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Abstract both the required sensor network deployment and run-
time network repair and configuration. In providing

In this paper, we introduce a new type of coverage forD-coverage, deployers can incur significant savings
wireless sensor networks, call@irected CoveragéD- in number of sensors needed if such tendencies are
Coverage). Basically, D-Coverage is the coverage pro-€xploited at sensor network deployment time. Also, a
vided by a sensor network monitoring an area betweersignificant amount of energy savings can be realized
two boundaries, through which the intruder attempts toby considering direction-oriented nature of the penetra-
penetrates the area. We also study how to measure thi® movements during sensor node wake-up and sleep
quality of D-Coverage. Our first evaluation approach is scheduling.

a projection-based simple approach, while our second Clearly, the quality of coverage, which reflects how
approach is a more comprehensive Markov chain base@00d a sensor network detects the intruder is a critical
approach. Our evaluation approaches can accuratelyiSsue. As stated above, barrier coverage is a special case

evaluate the quality and provide good guidelines forof D-coverage. In [2][7][8][15], absolute barrier cover-
sensor network deployment and run-time repair. age is studied where all the intruders are to be detected

with probability 1. However, absolute D-coverage (in-
cluding absolute barrier coverage) is not always feasible
because: 1) wireless sensors are of dynamic nature, and
may fail unexpectedly. Also, due to limited energy, they
In the recent past, there have been a number ofre often scheduled into duty circles of being awake and
documented instances of physical intrusion threats t@asleep in turn; 2) sensor deployment is often constrained
many sensitive facilities. The critical feature of such by geographical or technical limitations. Some areas
threats is that the goal of the intruder is to not justmay be necessary for detection but not feasible for
wander around in the facility vicinity, but to rather deployment; 3) in many cases, redeployment is not
penetrate througlthe boundaries of the facility. Under feasible for sensor nodes replacement; 4) it may be also
such threats, it is critical to detect the penetrators, (i.e.too expensive to achieve absolute D-coverage when the
before they successfully penetrate the facility) in adeployment area is large. Hence, D-coverage with less
reliable manner. than100% guaranteed penetration detection, referred in
In this paper, we introduce a new concept calledthis paper aprobabilistic D-coveraggis more practical
Directed Coveragéor D-coveragen short) for wireless and deserves a systematic study.
sensor networks. In D-coverage, the area covered by Due to the special directional features and irregular
sensor nodes has two boundaries, i.e. source boundabpundaries in D-coverage, existing evaluation metrics,
and destination boundary. The intruder penetrates the.g., in [3][4][16], cannot be applied. In this paper, we
area starting from the source boundary and exits at theropose two evaluation approaches for D-coverage: a
destination boundary. The area of D-coverage as well aprojection-based simple approach, and a Markov chain
its corresponding source and destination boundaries camased comprehensive approach. The projection-based
be in any shape. The concept of D-coverage is generapproach is simple, fully utilizing the directional feagur
It encompasses a wide spectrum of applications. Barrieof D-coverage, when the movement of penetrators can
coverage studied in [2][4][15][9] is a special cases ofbe considered as a straight line. The Markov chain
D-coverage. D-coverage exhibits a strong directionalapproach is comprehensive and can more accurately
tendency due to two factors: 1) the existence of sourc@valuate the quality at the cost of complexity.
and destination boundaries and 2) the intention of The rest of the paper is organized as follows. Instead
the intruder to penetrate the network. This directionalof a separate section for related works, we refer to
tendency of the penetrator has significant impacts teseveral other works related to ours at different places
978-1-4244-5113-5/09/$25.00 (©)2009 IEEE
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in the paper. In Section 2, we present the concept of ~
D-coverage and its basic definition. In Section 3, we
present our approaches for evaluating the quality of D- _——

X

coverage. We present our performance evaluations in (@ (b)

Section 4, and finally conclude our paper in Section 5.
Figure 2. (a) Assume the penetrator enters at point x;

2. The Concept of Directed Cover age at the source boundary (S) and penetrates the network
at point x; at the destination boundary (E). It is unlikely
In this section we introduce the concept of directedthat the penetrator will move arbitrarily between these two
coverage, its features and its relationship with othemoints. (b) Its movement area is constrained.
types of coverage defined in previous literatures.

Iy E A pertinent concern to raise at this point is the
S L . . .
~_ - e @ relationship between D-coverage with other coverage
I /@\ @:/ concepts proposed in the literature. As we discussed in
LT F A Section 1, barrier coverage as studied in [2][4][15][9]
(@) (b) () is a special case of D-coverage, where the coverage

area is a barrier with two parallel boundaries. There are
also a vast of works that typically consider monitoring
events occurring at arbitrary points in the networks and/
or intruders that are expected to arbitrarily move in
the networks (recognizing and recording trace of an

b ";F'g' 1(?' Weir;showasienagp ?f ptrotectmg na;'logllalobjective), e.g. trap coverage in [5]. The difference lies
orders, where there are two distinct source and deSs, e tact that the concept of D-coverage focuses on
tination boundaries. In between these two boundarie

; . L Yhe feature of directional tendency while they do not.
the intruder can potentially take any direction to move

although its objective is to also rapidly penetrate the . .

