 1: GA terminates within finite time.

Proof: Because, after the initial node dropping, the dis-

tance from each node to its closest TT vertex is fixed, the

node alignment process will terminate within finite time. By

Lemma 1, P will be occupied by a single node within finite

time. Henceforth, we safely assume that the deployment step

already passed the alignment process and that P has been

occupied by a single node.

When a node is leaving a TT vertex due to the retreat

rule, the TT vertex is occupied by another node. The priority

rule and the forbiddance rule prevent two nodes located at

different TT vertices from greedily moving toward the same

TT vertex. In summary, the number of occupied TT vertices

never decreases.

Assume for the sake of contradiction that GA never ter-

minates. Since the number of occupied TT vertices never

decreases, it follows that there exists an m ≤ n where n is

the network size such that the algorithm runs infinitively long

on m occupied TT vertices.

Consider that after a finite number of deployment steps the

TT vertices T = {t1, . . . , tm} are occupied. In subsequent

steps, the set T may only change due to a greedy rule. Assume

for the sake of contradiction that T changes due to the retreat

rule. Whenever an unoccupied TT vertex is visited by the

retreat rule, the number of occupied TT vertices increases by
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(a) Rotation (b) Rotating-retreating role switch (c) Greedy advance

Fig. 5. An example of collision loop in GRG-CW

one, contradicting the assumption that GA runs infinitively

long on m occupied TT vertices.

Define by
∑

(T ) the sum of the TT distance from P to the

TT vertices in T , i.e.,
∑

(T ) =
∑

ti∈T |SP (ti,P)|. Whenever

T changes to T ′ due to a greedy rule, a node moves from a

hexagon Hi+1 to a hexagon Hi. It follows,
∑

(T ′) =
∑

(T )−
1. Since

∑

(T ) ≥ 0, it follows that the set of occupied TT

vertices can only change a finite number of times.

Let F = {f1, . . . , fm} be the final set of TT vertices

visited by GA, i.e., F no longer changes in subsequent steps.

Subsequent deployment steps are only due to the retreat rule

since a greedy rule will always visit a non-occupied TT vertex

and would thus change the final set F .

Define d as the maximum distance between P and the

finally occupied TT vertices, i.e., d = max{|SP (fi,P)|},
fi ∈ F . Let Q = {q1, . . . , qn} be the multi set of the

TT vertices occupied by the sensor nodes, i.e. qi is the

TT vertex occupied by sensor node ni. Nodes moving due

to the retreat rule always move from a hexagon Hi to a

hexagon Hi+1. Thus, a change from Q to Q′ always satisfies
∑

(Q′) =
∑

(Q) + 1.
It follows that after a finite number of deployment steps

the multi set Q of occupied TT vertices satisfies
∑

(Q) >

nd, i.e., there exists an occupied TT vertex t which satisfies

|SP (t,P)| > d. Thus, the visited TT vertex t is not an element

of F which finally contradicts the assumption that F is the

final set of visited TT vertices.

Lemma 2: Let H0, · · · , Hi−1 be fully occupied without

co-located nodes. Let n ≥ ν(i). In GRG, Hi will be fully

occupied without co-located nodes within finite time.

Proof: When H0, · · · , Hi−1 are all fully occupied,

nodes that have decided to stay on Hi never leave Hi but

counterclockwise rotate along Hi because they are assigned

highest rank in any local ranking process triggered by node

collision, making unoccupied Hi vertices “rotating” in the

opposite direction. In worst case, they make a full rotation

and then stop moving forever, rendering unoccupied vertices

fixed. In any case, someHi+1 nodes are guaranteed to meet the

empty vertices onHi (by counterclockwise rotation) and move

to fill their location by the suspension rule and the competition

rule. Because n ≥ ν(i) and there are no co-located nodes on

the i − 1 inner hexagons, Hi will be fully occupied at the

end as nodes keep moving toward it and eventually stop on

it. Nodal retreat guarantees that no Hi vertex be occupied by

multiple nodes. Hence, the lemma holds.

