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Abstract

In this paper, we introduce a new type of coverage for
wireless sensor networks, calledDirected Coverage(D-
Coverage). Basically, D-Coverage is the coverage pro-
vided by a sensor network monitoring an area between
two boundaries, through which the intruder attempts to
penetrates the area. We also study how to measure the
quality of D-Coverage. Our first evaluation approach is
a projection-based simple approach, while our second
approach is a more comprehensive Markov chain based
approach. Our evaluation approaches can accurately
evaluate the quality and provide good guidelines for
sensor network deployment and run-time repair.

1. Introduction

In the recent past, there have been a number of
documented instances of physical intrusion threats to
many sensitive facilities. The critical feature of such
threats is that the goal of the intruder is to not just
wander around in the facility vicinity, but to rather
penetrate throughthe boundaries of the facility. Under
such threats, it is critical to detect the penetrators (i.e.,
before they successfully penetrate the facility) in a
reliable manner.

In this paper, we introduce a new concept called
Directed Coverage(or D-coveragein short) for wireless
sensor networks. In D-coverage, the area covered by
sensor nodes has two boundaries, i.e. source boundary
and destination boundary. The intruder penetrates the
area starting from the source boundary and exits at the
destination boundary. The area of D-coverage as well as
its corresponding source and destination boundaries can
be in any shape. The concept of D-coverage is general.
It encompasses a wide spectrum of applications. Barrier
coverage studied in [2][4][15][9] is a special cases of
D-coverage. D-coverage exhibits a strong directional
tendency due to two factors: 1) the existence of source
and destination boundaries and 2) the intention of
the intruder to penetrate the network. This directional
tendency of the penetrator has significant impacts to

both the required sensor network deployment and run-
time network repair and configuration. In providing
D-coverage, deployers can incur significant savings
in number of sensors needed if such tendencies are
exploited at sensor network deployment time. Also, a
significant amount of energy savings can be realized
by considering direction-oriented nature of the penetra-
tor movements during sensor node wake-up and sleep
scheduling.

Clearly, the quality of coverage, which reflects how
good a sensor network detects the intruder is a critical
issue. As stated above, barrier coverage is a special case
of D-coverage. In [2][7][8][15], absolute barrier cover-
age is studied where all the intruders are to be detected
with probability 1. However, absolute D-coverage (in-
cluding absolute barrier coverage) is not always feasible
because: 1) wireless sensors are of dynamic nature, and
may fail unexpectedly. Also, due to limited energy, they
are often scheduled into duty circles of being awake and
asleep in turn; 2) sensor deployment is often constrained
by geographical or technical limitations. Some areas
may be necessary for detection but not feasible for
deployment; 3) in many cases, redeployment is not
feasible for sensor nodes replacement; 4) it may be also
too expensive to achieve absolute D-coverage when the
deployment area is large. Hence, D-coverage with less
than100% guaranteed penetration detection, referred in
this paper asprobabilistic D-coverage, is more practical
and deserves a systematic study.

Due to the special directional features and irregular
boundaries in D-coverage, existing evaluation metrics,
e.g., in [3][4][16], cannot be applied. In this paper, we
propose two evaluation approaches for D-coverage: a
projection-based simple approach, and a Markov chain
based comprehensive approach. The projection-based
approach is simple, fully utilizing the directional feature
of D-coverage, when the movement of penetrators can
be considered as a straight line. The Markov chain
approach is comprehensive and can more accurately
evaluate the quality at the cost of complexity.

The rest of the paper is organized as follows. Instead
of a separate section for related works, we refer to
several other works related to ours at different places
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in the paper. In Section 2, we present the concept of
D-coverage and its basic definition. In Section 3, we
present our approaches for evaluating the quality of D-
coverage. We present our performance evaluations in
Section 4, and finally conclude our paper in Section 5.

2. The Concept of Directed Coverage

In this section we introduce the concept of directed
coverage, its features and its relationship with other
types of coverage defined in previous literatures.

Figure 1. (a) Surveillance to protect national borders. (b)
Surveillance to secure a detention facility. (c) Surveillance
to detect army movements between units.

In Fig. 1(a), we show a scenario of protecting national
borders, where there are two distinct source and des-
tination boundaries. In between these two boundaries,
the intruder can potentially take any direction to move
(although its objective is to also rapidly penetrate the
boundaries, than just wander there). In Fig. 1(b), we
show a scenario of a detention facility (inside the
smaller circle), from where escape attempts by prisoners
need to be detected. In this case, the inner boundary is
the source, while the outer boundary is the destination
which prisoners attempt to reach. In Fig. 1(c), we show
an army scenario where each non-shaded area is an
independent army unit. The goal is to detect soldier
movements between units. In this case, each boundary
is itself a source and a destination.

We consider the problem of a sensor network that can
detect the penetration between boundaries of a network.
For the rest of the paper, we call the boundary from
which the penetrator enters the network theSource
Boundary, denoted byS. We call the boundary from
which the penetrator exits the network asDestination
Boundary, denoted byE. The boundaries could be
anything from a simple geometric shape (like a straight
line) or irregular.

Definition 2.1: Directed Coverage (D-coverage)
The coverage provided by a sensor network in detect-
ing penetrators starting from any point atS before it
penetrates through any point atE.