EJounszries, thaJn just wander therer;. I)rll FI):ig. 1(b), We3' The Quality of Directed Coverage

show a scenario of a detention facility (inside the . _ _ .

smaller circle), from where escape attempts by prisoners The trqdltlonal quality metrics used for monltorln_g

need to be detected. In this case, the inner boundary @nd tracking sensor network cannot be directly applied

the source, while the outer boundary is the destinatiorl® €valuate D-coverage.

which prisoners attempt to reach. In Fig. 1(c), we show

an army scenario where each non-shaded area is ai

independent army unit. The goal is to detect soldier

movements between units. In this case, each boundary ~&, ;7 — Ey 4y

is itself a source and a destination. @) ®)
We consider the problem of a sensor network that car|1:. 3 . .

detect the penetration between boundaries of a network 'gure 3. Sensors are d_eployed In the same area in

For the rest of the paper, we call the boundary fromonfferent ways as shown in (a)f (b).and (.C)' I_ntrU(_jers

which the penetrator enters the network tBeurce penetra.te the network along straight lines with directions

Boundary denoted byS. We call the boundary from shown in arrows.

which the penetrator exits the network Bestination For instance, the ratio of the covered area size over

Bount_jary denote_d byE. The l_:)oundaries_, could t?e the total area size is widely adopted [16][2][12] etc.
anything from a simple geometric shape (like a Stra'ghtto measure the quality of full area coverage. However,

line) or irregular. this metric cannot present an accurate view for the
Definition 2.1: Directed Coverage (D-coverage)  quality of penetrator surveillance. Fig. 3 (a) and (b)
The coverage provided by a sensor network in detectshow a network of active sensors (their sensing ranges),
ing penetrators starting from any point dtbefore it wherein the penetrator crosses the network from its top
penetrates through any point At boundary to its bottom boundary. Clearly, Fig. 3 (a) has
Although the penetrator may take any direction ata relatively poorer quality of penetrator surveillance,
one instant, overall, it moves towards the destinationwhile possessing a higher quality of the traditional
boundary. The presence of the boundaries and thenetric of coverage ratio. A metric for tracking quality is
penetrator’s intention typically constrain the penetrsito ALUL (Average Linear Uncovered Length ) [3], which
movement paths and show a strong directional tendencys the average length of uncovered paths traveled by an
Fig. 2 shows a typical instance. penetrator starting from a random (uniformly chosen)

Figure 1. (a) Surveillance to protect national borders. (b)
Surveillance to secure a detention facility. (c) Surveillance
to detect army movements between units.

st s
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location within the field. ALUL does not explicitly ConcurrentA-K D-coverage states detection occurs
consider the penetrator’s direction as well as the relativeonly when the penetrator has been detesiedultane-
position of source and destination boundaries. Thus it iusly by K different sensors. In sequentiat X' D-
not able to accurately reflect the quality of D-coverage.coverage, simultaneousness being unimportant, detec-
As shown in Fig. 3(c), different penetration directions tion occurs as long as the penetrator has been already
will clearly have different detection probability while detected byK different sensors. We comment that the
ALUL possesses only one value. The existing metricconcept of directed coverage is always coupled with
for barrier coverage provided in [4] is hard to be gener-pathshere.
alized for irregular boundaries and arbitrary penetration Parametern can be viewed as a performance metric
directions. to reflect the quality of D-coverage. While there could
Our evaluation for D-coverage is designed to meetbe other possible metrics, we believe that based on our
the following requirements: 1) it should be able to definition, \ is a natural and direct metric capturing the
consider both absolute and probabilistic D-coveragegssentials of penetration detection in sensor networks.
2) it should be general enough to handle complicatecdA large A implies the penetrator is more likely to
scenarios, e.g., irregular sensing ranges, irregulaosensbe detected along its path, thereby indicating a better
deployment areas and non parallel penetrating pathsjuality of the directed coverage. Note that in absolute
3) it should be backed by well studied background todirected coverage. = 1, while in probabilistic one
facilitate extension, optimization, and algorithm design A € [0,1]. The works in [15] and [2] both focus on
the case of\ = 1, and not otherwise.

3.1. Preliminaries o )
3.2. Projection Based Simple Approach

We assume that penetrators are not aware of sensorTh_ h is based h tion that th
locations, and hence will neither be able to tune their IS approach 1S based on the assumption that the

movement strategy based on sensor location nor destrc§7ovem.ent pattern of the penetrator can be considered
the sensors. s straight lines.