Lemma 3: Let H0, H1, · · · , Hi−1 be fully occupied with-

out co-located nodes. Let ν(i−1) < n < ν(i). In GRG, nodes
located on Hi will stop moving within finite time.

Proof: As inner hexagons H0, H1, · · · , Hi−1 are all fully

occupied, nodes from outer hexagons will rotate along Hi,

after arriving at Hi. In GRG-CW, these rotating nodes could

collide with some greedily advancing nodes, but their rotation

is not affected since they are assigned highest rank in the local

ranking process (refer to Sec. IV-D). Because ν(i− 1) < n <

ν(i), at least one of them will make a full rotation. By protocol

definition, this node will then stop moving forever, which will

in turn block the rotation of any following node. Eventually,

the nodes on Hi will become fixed. After the nodes on Hi

stop moving, the nodes on Hi+1 (if any) will get onto Hi and

possibly rotate along Hi as well. These newly arriving nodes

will stop moving and become fixed within finite time because

of the blocking from previously stopped nodes on Hi.

Theorem 2: GRG terminates within finite time.

Proof: It follows immediately from Lemmas 1 – 3.

Theorem 3: Both GA and GRG yields a connected network

with hole-free coverage.

Proof: We prove this theorem by contradiction. By Theo-

rem 1 and 2, we know that both GA and GRG terminate within

finite time. Assume that there is a sensing hole in the coverage

region at some moment after the algorithm (either GA or

GRG) terminates. Denote by v a vertex farthest from P on the

border of the hole and by 〈i, j, k〉 the address of v. There must

exist a node at 〈i + 1, j, k〉 (or 〈i + 1, j, i〉 if k = 0), because,
otherwise, v would not be the farthest border vertex of the

hole. In this case, that node will greedily proceed to occupy v

by protocol definition. This contradicts our assumption that the

algorithm has terminated. Thus the final coverage constructed

by the algorithm (either GA or GRG) contains no sensing

hole. Then network connectivity simply follows from the lack

of sensing holes and the assumption of rc ≥
√

3rs.

In GA, the final coverage of a MSN has an unpredictable

shape, depending very much on the initial sensor placement.
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As shown in Fig. 4(a), it is possible that P is located on

the border of the network, rendering coverage radius equal to

0. This example implies that GA does not provide coverage

radius guarantee either in layer distance or in Euclidean

distance. In contrast, as we will see below, GRG generates

optimal or near optimal focused coverage in both metrics.

Consider a MSN of size n. Let γH
opt be the optimal hexag-

onal coverage radius (measured in layer distance) that the

network can provide. Then we have γH
opt = ⌊ν−1(n)⌋ where

ν−1(n) =
√

12n−3−3
6 is the inverse function of ν(n) (Eqn. 1).

Let F be the focused coverage constructed by GRG using

this network. Denote by γH the hexagonal radius of F . From
Lemmas 1 – 3, the following optimality result follows:

Theorem 4: In GRG, γH = γH
opt.

We will now study the circular radius γC (measured in

Euclidean distance) of F . Denote by γC
opt the optimal circular

coverage radius that the network can provide. Further, let S

be the size (area) of F , and Hκ the outmost hexagon of F ,
where κ = ⌈ν−1(n)⌉. We first derive bounds on γC

opt.

Theorem 5: 3
2 (κ− 1)rs ≤ γC

opt ≤ 3

√√
3

2π
κrs.

Proof: The lower bound, which is the radius of the

inscribed circle of Hκ−1 is obvious. Recall the definition of

coverage. It is provable that the hexagonal node placement

produces maximized coverage over the TT. In this case, γC
opt

must not be larger than the radius of the circle whose area is

equal to the area of Hκ, that is, γC
opt ≤ 3

√√
3

2π
κrs.