Although the penetrator may take any direction at
one instant, overall, it moves towards the destination
boundary. The presence of the boundaries and the
penetrator’s intention typically constrain the penetrators
movement paths and show a strong directional tendency.
Fig. 2 shows a typical instance.

Figure 2. (a) Assume the penetrator enters at point xi

at the source boundary (S) and penetrates the network
at point xj at the destination boundary (E). It is unlikely
that the penetrator will move arbitrarily between these two
points. (b) Its movement area is constrained.

A pertinent concern to raise at this point is the
relationship between D-coverage with other coverage
concepts proposed in the literature. As we discussed in
Section 1, barrier coverage as studied in [2][4][15][9]
is a special case of D-coverage, where the coverage
area is a barrier with two parallel boundaries. There are
also a vast of works that typically consider monitoring
events occurring at arbitrary points in the networks and/
or intruders that are expected to arbitrarily move in
the networks (recognizing and recording trace of an
objective), e.g. trap coverage in [5]. The difference lies
on the fact that the concept of D-coverage focuses on
the feature of directional tendency while they do not.

3. The Quality of Directed Coverage

The traditional quality metrics used for monitoring
and tracking sensor network cannot be directly applied
to evaluate D-coverage.

Figure 3. Sensors are deployed in the same area in
different ways as shown in (a), (b) and (c). Intruders
penetrate the network along straight lines with directions
shown in arrows.

For instance, the ratio of the covered area size over
the total area size is widely adopted [16][2][12] etc.
to measure the quality of full area coverage. However,
this metric cannot present an accurate view for the
quality of penetrator surveillance. Fig. 3 (a) and (b)
show a network of active sensors (their sensing ranges),
wherein the penetrator crosses the network from its top
boundary to its bottom boundary. Clearly, Fig. 3 (a) has
a relatively poorer quality of penetrator surveillance,
while possessing a higher quality of the traditional
metric of coverage ratio. A metric for tracking quality is
ALUL (Average Linear Uncovered Length ) [3], which
is the average length of uncovered paths traveled by an
penetrator starting from a random (uniformly chosen)
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location within the field. ALUL does not explicitly
consider the penetrator’s direction as well as the relative
position of source and destination boundaries. Thus it is
not able to accurately reflect the quality of D-coverage.
As shown in Fig. 3(c), different penetration directions
will clearly have different detection probability while
ALUL possesses only one value. The existing metric
for barrier coverage provided in [4] is hard to be gener-
alized for irregular boundaries and arbitrary penetration
directions.

Our evaluation for D-coverage is designed to meet
the following requirements: 1) it should be able to
consider both absolute and probabilistic D-coverage;
2) it should be general enough to handle complicated
scenarios, e.g., irregular sensing ranges, irregular sensor
deployment areas and non parallel penetrating paths;
3) it should be backed by well studied background to
facilitate extension, optimization, and algorithm design.

3.1. Preliminaries

We assume that penetrators are not aware of sensor
locations, and hence will neither be able to tune their
movement strategy based on sensor location nor destroy
the sensors.

Notice that, though the sampling rate may be fast,
local detection decision can be relatively slow. For
instance, the sampling interval for acoustic sensors
is commonly500us. For PIR or Magnetometer, it is
usually10ms. However, local detection usually is based
multiple samples and needs0.1∼5s for them [1]. In
surveillance applications, penetrators possesses a certain
speed. When coupled with the sampling intervals of
sensors, an intersection within the sensing ranges cannot
practically constitute penetrator detection. It is more
reasonable to expect that a detection occurs only when
the intersection between a penetration trace and the
sensing ranges achieves a certain length. We denote such
length byD.

We defineL as a set of pathsL = {l1, l2, l3, · · · , ln}
that start from the source boundaryS and end at the
destination boundaryE. For any pathli ∈ L, we denote
P [li] as the probability of the penetrator takes pathli. Its
value is decided by the penetrator movement pattern. We
denote the number of times the penetrator is detected
by different sensors along pathli by D

s(li), and the
maximum number of detections made simultaneously
by different sensors byDc(li) .

Definition 3.1: Concurrentλ-K D-Coverage
It is achieved when

∑

ℓi∈L P [li]P [Dc(ℓi) ≥ K] ≥ λ,
λ ∈ [0, 1].

Definition 3.2: Sequentialλ-K D-Coverage
It is achieved when

∑

ℓi∈L P [li]P [Ds(ℓi) ≥ K] ≥ λ,
λ ∈ [0, 1].

Concurrentλ-K D-coverage states detection occurs
only when the penetrator has been detectedsimultane-
ously by K different sensors. In sequentialλ-K D-
coverage, simultaneousness being unimportant, detec-
tion occurs as long as the penetrator has been already
detected byK different sensors. We comment that the
concept of directed coverage is always coupled with
pathshere.

Parameterλ can be viewed as a performance metric
to reflect the quality of D-coverage. While there could
be other possible metrics, we believe that based on our
definition,λ is a natural and direct metric capturing the
essentials of penetration detection in sensor networks.
A large λ implies the penetrator is more likely to
be detected along its path, thereby indicating a better
quality of the directed coverage. Note that in absolute
directed coverageλ ≡ 1, while in probabilistic one
λ ∈ [0, 1]. The works in [15] and [2] both focus on
the case ofλ ≡ 1, and not otherwise.