Notice that, though the sampling rate may be fast For any straight patti; € £, we can always find a

local detection decision can be relatively slow. ForIIne l. that IS perper_1d|cu|ar t@;. The projection Oféi.
. S , on [ is a single point. For path set, we can obtain
instance, the sampling interval for acoustic sensors

is commonly500us. For PIR or Magnetometer, it is a measure of all these points obtained from projection.

. - We denote it ad/;. Now let/; be projected ontd with
usually10ms. However, local detection usually is baseda certain probability that is denoted BY(4,). 7 (£,) can
multiple samples and needsl~5s for them [1]. In Inp ity that o5(4:). T (¢:)

. . . be considered as the probability for penetrators taking
surveillance applications, penetrators possesses acerta

speed. When coupled with the sampling intervals Ofpath /; to be detected. We can obtain another measure

. . L . o{ these weighted points generated from probabilistic
sensors, an intersection within the sensing ranges canng

practically constitute penetrator detection. It is moreproJeCtlon' We denote it ad/>. M, actually provides

reasonable to expect that a detection occurs only whef “sum” of all the detection possibilities along all the
P y aths. The quality\ can be obtained a& = M, /M.

the intersection between a penetration trace and th8 ' . .
P \We first consider a simple case wheréd D-coverage

sensing ranges achieves a certain length. We denote such .
length %y Dg 9 IS evaluated and sensors are always active. When the

W defineC as a setof paths = {1y .1+ 1} B O B B e e s
that start from the source boundasyand end at the P bp 9

destination boundarg. For any path, € £, we denote lines with one direction. We further assume the paths

} - are uniformly distributed along the source boundéry
PIL] as the probablllty of the penetrator takes platfits and every patli € £ is taken with the equal probability.
value is decided by the penetrator movement pattern. W'?’hese conditions can be relaxed later

denote the number of times the penetrator is detected .
. Let H denote the set of points covered by sensors.
by different sensors along path by D#*(l;), and the We have

maximum number of detections made simultaneously

by different sensors bp<(l;) . () = { 1, when £n H # 0

0, otherwise

@

Definition 3.1: Concurrent\-K D-Coverage ) . .
It is achieved whery", . PIlIP[D<(6;) > K] > A, In calculating theH value for7(¢;), a belt with width

Ae[0,1]. D should be “strip off” in the path direction. Fig. 4
illustrates an example to get the quality metxiovhere
Definition 3.2: Sequentiak-K D-Coverage a belt with width D has been striped off already.
It is achieved wherd_, . P[l;|P[D*(¢;) > K| > A, Now we relax our conditions. For a penetra-
A€ 0,1]. tion that may take different discrete intrusion angles
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Sensors as
I patti,se) 1T (1= pa(ti,sy)),  (3)

z€C(L;,n) y€C(¢;)—C(L;,n)
To obtain7(¢;), we consider all possibl€'(¢;, n) with
n > K and sum the detection probability from them
together.

3.3. MC Based Comprehensive Approach

In this section, we introduce our comprehensive ap-
proach to evaluate the quality of D-coveragé Wwhere
we use Markov chain to approximate the real move-
ment pattern of penetrators. Markov chain is a desired
foundation of the solution for the important quality
evaluation issue since it satisfies all the requirements
aforementioned well.

Figure 4. In the simple case, possible paths are
uniformly distributed. They have a single direction. The
possibility for each path to be taken is the same. We then
have A = [[lex|| + [llc2|/]Lall-

3.3.1. Design Rationale. A Markov chain (MC)

01,02,--- 6, with different possibilitiesP[61], P[f2], s a sequenceXi, X, X, ... of random variables

-, Pl0,], we have A\ = 377 \(0;)P[0;], where  and s characterized by the conditional distribution
A(6:) is the quality over one specific direction. For an p(x, . ,|x,,) called the transition probability of the pro-
intrusion that may take different intrusion angles amongeess. We assumg; takes value from a subs@tof R2,
some continuous range froff to 0, with probability  which means the number of states is infinite such that
distribution f, then\ = [/ \(0) f(#)d6, whereA(¢) is  one penetration pathcan be modeled as a continuous-
the quality of one specific direction. In one direction, if state chain. The Markovian property guarantees that
each patl?; € £ is chosen with probability’[¢;], then  at every pointz in Q there is a probability density
P[;]J (¢;) is used. function f, of transition to all states if). Based on

This approach can also accommodate to the dynamithis continuous modeling we will reach a theoretical
features of sensor nodes. We consider each sensor to blescription of a geographical region with distinctive
alive with probabilityp;. Furthermore, to save energy, properties encoded itransition density functionshat
it is also natural to put sensors into duty cycles. In ran-is decided by the path sef. Albeit its nicety, the
domized independent scheduling, sensors independenttontinuous-state Markov chain is not easy to handle,
follow the time cycle. At the beginning of periods, each so we proceed with a discretized version of it.
sensor independently decides whether to remain active Consider a chain with several disjoint small seits
for this period with probabilityp, or go to sleep with  (for the definition of small sets refer to [10]). We could
probability 1 — p,. Our approach can accommodate then define renewal time, as the visiting time to one of
these dynamics. Suppose the path intersects the the small sets. Then for a continuous-state Markov chain
sensing range of one sensgy, with lengthli(s;), then  #®) we have (wheré is an indicator function)® =
the probability for this sensor to detect the penetratory"*__ il ,,6(") which is not a Markov chain; however

i

along ; is pa(li,s;) = 1 — (1 — pap) 5. Then it the following subchain ig(") = »(). We thus have
a path/; intersects the sensing ranges lofsensors, the theorem as below [10].