Then we shall show GRG yields optimal or near optimal

circular coverage radius, depending on the network size n. We

have to examine two cases: (1) n = ν(κ), meaning that, Hκ is

fully occupied; (2) n 6= ν(κ) (precisely ν(κ−1) < n < ν(κ)),
meaning that, Hκ is partially occupied.

Lemma 4: In GRG, 0.95γC
opt ≤ γC ≤ γC

opt for n = ν(κ).
Proof: In the case of n = ν(κ), γC is equal to the

radius of the inscribed circle of Hκ, namely, γC = 3
2κrs.

By Theorem 5, γC

γC
opt

≥
3

2
κrs

3

√ √
3

2π
κrs

=
√

π

2
√

3
= 0.95. And

obviously, γC ≤ γC
opt. Hence, the lemma holds.

Lemma 5: In GRG, 0.95κ−1
κ

γC
opt ≤ γC ≤ γC

opt for n 6=
ν(κ).

Proof: When n 6= ν(κ), γC must not be less than the

radius of the inscribed circle of Hκ−1, i.e., γC ≥ 3
2 (κ− 1)rs.

By Theorem 5, γC

γC
opt

≥
3

2
(κ−1)rs

3

√ √
3

2π
κrs

= κ−1
κ

√

π

2
√

3
= 0.95κ−1

κ
.

Obviously, γC ≤ γC
opt. Hence, the lemma holds.

Summarizing Lemmas 4 and 5, we have the theorem below:

Theorem 6: Let δ =

{

1, n = ν(κ);

1− 1
κ
, n 6= ν(κ).

Then in

GRG, 0.95δγC
opt ≤ γC ≤ γC

opt

By Theorem 6, it would appear that the resultant circular

radius of GRG was far from optimal in small-size network.

For instance, if κ = 2, the lower bound will be 0.475γC
opt. This

is misleading because the lower bound are too coarse in the

case of k ≤ 6, as indicated by the following complementary

theorem whose proof is omitted due to space limit.

Theorem 7: In GRG, γC > 0.86γC
opt for n 6= ν(κ)∧κ ≤ 6.

VI. PERFORMANCE EVALUATION

Although sensor self-deployment is not a new research

issue, sensor self-deployment for focused coverage formation

is to our best knowledge a new problem addressed for the first

time in this paper. Existing sensor self-deployment algorithms

may possibly yield a network with coverage radius as bad as

0. Because we emphasize on optimizing coverage radius, they
are not comparable to GRG which guarantees optimal or near

optimal coverage radius. Thus in the sequel, we are going to

comparatively evaluate GA and GRG only.

A. Evaluation metrics

We evaluate the performance of GA and GRG in three

aspects: convergence time, energy consumption, and node

collision. Because nodes obtain their neighborhood informa-

tion from lower layer protocols, and they themselves do not

generate any message during the course of self-deployment,

communication cost is not our concern here.

1) Convergence time (T): It is also known as deployment

latency, and is defined as the number of time units that it

takes a self-deployment algorithm to yield a stabilized network

(with no floating nodes). When n 6= ν(κ), we consider from
guaranteed coverage viewpoint that GRG converges as long

as the κ− 1 inner hexagons are fully filled.

2) Energy consumption: It is measured by number of moves

(V ), mileage (M ), and mileage over progress ratio (R). V

and M are respectively defined as the number of times a node

started its motor and the total distance it traveled for its self-

deployment. Let Dini and Dfin respectively be its initial and

its final Euclidean distance to POI. Then R = M
P
, where P =

|Dini −Dfin| is progress.
3) Node collision (C): We consider that two nodes collide

as long as they are located sufficiently close to each other.

Collision is due to randomized initial node placement and

algorithmic design. Although collision appears as transient

phenomenon both in GA and in GRG, it matters because

it could bring colliding nodes radio signal interference at

physical layer, causing various communication failure.