3.2. Projection Based Simple Approach

This approach is based on the assumption that the
movement pattern of the penetrator can be considered
as straight lines.

For any straight pathℓi ∈ L, we can always find a
line l that is perpendicular toℓi. The projection ofℓi

on l is a single point. For path setL, we can obtain
a measure of all these points obtained from projection.
We denote it asM1. Now let ℓi be projected ontol with
a certain probability that is denoted byJ (ℓi). J (ℓi) can
be considered as the probability for penetrators taking
path ℓi to be detected. We can obtain another measure
of these weighted points generated from probabilistic
projection. We denote it asM2. M2 actually provides
a “sum” of all the detection possibilities along all the
paths. The qualityλ can be obtained asλ = M2/M1.

We first consider a simple case whereλ-1 D-coverage
is evaluated and sensors are always active. When the
penetration angle (θ in Fig. 2) is very small, the penetra-
tor’s movement pattern can be approximated as straight
lines with one direction. We further assume the paths
are uniformly distributed along the source boundaryS,
and every pathℓ ∈ L is taken with the equal probability.
These conditions can be relaxed later.

Let H denote the set of points covered by sensors.
We have

J (ℓi) =

{

1, when ℓ ∩ H 6= ∅;

0, otherwise.
(1)

In calculating theH value forJ (ℓi), a belt with width
D should be “strip off” in the path direction. Fig. 4
illustrates an example to get the quality metricλ, where
a belt with widthD has been striped off already.

Now we relax our conditions. For a penetra-
tion that may take different discrete intrusion angles
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Figure 4. In the simple case, possible paths are
uniformly distributed. They have a single direction. The
possibility for each path to be taken is the same. We then
have λ = ||lc1|| + ||lc2||/||la||.

θ1, θ2, · · · , θn with different possibilitiesP [θ1], P [θ2],
· · · , P [θn], we have λ =

∑n

i=1 λ(θi)P [θi], where
λ(θi) is the quality over one specific direction. For an
intrusion that may take different intrusion angles among
some continuous range fromθ1 to θ2 with probability
distributionf , thenλ =

∫ θ2

θ1
λ(θ)f(θ)dθ, whereλ(θ) is

the quality of one specific direction. In one direction, if
each pathℓi ∈ L is chosen with probabilityP [ℓi], then
P [ℓi]J (ℓi) is used.

This approach can also accommodate to the dynamic
features of sensor nodes. We consider each sensor to be
alive with probabilitypl. Furthermore, to save energy,
it is also natural to put sensors into duty cycles. In ran-
domized independent scheduling, sensors independently
follow the time cycle. At the beginning of periods, each
sensor independently decides whether to remain active
for this period with probabilitypa or go to sleep with
probability 1 − pa. Our approach can accommodate
these dynamics. Suppose the pathℓi intersects the
sensing range of one sensor,sj, with lengthli(sj), then
the probability for this sensor to detect the penetrator

along ℓi is pd(ℓi, sj) = 1 − (1 − papl)
li(sj)

D . Then if
a path ℓi intersects the sensing ranges ofk sensors,
s1, s2, · · · , sk, with lengthli(s1), · · · , li(sk), we obtain

J (ℓi) = 1 −
k

∏

j=1

(1 − papl)
li(sj)

D . (2)

For concurrent K (K>1) D-coverage, the definition
for J (ℓi) is similar to those mentioned before. Thus
the computation forλ is also similar. The only change
is thatH now denotes the area covered byK sensors.
For sequential K (K>1) D-coverage, letC(ℓi) denote
the set of sensors that intersect the pathℓi. Let C(ℓi, n)
be a set ofn sensors (ids) chosen fromC(ℓi). Then
we can obtain the detection probability by this set of

sensors as
∏

x∈C(ℓi,n)

pd(ℓi, sx)
∏

y∈C(ℓi)−C(ℓi,n)

(1 − pd(ℓi, sy)), (3)

To obtainJ (ℓi), we consider all possibleC(ℓi, n) with
n ≥ K and sum the detection probability from them
together.

3.3. MC Based Comprehensive Approach

In this section, we introduce our comprehensive ap-
proach to evaluate the quality of D-coverage (λ) where
we use Markov chain to approximate the real move-
ment pattern of penetrators. Markov chain is a desired
foundation of the solution for the important quality
evaluation issue since it satisfies all the requirements
aforementioned well.

3.3.1. Design Rationale. A Markov chain (MC)
is a sequenceX1, X2, Xn . . . of random variables
and is characterized by the conditional distribution
P(Xn+1|Xn) called the transition probability of the pro-
cess. We assumeXi takes value from a subsetΩ of R2,
which means the number of states is infinite such that
one penetration pathℓ can be modeled as a continuous-
state chain. The Markovian property guarantees that
at every pointx in Ω there is a probability density
function fx of transition to all states inΩ. Based on
this continuous modeling we will reach a theoretical
description of a geographical region with distinctive
properties encoded intransition density functionsthat
is decided by the path setL. Albeit its nicety, the
continuous-state Markov chain is not easy to handle,
so we proceed with a discretized version of it.