81,82, , 8, With lengthl®(s1),--- ,1*(sy), we obtain Theorem 3.1:For a Harris-recurrent Markov chain
6, the sequencé™, which represents the successive
k risy) indices of small sets visited by the chaf?), is a
T() = l_jl:ll(l_p“pl) v @ homogeneous Markov chain on the finite state space
{1,2,3,...,k}.

For concurrent K (K-1) D-coverage, the definition Theorem 3.3.1 provides the basis for conducting
for J(¢;) is similar to those mentioned before. Thus region discretization in that it guarantees the Markovian
the computation fon\ is also similar. The only change property of the resulting discrete and usually com-
is that H now denotes the area covered Rysensors. putationally feasible chain. We can divide the area
For sequential K (K-1) D-coverage, letC'(¢;) denote into multiple small convex areas conservatively with
the set of sensors that intersect the pathLet C(¢;,n) the diameterD. Fig. 5 shows an example. We are
be a set ofn sensors (ids) chosen frod(¢;). Then ready to construct a discrete time Markov chain model
we can obtain the detection probability by this set of { X;|i > 1} for a penetration detection sensor network.
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It can be represented in terms of an enseniSle, P),
where S is the state spacg, is the initial distribution
andP is the transition matrix.

s N -
_________ ams - i Py
........ orwdhes
........ = = Ps
s = E
(a) (b)

Figure 5. An areais divided into small rectangular areas.
Probabilities for penetrators from one area to the adjacent
are decided by their movement patterns.

3.3.2. Details.

Each small area (rectangle in Fig.

they are active for this period with probabilify, or

go to sleep with probabilityi — p,. Assume that the
center of a small areas; is covered bym sensors
that can be represented as a 6&ts;) with elements
being sensor idsC(ts;) = {idy,ida, - ,idi}. We
then havepy(ts;) = 1 — (1 — pap)'©*9)l. Fig. 6(b)
shows an example. After we addg(t¢s;), the original
probabilities for transitions going out froms; should

be modified by the factor — p,(t¢s;). Another category
contains only one absorbing state, denotedas®‘.

This absorbing state is added behind the destination
boundaryF as illustrated in Fig. 7. It does not indicate a
detection. Instead, the penetrator entering this absgrbin
state implies it has not been detected when it crosses the
surveillance area. It is reasonable to assume that once
the penetrator has crossed the surveillance, it will not

5, but not necessary) is modeled as a transient staigenter it again. Now we have a complete state space
in S. The transition only happens between adjacenng the transition probabilities.

areas, with probability decided by penetrator's move-

ment pattern. These transient states are represented
- ,ts,}. In a typical case, we let the

as {tSl, tso, - -
transition probabilities between adjacent areasppge

pi, pr and p, respectively corresponding to moving

forward, leftward, rightward and backward.

! as;
VYT ® )
(a)

Figure 6. (a) If ts; is covered by any sensor, then a new
absorbing state as; is added. The transition probability
from ts; to as; is 1 if the penetrator at ¢s; can be always
detected. (b) If ¢s; is covered by two sensors. Assume
each sensor is being active with probability p. We have
a new state transition diagram shown in the right with

pa(tsi) =1—(1— p)2.

Two categories of absorbing states are added int

Figure 7. A new absorbing state as°"* is added behind
the destination boundary E.

Let p;,(ts;) denote the probability for the penetrator
to start at an aress; that is at source boundafy. The
initial probability distribution for the penetrator to ent
the area can be obtained as= {p;,(ts;)}-

Currently we are considering-1 D-coverage, an
penetrator is discovered if it has been detected by at
least one sensor. More specifically, the probability for
the penetrator to be absorbed hy; is the probability
for this sensor network to detect the penetrator that
has never been detected before. Hence, the absorbing
probability for staters°“!, the state behind the, shows
the probability for an penetrator having crossed the
area but never been detected by any sensor. We denote

state spaceS. The first category stems from sensor <’ Ve . :
coverage. Suppose the center of a small polygon corrdis Probability asPs,;. The quality can be obtained
sponding ta's; is covered by some sensors. We then adc®S A =1 — P,y The procedure to comput&y,; is

a new absorbing states; with the transition probability Standard [11].