B. Simulation setup

We implemented GA and GRG (including -CW and -CV

variants) within a custom network simulator, and simulated

their execution over a MSN randomly dropped in 2D free

plane. The geographic center of the dropping area is taken as

POI. Nodes are equipped with sensing radius 10 and commu-

nication radius 10 ×
√

3 ≈ 18; they may move at different

speeds, ranging from 0.05 to 0.2 per simulated time unit, for

every step. Through simulation we study the performance of

the two algorithms under different node density by fixing the

size of dropping area to 2002 and varying network size n from

ν(1) = 7 to ν(10) = 331. For each simulation setting, we run
GA and GRG over 50 randomly generated network scenarios

in order to get average results.

In fact, we also conducted another set of experiments to

evaluate the two algorithms with different average initial node
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Fig. 6. Experimental results

distance. Due to space limitation, these experimental results

are not presented here. They can be found in [9]

C. Simulation results

In the following, we are going to elaborate on our simulation

results displayed in Fig. 6. As we will see, GA outperforms

GRG in the aspects of convergence time and energy con-

sumption; GRG-CV is more suitable for dense networks when

compared with GRG-CW.

Examine Fig. 6(a) and 6(b), which respectively indicate T

and V as a function of n and contain curves of similar trend.

We first investigate the monotonically increasing curves of

GA. When n = ν(1), the network is very sparse and has

a very small size of 7. In such a network, greedy advance

overwhelmingly dominates the self-deployment process, and

nodes move most of time without frequently (or even never)

being blocked and waiting, resulting in low-valued T and V .

As n increases, the frequency of blocking and nodal retreat

rises, and waiting and resuming happen more and more often.

As a result, both T and V increase.

Now, let us look at the curves for GRG-CW and GRG-

CV in the two figures. If we link the points with n = ν(κ),
we get two closely-located monotonically-increasing curves

in both figures. In either figure, the two new curves are

both located above the curve for GA. It is because GRG

involves extra rotation movement, which complexes the self-

deployment process. Observe any interval between ν(κ − 1)
and ν(κ) for an integer κ, and we find that the curve of either

variant of GRG descends in this interval, which is reasonable.

In the case of n = ν(κ), GRG does not converge until the

outmost hexagon is fully occupied; in any other case, it, as we

mentioned in Sec. VI-A1, converges as soon as all the inner

κ − 1 hexagons are fully filled, making a dramatic decrease

of both T and V . In fact, when n is very close to ν(κ), GRG
performs even better than GA, as shown in the two figures,

since the latter converges only when nodes all stop moving.

Figure 6(c) illustrates how M varies as n changes. It is

observed that the curves for GRG-CW and GRG-CV have a

declining trend when n lies in the range between ν(κ − 1)
and ν(κ) for an integer κ. This phenomenon is due to exactly

the same reason as the similar phenomena observed in Fig.

6(a) and 6(b). If we link points on GRG curves with n =
ν(κ) together, we also get two closely-located monotonically-
increasing curves. The two new curves surpass the curve for

GA for every value of n because GA does not generate rotation

movement. Besides, they also have the same trend as GA:

firstly declining and then climbing. It is because, as n goes

up, the network becomes increasingly dense, and Dfin thereby

drops and approaches Dini, which in turn makes nodes travel

a decreased distance. But, after node density is beyond a

saturated value (when n is around ν(6)), the network shows

an expanding behavior, namely, that nodes move outwards for

coverage maximization, leading to the monotonic increase of

M with increased n.

Closely examine the three figures 6(a) - 6(c) again. We can

find that GRG-CW performs better in sparse networks, but

worse in dense networks, than GRG-CV. This phenomenon

is arguable. When n is small, greedy advance dominates

sensor self-deployment, and node collision, which has obvious

negative impact on T , V and M , happens rarely. In this

case, aggressive GRG-CW beats conservative GRG-CV, as

the latter often unnecessarily forces nodes to travel increased

distance. As n mounts up, the network shows more and more
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a rotating or expanding behavior, and node collision occurs

increasingly often, as confirmed by Fig. 6(d) and discussed in

next paragraph. The positive impact of the strict hop selection

rules of GRG-CV keeps growing, while their negative effect

constantly decrease, finally rendering it outperform GRG-CW.