Consider a chain with several disjoint small setsAi

(for the definition of small sets refer to [10]). We could
then define renewal timeτn as the visiting time to one of
the small sets. Then for a continuous-state Markov chain
θ(t), we have (whereI is an indicator function)η(t) =
∑k

i=1 iIAi
θ(t) which is not a Markov chain; however

the following subchain isξ(n) = η(τn). We thus have
the theorem as below [10].

Theorem 3.1:For a Harris-recurrent Markov chain
θ(t), the sequenceξ(n), which represents the successive
indices of small sets visited by the chainθ(t), is a
homogeneous Markov chain on the finite state space
{1, 2, 3, . . . , k}.

Theorem 3.3.1 provides the basis for conducting
region discretization in that it guarantees the Markovian
property of the resulting discrete and usually com-
putationally feasible chain. We can divide the area
into multiple small convex areas conservatively with
the diameterD. Fig. 5 shows an example. We are
ready to construct a discrete time Markov chain model
{Xi|i ≥ 1} for a penetration detection sensor network.
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It can be represented in terms of an ensemble(S, I,P),
whereS is the state space,I is the initial distribution
andP is the transition matrix.

Figure 5. An area is divided into small rectangular areas.
Probabilities for penetrators from one area to the adjacent
are decided by their movement patterns.

3.3.2. Details. Each small area (rectangle in Fig.
5, but not necessary) is modeled as a transient state
in S. The transition only happens between adjacent
areas, with probability decided by penetrator’s move-
ment pattern. These transient states are represented
as {ts1, ts2, · · · , tsn}. In a typical case, we let the
transition probabilities between adjacent areas bepf ,
pl, pr and pb respectively corresponding to moving
forward, leftward, rightward and backward.

Figure 6. (a) If tsi is covered by any sensor, then a new
absorbing state asi is added. The transition probability
from tsi to asi is 1 if the penetrator at tsi can be always
detected. (b) If tsi is covered by two sensors. Assume
each sensor is being active with probability p. We have
a new state transition diagram shown in the right with
pd(tsi) = 1 − (1 − p)2.

Two categories of absorbing states are added into
state spaceS. The first category stems from sensor
coverage. Suppose the center of a small polygon corre-
sponding totsi is covered by some sensors. We then add
a new absorbing stateasi with the transition probability
pd(tsi) from tsi to asi. When an penetrator moves
into these absorbing states, it is considered detected.
pd(tsi) represents the probability for the penetrator to
be detected at locationtsi. The reason why we model
detections asabsorbing states is that the penetrator
will logically stay at these places forever from the
moment when they are detected. In the case ofλ-
1 D-coverage, we do not need to consider its further
movement. If sensors are always active,pd(tsi) = 1
and all other transitions going out fromtsi will be
removed afterasi is added, as shown in Fig. 6(a). If
we consider each sensor to be alive with probability
pl. And sensors are set into low duty circles, in which

they are active for this period with probabilitypa or
go to sleep with probability1 − pa. Assume that the
center of a small areatsi is covered bym sensors
that can be represented as a setC(tsi) with elements
being sensor ids,C(tsi) = {id1, id2, · · · , idk}. We
then havepd(tsi) = 1 − (1 − papl)

|C(tsi)|. Fig. 6(b)
shows an example. After we addpd(tsi), the original
probabilities for transitions going out fromtsi should
be modified by the factor1−pd(tsi). Another category
contains only one absorbing state, denoted asasout.
This absorbing state is added behind the destination
boundaryE as illustrated in Fig. 7. It does not indicate a
detection. Instead, the penetrator entering this absorbing
state implies it has not been detected when it crosses the
surveillance area. It is reasonable to assume that once
the penetrator has crossed the surveillance, it will not
reenter it again. Now we have a complete state space
and the transition probabilities.

Figure 7. A new absorbing state asout is added behind
the destination boundary E.

Let pin(tsi) denote the probability for the penetrator
to start at an areatsi that is at source boundaryS. The
initial probability distribution for the penetrator to enter
the area can be obtained asI = {pin(tsi)}.

Currently we are consideringλ-1 D-coverage, an
penetrator is discovered if it has been detected by at
least one sensor. More specifically, the probability for
the penetrator to be absorbed byasi is the probability
for this sensor network to detect the penetrator that
has never been detected before. Hence, the absorbing
probability for stateasout, the state behind theE, shows
the probability for an penetrator having crossed the
area but never been detected by any sensor. We denote
this probability asPout. The quality can be obtained
as λ = 1 − Pout. The procedure to computePout is
standard [11].

3.3.3. For λ-K (K>1) D-Coverage. The above basic
Markov chain approach can be extended to evaluateλ-K
(K>1) D-Coverage.

Concurrentλ-K (K>1) D-Coverage: The quality
can still be obtained asλ = 1 − Pout. The procedure
to computePout is similar to the above. There are two
difference. First, a transition statetsi has a absorbing
stateasi associated with it only if it is covered by at
leastk sensors. Second, the transition probability from
tsi to asi is changed to

|C(tsi)|
∑

i=k

(|C(tsi)|

k

)

pd
i(1 − pd)|C(tsi)|−i,
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where|C(tsi)| is the number of sensors that covertsi.