ts;) from ts; to as;. When an penetrator moves .
pa(ts:) ° . P .3.3. For A\-K (K>1) D-Coverage. The above basic

into these absorbing states, it is considered detecte arkov chain approach can be extended to evaliyde
ts;) represents the probability for the penetrator to
pa(ts:) rep P y P (K>1) D-Coverage.

be detected at locatiots;. The reason why we model

detections asabsorbing states is that the penetrator ~ConcurrentA-K (K>1) D-Coverage: The quality
will logically stay at these places forever from the can still be obtained a& = 1 — F,;. The procedure
moment when they are detected. In the caseof tO computels,, is similar to the above. There are two
1 D_Coverage’ we do not need to consider its furtherdifference. FirSt, a transition Stami has a absorbing
movement. If sensors are a|WayS a(jnm(tsl) =1 stateas; associated with it Only if it is covered by at
and all other transitions going out froms; will be leastk sensors. Second, the transition probability from
removed afteras; is added, as shown in Fig. 6(a). If tsi to as; is changed to

we consider each sensor to be alive with probability 100l |C(ts)| in NS

pi1- And sensors are set into low duty circles, in which = k >pd o ’
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where|C(ts;)| is the number of sensors that covey.  sively. In the pseudocode?, is the initial transition

Sequential\-K (K>1) D-Coverage: From its def- matrix of the newly constructed Markov chaif. de-
inition. we have to tell which sensor contributes the Notes the set of sensors that have detected the penetrator.

detection each time. The new Markov chain should?tStep2, there is one matrix operation ghto calculate
make this feasible. out absorbing probabilities into each absorbing siate

ab . .
Compared with the procedure at Subsection 3.3.2, thdénoted byP®[as;], for 1 < i < n; At step 5, we
only difference in Markov chain construction here is obtain the total number of different sensors which have

that, we divide each absorbing state that stems from serfl€tected the penetrator. If this number is larger than
sor coveraga:s; into m absorbing sateas!, as?, - K, the penetrator has been discovered. Otherwise, the
7

P

as™. The value ofn is given bym — (c () 4.+ penetrator’s further movement should be considered. At
) 2

(c) if K> ¢ ofrm— (c) 4 (c) 4t (Kc ) +1 step7 , we are to eliminate the further consideration
c ? 1 2 1

otherwise, where = |C(ts;)|. The transition probabil- ©f detection made by sensors that are alreadyin

ities from ts; to each of the statess!.as?,--- , as™ One way is to add the transition probability 1 from
1) 27 ) 7 . .

denotes the probability for the penetrator to be detected105€as:s that reflect detection by sensorsZnto their

by a specific set of sensors if(ts;) at locationts;. location state as illustrated in Fig. 8(b), and modify

We callts; their location state. Fig. 8(a) illustrates an the transition probability to any others;s that reflect
example. detection by sensors some of which arelin Another

way is to construct a new MC with the sensorsiin
are removed. At steg, the new initial distribution is,
probability P**(as;) for as;’s location stateand 0 for

other transient states.

Procedure-1: Pseudocode to compute P+
Pyt =0; P="Po; T=1o; D=0

Figure 8. (a) Assume C(ts;) = {a,b}, then p1 = L ggngDUIe—POUt (P.1,D)

pa(1—pa), p2 = pa(1 —pa), ps = p3. Entering as; implies : from P andZ calculate out absorbing probabilities into
the penetrator is detected only by sensor a. Entering each absorbing states;, P“b(asi), for1 <i<m;
as? implies it is detected only by sensor b. Entering as? 3: Pout = Pour + P (asn);
implies the penetrator is detected by both sensors a and g : for 1;, 1_t°D” _Ol )
b. (b) as; is changed to transition probability 1 to its 6 if |5,| <UK (asi);
location state. 7: get a new MC with transition probabilit§p’
8 .
9
1
1

[\]

create a new initial distributiof”;
There will be no changes for those states € S
with |C(ts;)| < 1. In this new Markov chain, suppose
there are totally. absorbing states that are denoted as endfor
{asi, asq, -+, as,—1, as,}. Note thenth absorbing end
state as,, is actually the one we added behinfg, The key issue here is that the penetrator will logically
as®"*, while others stem from sensor coverage. The nevstay at the state where it is detected. Modification at
transition matrix is denoted &&,. The initial probability  step7 implies the detection made by those sensors that
distribution for penetrators to appear at the states alongjave already detected the penetrator will not be counted
S does not change and is denotedZgs any more. If the penetrator has not been detected by
When computing), all possible combinations o K different sensors, its further movement that starts
sensors that make the detection should be considereftom the location where it is staying will be further
It is inevitable since there always exist paths goingconsidered. By the new distributicfY at step8, the
through the locations of these sensors with non-zerdurther movement that starts from a certain state can be
probabilities (some probabiliies may be very small specifically studied.
though). In above, Markov chain based approach is proposed
The quality can still be obtained as= 1 — Py, to evaluate the quality ofC directed surveillance, for
where P,,,; denotes the possibility for an penetrator to generalK > 1. However, there could be two concerns.
cross the area frony to E without being finally dis- 1) In many cases, the penetrator's movement pattern
covered. LetP, ,(d) denote the possibility for the pen- may not be known a priori. Although we can make some
etrator to cross the area after it has been detected by assumptions on it, it may not be accurate and hence
different sensors. We then have;.. = 325" P/, (d). the quality of directed surveillance evaluated may be
The followingProcedure-lillustrates how to compute affected;2) The number of states may be too large to
P,.:- A function namedComputePout is defined. To  be handled. We will discuss these issues in the following
determine P,,;, this function will be invoked recur- sections.