Figure 6(d) shows C in relation with n. Observe that C

keeps ascending as n increases because the probability of

node collision climbs as node density, which is proportional

to network size in the case of fixed-sized dropping area,

increases. Also observe that GRG-CV always yields smaller

C than GRG-CW. Recall that GRG-CV itself does not cause

node collision. Collision occurs during its execution only for

the sake of randomized initial node placement. As shown in

the figure, GA and GRG has nearly the same performance in

a small-sized network, and they deviate from each other as n

goes up. GRG-CV is below GA in all cases because rotation

helps to reduce retreat-related collision. GRG-CW is first

above GA because it generates a large proportion of greedy-

rotation collisions in a sparse network with concentrating

behavior, and then gets below GA (after n = ν(6)) because the
proportion of greedy-rotation collision diminishes, and that of

retreat-related collision avoided by rotation contrarily emerges.

Figure 6(e) illustrates P as a result of n. The curves

corresponding to GA and the two versions of GRG are all

in a “V” shape with the lowest point rooted around n = ν(7).
They imply that this particular value of n makes the network

reach a saturated status, namely Dini is roughly equal to Dfin

such that nodes make no (large) progress during the course of

self-deployment. Such a network shows a rotating behavior

in general. When n deviates more and more from ν(7), the
difference between Dini and Dfin becomes bigger and bigger,

resulting in the rise of C. With no difficulty, we can see that

the network shows a concentrating behavior when n < ν(7)
and an expending behavior when n > ν(7).
Figure 6(f) exhibits R versus n. It is observed that R is

lower than 10 and very close to 1 for both GA and GRG

almost for all the values of n. In the figure, R reaches its peak

value around n = ν(7). In fact, R can go to infinity in the case

of P = 0. Although this extreme situation may not come into
reality, but it is possible in theory, for example, when all the

nodes are by any chance located at the right deployment points

at initiation. Additionally, it is observed that R decreases and

approaches 1 closer and closer as n increases or decreases

toward the two end values. Through a comparative study on the

two figures 6(c) and Fig. 6(e), the reason for this phenomenon

becomes fairly obvious: P has a way smaller value (nearly

equal to 0) than M round n = ν(7) and it climbs at a much

faster speed than M with increased/decreased n.

VII. CONCLUSIONS AND FUTURE WORK

Research on sensor self-deployment is still on its initial

stage, where defining the problem and finding basic self-

deployment techniques extendable to more complex protocols

are the main tasks. In this paper, we pinpointed a new sensor

self-deployment problem, focused coverage formation and in-

troduced an evaluation metric, coverage radius. By converting

area coverage problem to vertex coverage problem on a virtual

equilateral triangulation (TT), we proposed the first localized

solutions, Greedy Advance (GA) and Greedy-Rotation-Greedy

(GRG) with desired coverage guarantee. We proved their

correctness, and studied their properties and performance by

throughout analysis and extensive simulation.

The two proposed algorithms GA and GRG were described

in the context of a single point of interest (POI). However,

there are complex scenarios where a series of POIs form a

Line of Interest (LOI), representing an object like the trace

of certain event or the border of a landmark. The combined

greedy-rotation technique (GRG) presented here is extendable

to LOI case as follows: each sensor takes a common point on

LOI as reference and builds a TT graph, and independently

finds the smallest set of successive vertices that best represent

LOI; these vertices form a coverage backbone, and sensors

self-deploy around the coverage backbone following the same

philosophy as GRG. Detailed algorithmic design of this ex-

tension is not trivial. We leave it for future work.
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