Sequentialλ-K (K>1) D-Coverage: From its def-
inition, we have to tell which sensor contributes the
detection each time. The new Markov chain should
make this feasible.

Compared with the procedure at Subsection 3.3.2, the
only difference in Markov chain construction here is
that, we divide each absorbing state that stems from sen-
sor coverageasi into m absorbing satesas1

i , as2
i , · · · ,

asm
i . The value ofm is given bym =

(

c
1

)

+
(

c
2

)

+ · · ·+
(

c
c

)

if K > c, or m =
(

c
1

)

+
(

c
2

)

+ · · · +
(

c
K−1

)

+ 1
otherwise, wherec = |C(tsi)|. The transition probabil-
ities from tsi to each of the statesas1

i , as2
i , · · · , asm

i

denotes the probability for the penetrator to be detected
by a specific set of sensors inC(tsi) at locationtsi.
We call tsi their location state. Fig. 8(a) illustrates an
example.

Figure 8. (a) Assume C(tsi) = {a, b}, then p1 =

pd(1− pd), p2 = pd(1− pd), p3 = p2
d. Entering as1

i implies
the penetrator is detected only by sensor a. Entering
as2

i implies it is detected only by sensor b. Entering as3
i

implies the penetrator is detected by both sensors a and
b. (b) asi is changed to transition probability 1 to its
location state.

There will be no changes for those statestsi ∈ S
with |C(tsi)| ≤ 1. In this new Markov chain, suppose
there are totallyn absorbing states that are denoted as
{as1, as2, · · · , asn−1, asn}. Note thenth absorbing
state asn is actually the one we added behindE,
asout, while others stem from sensor coverage. The new
transition matrix is denoted asPo. The initial probability
distribution for penetrators to appear at the states along
S does not change and is denoted asIo.

When computingλ, all possible combinations ofK
sensors that make the detection should be considered.
It is inevitable since there always exist paths going
through the locations of these sensors with non-zero
probabilities (some probabilities may be very small
though).

The quality can still be obtained asλ = 1 − Pout,
wherePout denotes the possibility for an penetrator to
cross the area fromS to E without being finally dis-
covered. LetP ′

out(d) denote the possibility for the pen-
etrator to cross the area after it has been detected byd
different sensors. We then have:Pout =

∑K−1
d=0 P ′

out(d).

The followingProcedure-1illustrates how to compute
Pout. A function namedComputePout is defined. To
determinePout, this function will be invoked recur-

sively. In the pseudocode,Po is the initial transition
matrix of the newly constructed Markov chain.D de-
notes the set of sensors that have detected the penetrator.
At step2, there is one matrix operation onP to calculate
out absorbing probabilities into each absorbing stateasi,
denoted byP ab[asi], for 1 ≤ i ≤ n; At step 5, we
obtain the total number of different sensors which have
detected the penetrator. If this number is larger than
K, the penetrator has been discovered. Otherwise, the
penetrator’s further movement should be considered. At
step 7 , we are to eliminate the further consideration
of detection made by sensors that are already inD.
One way is to add the transition probability 1 from
thoseasis that reflect detection by sensors inD to their
location state as illustrated in Fig. 8(b), and modify
the transition probability to any otherasis that reflect
detection by sensors some of which are inD. Another
way is to construct a new MC with the sensors inD
are removed. At step8, the new initial distribution is,
probability P ab(asi) for asi’s location stateand0 for
other transient states.

Procedure-1: Pseudocode to compute Pout

Pout = 0; P = P0; I = Io; D = ∅;
1 : Compute Pout (P ,I,D)

begin
2 : from P andI calculate out absorbing probabilities into

each absorbing stateasi, P ab(asi), for 1 ≤ i ≤ n;
3 : Pout = Pout + P ab(asn);
4 : for i = 1 to n − 1
5 : D′ = D ∪ C(asi);
6 : if |D′| < K
7 : get a new MC with transition probabilityP ′

8 : create a new initial distributionI′;
9 : Compute Pout (P ′, I′,D′);
10 : endif
11 : endfor

end

The key issue here is that the penetrator will logically
stay at the state where it is detected. Modification at
step7 implies the detection made by those sensors that
have already detected the penetrator will not be counted
any more. If the penetrator has not been detected by
K different sensors, its further movement that starts
from the location where it is staying will be further
considered. By the new distributionI ′ at step8, the
further movement that starts from a certain state can be
specifically studied.

In above, Markov chain based approach is proposed
to evaluate the quality ofK directed surveillance, for
generalK ≥ 1. However, there could be two concerns.
1) In many cases, the penetrator’s movement pattern
may not be known a priori. Although we can make some
assumptions on it, it may not be accurate and hence
the quality of directed surveillance evaluated may be
affected;2) The number of states may be too large to
be handled. We will discuss these issues in the following
sections.
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3.3.4. Self Learning on Movement Pattern. In
practice it is not always true that the penetrator’s move-
ment pattern has been exactly known before evaluation.
Even when the pattern has been known, it may change
with time or locations during penetrating. In this section,
we present a solution to self-learn the probabilities for
penetrators moving from one location to its adjacent
locations in the surveillance network.