: Compute_Pout (P',Z’,D’');
0: endif
1:
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3.34. Sdf Learning on Movement Pattern. In In this HMM, locations are modeled as hidden states
practice it is not always true that the penetrator's move-and the transition probabilities between adjacent loca-
ment pattern has been exactly known before evaluatiortions follow some fixed but unknown distribution. As
Even when the pattern has been known, it may changthe penetrator continuously moves, a series of observa-
with time or locations during penetrating. In this section, tions can be obtained, for examptgr 2727 3747070

we present a solution to self-learn the probabilities forry7 - - - . Here, 7y is a “null” token added if no token is
penetrators moving from one location to its adjacentgenerated by any sensor in a certain period. Empirically,
locations in the surveillance network. if there are a large amount of consecutixgs in the

We exploit Hidden Markov Model (HMM). Once the observation sequence, the penetrator can be considered
penetrator enters the surveillance area, a sequence tf have left the surveillance area.
tokens (messages) with time stamps indicating detection Let there be observation sequences, denoted by
can be generated. This token sequence is from sensotise setO = {0 0@ ... 0@}, where 0 is the
along the intrusion path and naturally contains theith observation sequence. Let denote the observa-
information of transition probabilities between adjacenttion at time ¢, 085_ € A, and O can be denoted
locations. By studying these token sequences, transitiofs {ogl)og)--- OT?}, where T; is the time for the
probabilities can be gradually updated close to their realast token. Our objective can be now formalized as to
values. In our scenario, “hidden” states are locationsmaximize P(O|¢), that is, after constructing the HHM
and observations are token sequences. After the HMM, according to the token sequences, we want to adjust
is constructed, the Baum-Welch Expectation Maximiza-A to A, where A = {a; ;}, such that the probability
tion (EM) algorithm [13] can be used to update thefor generating those token sequences is maximized.
initially assumed transition probabilities. will be much closer to the real transition probabilities

The HMM we construct can be represented as arthan A. The Baum-Welch Expectation Maximization
ensemble) = (Sy, A, 7y, A, B) which is characterized (EM) algorithm [13] can be used here to ggt; ;} to
by the following.S,, is the state space in the model, i.e., maximize P(O|5). We comment that Baum-Welch EM
the set of small polygons\, is the set of possible ob- algorithm is not the only one that can be used for our

servations (tokens)A = {7o,71,72, -, Tk, T1.2---}. HMM based self-learning.
Here, ; denotes the token signaled to indicate an
penetrator detection by sensor If sensorsi and j 3.3.5. Complexity Reduction. The complexity of

signal the detection at the same time, their tokens ar®C based approach can be reduced by two major ways
denoted asr; ;. Z; is the initial state distribution that as follows.

equals toZ in aforementioned Markov modeld is Divide-and-Conquer: Surveillance areas typically
the state transition probabilities we originally assumedy e of pelt-like shape [15] and can be very long [1].
and is A = {a;;}. It needs to be modified after The grea for the penetrator that may appear when it
self learning from observation sequencés.is the  (rosses the surveillance areas is often limited. It implies
probability distributions of tokens to be generated atyyg |ocations that are vertically far from each other will
states. As Fig. 9 ;hovys, at each state some tokens cayye a very low probability to be on one path. Then we
be generated, which is denoted as a §et}. There 3 divide the whole belt into multiple segments that
is a probability associated with a specific token for its 5,6 easier to handle, and compug,; for each, and
generation. The = {b;(7x)}, whereb;(rx) denotes  then combine them. We call this approach as Divide-
and-Conquer.
| ! Fig. 10 illustrates the method. We are to obtain the
‘—’ﬁs) '—‘Q?'—ﬁ%—’ F.Q?._. area where the expected visit time for each state is
> > > >b:<r,> affected by edge effect, that is, to obtainand ¢ in
. Fig. 10. More specifically, edge effect implies that the
penetrators at the left side afC will enter somewhere
Figure 9. HMM for D-coverage. Token may be generated  within the areaABC'D. Since EF delineates the place
with some probability along the path. If state .S; is covered where the side effect almost ends, it implies the pen-
by sensor j, then it may generate 7; with probability b;(7;)  etrator that starts on the left side of poiAtat source
when penetrators arrive at this state. boundarys is almost impossible to reach the right side
of EF. Then we can use a conservatively smatlb get
the probability for tokenrx to be generated at State a in terms of state numbet,,n, > log, e. Similarly,
i. For example, if StateS € S’ and C(S) = {i,j}, we haven. by considering;.