We exploit Hidden Markov Model (HMM). Once the
penetrator enters the surveillance area, a sequence of
tokens (messages) with time stamps indicating detection
can be generated. This token sequence is from sensors
along the intrusion path and naturally contains the
information of transition probabilities between adjacent
locations. By studying these token sequences, transition
probabilities can be gradually updated close to their real
values. In our scenario, “hidden” states are locations,
and observations are token sequences. After the HMM
is constructed, the Baum-Welch Expectation Maximiza-
tion (EM) algorithm [13] can be used to update the
initially assumed transition probabilities.

The HMM we construct can be represented as an
ensembleδ = (Sh, Λ, Ih,A,B) which is characterized
by the following.Sh is the state space in the model, i.e.,
the set of small polygons.Λ, is the set of possible ob-
servations (tokens),Λ = {τ0, τ1, τ2, · · · , τk, τ1,2 · · · }.
Here, τi denotes the token signaled to indicate an
penetrator detection by sensori. If sensorsi and j
signal the detection at the same time, their tokens are
denoted asτi,j . Ih is the initial state distribution that
equals toI in aforementioned Markov model.A is
the state transition probabilities we originally assumed
and is A = {ai,j}. It needs to be modified after
self learning from observation sequences.B is the
probability distributions of tokens to be generated at
states. As Fig. 9 shows, at each state some tokens can
be generated, which is denoted as a set{τX}. There
is a probability associated with a specific token for its
generation. ThenB = {bi(τX)}, wherebi(τX) denotes

Figure 9. HMM for D-coverage. Token may be generated
with some probability along the path. If state Si is covered
by sensor j, then it may generate τj with probability bi(τj)

when penetrators arrive at this state.

the probability for tokenτX to be generated at State
i. For example, if StateS ∈ S′ and C(S) = {i, j},
assume each sensor is active with probabilitypd we
then havebS(τi) = bS(τj) = pd(1 − pd), bS(τi,j) = p2

d,

andbS(τ0) = (1 − pd)
2.

In this HMM, locations are modeled as hidden states
and the transition probabilities between adjacent loca-
tions follow some fixed but unknown distribution. As
the penetrator continuously moves, a series of observa-
tions can be obtained, for example,τ0τ1,2τ2τ2τ2,3τ4τ0τ0

τ0τ0 · · · . Here,τ0 is a “null” token added if no token is
generated by any sensor in a certain period. Empirically,
if there are a large amount of consecutiveτ0’s in the
observation sequence, the penetrator can be considered
to have left the surveillance area.

Let there beQ observation sequences, denoted by
the setO = {O(1),O(2),· · · , O(Q)}, where O(i) is the
ith observation sequence. Letot denote the observa-
tion at time t, ot ∈ Λ, and O(i) can be denoted
as {o

(i)
1 o

(i)
2 · · · o

(i)
Ti
}, where Ti is the time for the

last token. Our objective can be now formalized as to
maximizeP (O|δ), that is, after constructing the HHM
δ, according to the token sequences, we want to adjust
A to Ā, where Ā = {āi,j}, such that the probability
for generating those token sequences is maximized.Ā
will be much closer to the real transition probabilities
than A. The Baum-Welch Expectation Maximization
(EM) algorithm [13] can be used here to get{āi,j} to
maximizeP (O|δ). We comment that Baum-Welch EM
algorithm is not the only one that can be used for our
HMM based self-learning.

3.3.5. Complexity Reduction. The complexity of
MC based approach can be reduced by two major ways
as follows.

Divide-and-Conquer: Surveillance areas typically
are of belt-like shape [15] and can be very long [1].
The area for the penetrator that may appear when it
crosses the surveillance areas is often limited. It implies
two locations that are vertically far from each other will
have a very low probability to be on one path. Then we
can divide the whole belt into multiple segments that
are easier to handle, and computePout for each, and
then combine them. We call this approach as Divide-
and-Conquer.

Fig. 10 illustrates the method. We are to obtain the
area where the expected visit time for each state is
affected by edge effect, that is, to obtaina and c in
Fig. 10. More specifically, edge effect implies that the
penetrators at the left side ofAC will enter somewhere
within the areaABCD. SinceEF delineates the place
where the side effect almost ends, it implies the pen-
etrator that starts on the left side of pointA at source
boundaryS is almost impossible to reach the right side
of EF . Then we can use a conservatively smallǫ to get
a in terms of state numberna,na ≥ logpr

ǫ. Similarly,
we havenc by consideringpl.

With this method, the computation complexity can be
greatly reduced. Suppose originally there are totallym
transient states, the time complexity to get absorbing
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Figure 10. In the i−th round we compute the expected
visiting time for states in area ABCD, but only those
results for states within area EFGH are considered
valid. In the (i + 1)−th round, we compute the expected
visiting time for states in area A′B′C′D′, the valid area is
E′F ′G′H ′.

Figure 11. There are 299 transient states and 381

absorbing states before combination. After combination,
we have 12 transient and 27 absorbing states.

probability is Θ(m2). If it has been divided intoα
segments, the time complexity is thenΘ((m

α
)2).

State Combination: First considering those transient
states inS with nonempty coverage set, we take all
those that are covered by same sensors and unite them
into a single set. This set becomes a new transient
state inS′. Assuming this new state ists′i, we define
C(ts′i) = C(ts) for a transient statets ∈ ts′i. Then we
let absorbing states that are originally associated withts
now associate withts′i. We repeat this procedure until
all the transient states inS with nonempty coverage
set are handled. We then combine those transient states
with empty coverage set into a single set, which is
also a new transient state inS′. There is no absorbing
state associated with this new state. Finally, we put
a set containing the only absorbing state behind the
destination boundaryE, asout, into the theS′.

This method is inspired by [18], which is for per-
formance evaluation in real-life industrial systems. The
example in Fig. 11 illustrates its effectiveness.

We define{X ′
i|i ≥ 1} in the new state space as

X′
i =

{

ts′i, if Xn = ts and ts ∈ ts′i

undefined, otherwise
(4)

Proposition 3.1:{X ′
i|i ≥ 1} is still a Markov chain.

Proof: We first proof{X ′
i|i ≥ 1} defined is always

a stochastic process, since in generalX ′
i defined in

(4) is not even a function. Notice inS′ there is at

least one positive recurrent stateS′
a. Then each infinite

path has infinitely many occurrences of stateS′
a or

other absorbing states with probability one. Hence,X ′
i

is a completeS′-valued function. We further have to
show that eachX ′

i is a random variable. This follows
easily from the fact that each set of infinite paths is
measurable. Now we are to prove the Markov property
holds for {X ′

i|i ≥ 1}. Markov property holds for
{Xi|i ≥ 1}, i.e., we have{Xn+1 = Sn+1|Xn =
Sn, · · · , X1 = S1} = {Xn+1 = Sn+1|Xn = Sn}.
Now we rewriteSi for any i as S′

j if Si ∈ S′
j . Sine

the construction procedure is complete and there only
exits unique one to one∈ relationship between a state
in S and a state inS′, we have{X ′

n+1 = S′
n+1|X

′
n =

S′
n, · · · , X ′

1 = S′
1} = {X ′

n+1 = S′
n+1|X

′
n = S′

n}.

Furthermore, we define new transition probabilities
a′

i,j from a new statets′i to another new statets′j as fol-
lows. LetN v(tsi)) denote the expected visited number
for a transient stateSi ∈ S. Assume thatts′j is a tran-
sient state, and there areni statestsi

1, tsi
2, · · · , tsi

ni

in ts′i andnj statestsj
1, tsj

2, · · · , tsj
nj in ts′j. We then

assign the transition probability between transient states
as

a′
i,j =

∑ni
p (

∑nj
q P(Si

p, Sj
q)N v(Si

p))
∑ni

p N v(Si
p)

. (5)

The self transition probability forS′
i is then defined

as a′
i,i = 1 −

∑

j 6=i
a′

i,j . We also define the new initial
distributionI′ asPin(ts′i) =

∑

ts∈S′

i
Pin(ts).

Proposition 3.2:The λ obtained from{X ′
i|i ≥ 1} is

the same as that from{Xi|i ≥ 1}.

Proof: AssumeS′
i, S

′
j ∈ S′, andSi

1, Si
2, · · · , Si

ni

∈ S′
i andSj

1, Sj
2, · · · , Sj

nj ∈ S′
j .

P(X′
t+1 = S′

j |X
′
t = S′

i) =
P(X′

t+1 = S′
j , X′

t = S′
i)

P(X′
t = S′

i)

=

∑ni
p=1 P(X′

t+1 = S′
j , X′

t = S′
i|X

′
t = Si

p)P(X′
t = Si

p)

P(X′
t = S′

i
)

=

∑ni
p=1 P(X′

t+1 = S′
j |X

′
t = Si

p)P(X′
t = Si

p)

P(X′
t = S′

i)
.

→ P(X′
t = S′

i)

=

∑ni
p=1 P(X′

t+1 = S′
j |X

′
t = Si

p)P(X′
t = Si

p)

P(X′
t+1 = S′

j |X
′
t = S′

i)

=

∑nj

q=1(
∑ni

p=1 P(X′
t+1 = Sj

q |X′
t = Si

p)P(X′
t = Si

p))

P(X′
t+1 = S′

j |X
′
t = S′

i)
.

We replaceP(X ′
t+1 = S′

j |X
′
t = S′

i) above by

P(X′
t+1 = S′

j |X
′
t = S′

i) =

∑nj
q (

∑ni
p P(Si

p, Sj
q)N v(Si

p))
∑ni

p N v(Si
p)

.

Then take
∑∞

t=0 on both sides, then we have,
Nv(S′

i) =
∑ni

p N v(Si
p) =

∑

S∈S′

i
Nv(S). It implies

that in our new chain, the expected visiting time at each
sensor’s sensing range is the same as that in the original
chain. Then we have,
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A(S′
i) = Nv(S′

i)

∑na
q (

∑ni
p P(Si

p, Sa
q)N v(Si

p))
∑ni

p N v(Si
p)

=

na
∑

q

(

ni
∑

p

P(Si
p, Sa

q)N v(Si
p))

=
∑

S∈S′

i

A(S).

It implies that the absorbing probability at each
sensor’s sensing range in the new chain is the same
as that in the original chain. Hence, theλ calculated
out by new chain is exactly the same that calculated in
the original chain.