) nd (o) {g}

assume each sensor is active with probabilify we With this method, the computation complexity can be
then havebs(r;) = bs(r;) = pa(l — pa), bs(ri;) = p2, greatly reduced. Suppose originally there are totally
andbs (o) = (1 — pa)* transient states, the time complexity to get absorbing
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Figure 10. In the i—th round we compute the expected
visiting time for states in area ABCD, but only those
results for states within area EFGH are considered
valid. In the (i + 1)—th round, we compute the expected
visiting time for states in area A’ B’C’ D', the valid area is
E'F'G'H'.

Figure 11. There are 299 transient states and 381
absorbing states before combination. After combination,
we have 12 transient and 27 absorbing states.

probability is ©(m?). If it has been divided intox
segments, the time complexity is thér{(2)?).
State Combination: First considering those transient

least one positive recurrent state. Then each infinite
path has infinitely many occurrences of stefé or
other absorbing states with probability one. Hen&¢,
is a completeS’-valued function. We further have to
show that eachX| is a random variable. This follows
easily from the fact that each set of infinite paths is
measurable. Now we are to prove the Markov property
holds for {X/|i > 1}. Markov property holds for
{X;li > 1}, i.e.,, we have{X,, 11 = Sp+1|Xn
Sny"' 7X1 - Sl} = {XnJrl - Sn+1|Xn = Sn}
Now we rewrite.S; for any: as S; if S; € S; Sine
the construction procedure is complete and there only
exits unigue one to one relationship between a state
in § and a state i, we have{X,  , =5, ,|X] =
Spye 7X£:Si}:{Xrlz+1: ;z+1|X7/z:S;z}' O
Furthermore, we define new transition probabilities
a; ; from a new statés; to another new states’; as fol-
lows. Let/N"(ts;)) denote the expected visited number
for a transient stat®; € S. Assume thats;- is a tran-
sient state, and there arg statests;',ts;2,--- ,ts;™
ints; andn; statess;', ts;”,- - ,ts;" ints). We then
assign the transition probability between transient state
as

_ Ep (e PSP SN (SiP))
SoniNU(SP) :

/
2,7

a,

©)

The self transition probability forS! is then defined
asa;; =13, ,a;;. We also define the new initial
distributionZ’ as Pin(ts;) = >, g/ Pin(ts).

Proposition 3.2: The A obtained from{ X/|i > 1} is

states inS with nonempty coverage set, we take all € same as that frofuX;li > 1}.

those that are covered by same sensors and unite them Proof: AssumeS!, S’ € &', ands;', 5%, - -, 5;™
into a single set. This set becomes a new transient S/ andel,SjQ,m .8 e S;-.

state inS’. Assuming this new state i&;, we define PXL. . = S0 X1 = §)
C(ts;) = C(ts) for a transient states € ts;. Then we P(X{y = SjIX[=5]) = “;31 - N Sf :

let absorbing states that are originally associated tith - ) o o ( tp_ i)/ )
now associate witlts,. We repeat this procedure until  _ Lpt1 PXiyy = 8, Xi = 5| X; = SiP)P(X; = Si)
all the transient states i§ with nonempty coverage P(X; =85

set are handled. We then combine those transient states _  2p21 P(Xiy1 = Sj1X; = Si)P(X] = 5i7)

with empty coverage set into a single set, which is P(X{ =157

~ P(X{=8))
Yt P(Xiyy = SjIX| = 8iP)P(X; = 8iF)
P(X£+1 = S§'|X£ Sz/)
P(X{, = S;%IX; = SP)P(X] = 5i7))
7>(Xt’Jrl :S;\Xt’ =5 '

We replaceP (X, , = S%|X] = S}) above by

also a new transient state &I. There is no absorbing
state associated with this new state. Finally, we put
a set containing the only absorbing state behind the
destination boundary, as°“t, into the theS’.

This method is inspired by [18], which is for per-
formance evaluation in real-life industrial systems. The
example in Fig. 11 illustrates its effectiveness.

We define{ X/|i > 1} in the new state space as

X(:{

Proposition 3.1: {X/|i > 1} is still a Markov chain.