3.4. Discussions

The projection based approach approximates the pen-
etrator’s movements by straight lines and uses projec-
tions to transfer a two-dimensional geometry problem
to a one-dimensional one. It is simple and appropriate
for cases where the penetrator has a strong intention to
penetrate to a specific destination. The Markov chain
based approach on the other hand can incorporate more
complicated penetrating movement patterns. Markov
chain is a well studied topic. There have been many
existing results and methods which can be directly
applied to an approach based on it. Hidden Markov
Model (HMM) based self learning is an example. Using
above HMM based approach, not only can we learn
the penetrator movement pattern that was unknown, but
can capture unexpected transition probabilities between
locations, e.g., those that result from geographical char-
acteristics, at different locations in the surveillance area.

Divide-and-conquer and state combination can be
combined. They can also benefit HHM based self-
learning by making it more efficient. Since transition
exists only locally, the transition matrixes are always
very sparse. Techniques used for sparse matrix oper-
ations can be further applied to reduce computation
complexity [17]. Further optimization of computation
procedure is out of the interest of this paper.

Note that our approaches are not a panacea for all
cases. Our Markov chain based approach can not handle
the case where the penetrator has a certain degree of
memory and its movement is not independent from
previous steps. Addressing this problem is a part of our
future research.

4. Evaluations and Observations

On Deterministic Deployment: We use three
surveillance shapes to evaluate the accuracy of our
evaluation approaches, i.e. the simple projection based
approach and the comprehensive Markov chain based
approach. The three topologies as shown in Fig. 12, Fig.

13, and Fig. 14 can be considered as abstraction from
the three applications described in Section 2. Sensors
are homogenous with sensing radius4m. The location
of sensors for these instances are randomly generated.
Fig. 15, Fig. 16, and Fig. 17 shows the qualityλ of
D-coverage for above three instances while detection
condition D increases.D decides the length of the
grids’ diagonal. Due to the strong practical meaning of
λ, results from simulations can be directly compared
with those obtained from simple projection approach
and comprehensive Markov chain based approach. The
quality for λ-1 and λ-2 D-coverage are considered.
Penetrator movement model parameters are ofpf = 0.6,
pb = 0.1, pl = 0.15 and pr = 0.15. Sensors are
scheduled to be active with probability0.9. Simulation
results are the average from1000 runs. The fidelity
between simulation and analysis data demonstrates our
evaluation approaches can accurately present the quality
of directed coverage. Furthermore, we notice as the de-
tection conditionD increases, the quality of D-coverage
degrades.

On Random Deployment: In this subsection, we
study the quality of D-coverage in independent and uni-
form sensor deployments. We show the results presented
in [15] as a special case of ours when the grid size is
very small. Focusing on absolute barrier coverage, [15]
gives the sufficient condition for all orthogonal crossing
lines to be 1-covered with high probability. It defines
chigh as chigh = minn{c(s) : c(s) ≥ 1+φ(np)/log(np)},

whereφ(np) is suggested to be
√

log log(np), p is the
active probability andn is the sensor number. Theorem
6.1 in [15] states that if2npr/(s log(np)) ≥ chigh, then
the probability for all orthogonal crossing lines to be 1-
covered should be close to1. Here,r is the radius for
sensing disk ands is a measure of belt shape of barrier
coverage.
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Figure 18. The horizontal line is the sensor number
needed to achieve absolute barrier coverage obtained
from [15]. The diamonds represent the data from our
Markov chain based evaluation approach.

We change the grid size from0.01m × 0.01m to
5m× 5m. We then consider the same configuration for
the sensor network as in [15]. We study a100m×10km
belt area, wheres equals10. Sensor range is a disk with
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Figure 12. A belt area with area
200m × 40m on which 50 sen-
sors are deployed. S is the bottom
boundary. E is the upper boundary.
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Figure 13. A ring area with width
40m where 50 sensors are de-
ployed. S is the inner circle. E is the
outer circle.
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Figure 14. An ellipse area with
long axis 100m and short axis 80m

with 35 sensors deployed. S is the
right inner circle. E is the left one.
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Figure 15. Quality for Fig.12.
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Figure 16. Quality for Fig.13.

2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

length of grid size (m)

λ

Simulation
Projection
Markov Chain

1 Coverage

2 Sequential Coverage

2 Concurrent Coverage

Figure 17. Quality for Fig.14.

radius10m, thenr = 0.01 after normalization. Active
probability pd = 0.1 . In Fig. 18, for each penetrator
speed, we first use100 randomly deployments with
certain number of sensors to calculateλ. The smallest
sensor number is then taken if the average value of these
λs is larger than99.9%.

From Fig. 18, when the grid size is very small, i.e.,
0.01m×0.01m , our result is close to the weak sufficient
condition presented in [15]. The critical condition in
[15] provides a good reference when detection condition
D is very small . But when detection conditionD is
large, it has room to enhance.

5. Conclusion

In this paper, we introduce a new concept of coverage
in wireless sensor networks called D-Coverage. We
also propose two evaluation approaches, i.e. the projec-
tion based simple approach and a more comprehensive
Markov chain based approach. Performance data show
that our evaluation approaches can accurately evaluate
the quality of D-coverage and provide good guidelines
for sensor network deployment and run-time repair.
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