Proof: We first proof{ X/|i > 1} defined is always
a stochastic process, since in geneigl defined in
(4) is not even a function. Notice i’ there is at

nj
q=1

ng;
p=1

21X

X3 (g PSP S N (S))

P(Xip1 = Sj1X; = 5] T
SN (S

)

/
ts;,

undefined,

if X;, =ts and ts € ts
otherwise

()
Then take Y °, on both sides, then we have,

NU(S)) = 32,  NU(Si") = Yges NV(S). It implies

that in our new chain, the expected visiting time at each

sensor’s sensing range is the same as that in the original

chain. Then we have,
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13, and Fig. 14 can be considered as abstraction from

SN (1 PSP, SaTIN(SP)) the three applications described in Section 2. Sensors
AS) = NU(sH— pzm N (5P are homogenous with sensing raditis. The location
na g ! of sensors for these instances are randomly generated.
= > O P(S?, SaHNV(SiP)) Fig. 15, Fig. 16, and Fig. 17 shows the qualityof
7 P D-coverage for above three instances while detection
= > A®). condition D increases.D decides the length of the
5es; grids’ diagonal. Due to the strong practical meaning of

It implies that the absorbing probability at each )\, results from simulations can be directly compared
sensor's sensing range in the new chain is the samwith those obtained from simple projection approach
as that in the original chain. Hence, thecalculated and comprehensive Markov chain based approach. The
out by new chain is exactly the same that calculated iquality for A\-1 and A\-2 D-coverage are considered.

the original chain. 0O  Penetrator movement model parameters ayg e 0.6,
p, = 0.1, p; = 0.15 and p, = 0.15. Sensors are
3.4. Discussions scheduled to be active with probabilify9. Simulation

results are the average from00 runs. The fidelity

The projection based approach approximates the perpetween simulation and analysis data demonstrates our
etrator's movements by straight lines and uses projecévaluation approaches can accurately present the quality
tions to transfer a two-dimensional geometry prob]emOf directed coverage. Furthermore, we notice as the de-
to a one-dimensional one. It is simple and appropriatdection conditionD increases, the quality of D-coverage
for cases where the penetrator has a strong intention téegrades.

penetrate to a specific destination. The Markov chain  On Random Deployment: In this subsection, we
based approach on the other hand can incorporate mokgudy the quality of D-coverage in independent and uni-
complicated penetrating movement patterns. Markovform sensor deployments. We show the results presented
chain is a well studied topic. There have been manyn [15] as a special case of ours when the grid size is
existing results and methods which can be directlyvery small. Focusing on absolute barrier coverage, [15]
applied to an approach based on it. Hidden Markovgives the sufficient condition for all orthogonal crossing
Model (HMM) based self learning is an example. Usinglines to be 1-covered with high probability. It defines
above HMM based approach, not only can we learn,,; , as ciign = min,{c(s) : ¢(s) > 1+ ¢(np)/log(np)},
the penetrator movement pattern that was unknown, bufshere¢(np) is suggested to bg/loglog(np), p is the
can capture unexpected transition probabilities betweegctive probability and: is the sensor number. Theorem
locations, e.g., those that result from geographical chare .1 in [15] states that inpr/(s log(np)) > chign, then
acteristics, at different locations in the surveillancesar the probability for all orthogonal crossing lines to be 1-
Divide-and-conquer and state combination can becovered should be close to Here,r is the radius for

combined. They can also benefit HHM based self-sensing disk and is a measure of belt shape of barrier
learning by making it more efficient. Since transition coverage.

exists only locally, the transition matrixes are always
very sparse. Techniques used for sparse matrix oper-
ations can be further applied to reduce computation
complexity [17]. Further optimization of computation
procedure is out of the interest of this paper.

Note that our approaches are not a panacea for all
cases. Our Markov chain based approach can not handle )
the case where the penetrator has a certain degree of I
memory and its movement is not independent from i
previous steps. Addressing this problem is a part of our
future research.

Sensor Number Needed
x  a o o~

©

r"

~

.

0 1 4 5

2 3
length of grid side (m)

Figure 18. The horizontal line is the sensor number
. . needed to achieve absolute barrier coverage obtained
4. Evaluations and Observations from [15]. The diamonds represent the data from our
Markov chain based evaluation approach.
On Deterministic Deployment:  We use three
surveillance shapes to evaluate the accuracy of our We change the grid size frod.01m x 0.01m to
evaluation approaches, i.e. the simple projection basedm x 5m. We then consider the same configuration for
approach and the comprehensive Markov chain basethe sensor network as in [15]. We study@m x 10km
approach. The three topologies as shown in Fig. 12, Figbelt area, where equalsl0. Sensor range is a disk with
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Figure 12. A belt area with area Figure 13. A ring area with width Figure 14. An ellipse area with
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200m x 40m on which 50 sen- 40m where 50 sensors are de- long axis 100m and short axis 80m
sors are deployed. S is the bottom ployed. S is the inner circle. E is the with 35 sensors deployed. S is the
boundary. F is the upper boundary. outer circle. right inner circle. F is the left one.
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Figure 15. Quality for Fig.12. Figure 16. Quality for Fig.13. Figure 17. Quality for Fig.14.
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