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Abstract

Current investment in crop monitoring consumes a large
amount of financial cost, and how to reduce this cost has
been a long-standing problem in agriculture. Traditional
crop monitoring approaches are not cost-effective, because
they rely on either heavy human labor or intensive compu-
tation with expensive instruments. In this paper, we explore
the possibility of deploying networked sensor nodes for
low-cost crop monitoring. As an example, we compute an
important agricultural metric called global leaf area index
(LAI) to illustrate the benefit of using sensor networks.
We propose an approach called FOCUS that incrementally
deploys sensor nodes into farmland to improve the accuracy
of global LAI measurements. We design and implement a
novel algorithm that calculates the total size of crop leaves
with light intensity readings captured by the sensors under
the crop canopies. FOCUS not only lowers the deployment
cost considerably but also reduces the number of sensors
for the long-term monitoring. Through a small-scale field
test and large-scale simulations, we validate our design and
show its effectiveness in crop monitoring.

1. Introduction

As reported by the U.S. Department of Agriculture, the
national financial cost for agriculture rises continuously
these years. It came up to a new record of 279.2 billion
dollars in 2008, and counted for 75% of the gross income of
agriculture. Crop monitoring is an integral part of agriculture
and plays an important role for resources saving and yields
increasing. Traditional crop monitoring uses machines or
human resources to collect data from crop ecosystem to
guide farmers in irrigation and fertilization. These methods
are very costly and reducing the cost of crop monitoring has
become an urgent problem in agriculture. With the avail-
ability of cheap sensor nodes and the progress of wireless
technology, sensor networks have been widely deployed in
many large-scale applications, such as environment monitor-
ing [1] and surveillance [2]. In this paper, as shown in Figure
1, we explore the possibility of deploying networked sensor
nodes in crop monitoring and use an important agricultural
metric called global leaf area index (LAI) as an example to

Figure 1. Crop monitoring with a sensor network

illustrate the benefit of sensor networks for cost reduction
in agriculture.

Global LAI is the most important metric in crop mon-
itoring. It is defined as the amount of upper surface area
of leaves in crop canopy per unit land area [3]. It can be
used to assess various agricultural issues, such as canopy
coverage, soil property, diseases, and yields. There are
various approaches to estimating this metric. But most of
them rely on either manual checking with prohibitive man-
hours or intensive computation with expensive instruments,
which impose unacceptable cost on farmers. In our work, we
aim to utilize cheap sensor nodes to acquire accurate global
LAI for the long-term and large-scale crop monitoring. In
the rest of this paper, the term global LAI refers to the LAI
in the whole farmland, while local LAI or simply LAI, refers
to the LAI value at a specific local area.

Using sensor networks to obtain Global LAI poses several
challenges. First, a sensor node may only capture light,
temperature and humidity readings. How can it measure
leaf area? Second, the seeds may be broadcast unevenly,
and as such the branches and leaves from different grown
crops interlace with each other in one place but may not
in another. How can we compute the total area size of
leaves in the farmland with irregular three-dimensional leaf
distribution? Third, how to reduce the cost both for the
deployment process and the long term monitoring? Finally,
diverse weather and environment conditions may affect the
accuracy of crop monitoring.

In this paper, we design a cost-effective approach named
Fast Optimal Cost redUcing deployment Scheme (FOCUS)
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that handles the aforementioned challenges. Based on Monte
Carlo theory, FOCUS employs multiple iterative steps to
randomly deploy sensor nodes into the farmland. In each
step, according to the sensors’ readings, FOCUS groups the
sensor nodes to represent different canopy thickness, and
decides the number of nodes needed in the next step to
incrementally achieve certain precision requirement. After
being deployed, the system collects the light intensity data
regularly and uses a quasi-integral method to compute the
global LAI of the whole land. Due to diverse weather
conditions and changeable canopy figures, we consider mul-
tiple methods to enhance the accuracy and the reliability of
FOCUS. We make a field test in a test field near Hunan
Agricultural University. Using the readings from the test, we
conduct a comprehensive simulation to validate our design in
large farmlands. The results show that our approach achieves
desirable performance in large-scale crop monitoring. The
contributions of this work are as follows:
• To the best of our knowledge, we are the first to

utilize sensor networks to compute global LAI in large
farmlands.

• We propose FOCUS which only uses 2 or 3 iterative
steps to incrementally deploy sensor nodes needed
into the farmland to satisfy the global LAI precision
requirement, and considerably reduces the cost both
from the deployment process and the long-term crop
monitoring.

• We design a novel quasi-integral algorithm to reduce
the complexity of the global LAI computation. It uti-
lizes the light intensity readings to describe the various
thickness of the canopies and transforms the whole
canopies into a frustum with uniform leaf density for
the final LAI computation.

• We also consider the impact of changeable canopy
figures and diverse weather conditions to enhance the
accuracy and the reliability of FOCUS.

The rest of the paper is organized as follows. We survey
the related work in Section 2. The models and the basic
approaches are described in Section 3. In Section 4, we
present our design of FOCUS. Section 5 introduces refine-
ment methods for some practical issues. The performance
evaluation is conducted in Section 6. We conclude the paper
in Section 7.

2. Related Work

Existing LAI measurements employ either “direct” or
“indirect” approaches. Direct approaches [3] harvest crops
destructively or collect defoliations, and then measure the
leaf area directly. These approaches may achieve the highest
accuracy, but they can be performed only once in a crop’s
lifecycle and cost too many man-hours. Indirect approaches
utilize optical properties to observe other metrics which
can be translated into LAI. Remote sensing [4, 5] is the
most well-known means which conduct reflection spectrum
analysis on high resolution images captured by satellites.

Although it can monitor large area for long term, the achiev-
able accuracy and required computation are not desirable.
Other indirect approaches based on gap fraction analysis
have been successfully integrated into industrial instruments
[6, 7], which measure LAI in limited area by using fisheye
lenses or complex camera sensors. However, since the unit
price of these instruments generally exceeds $2000, they
cannot be widely deployed.

Recently, wireless sensor networks have been used in
agriculture. Most of the work pays attention to the generic
architecture of sensor networks in farmlands. For instance,
Burel et al. propose a switchable architecture that can self-
configure according to temporal factors [8]. During certain
months, the proactive sensor system monitors the land. Other
times of year, the system would use the data mule approach.
Kabashi et al. introduce a capable decision support system
[9], which improves agricultural practice. They study a zone-
based joint topology control and power scheduling mecha-
nism, and a multi-sink architecture. Hirafuji et al. develop
a field monitoring architecture that includes access points
embedded with large solar cells and ad-hoc sensor networks
[10]. Their approach considerably reduces the energy con-
sumption using sensors’ sleep mode and solar cell’s driving
mode. Damas et al. use seven sensor nodes to develop a
distributed, remotely controlled, automatic irrigation system
in Spain [11]. Cugati et al. develop an automated fertilizer
applicator for tree crops [12]. However, all of these work do
not address the measurements of certain agricultural metrics
and also provide no close guidance on specific farming
issues. Some only utilize crop monitoring as a scenario to
test their hardware or their networking protocols.

3. Models and Basic Approaches

In this section, we first present two models closely related
to our work, including the light interception model and the
crop canopy model. Then, we provide a brief description on
the LAI computation and our basic ideas.

3.1. Light Interception Model

The light interception property of crop canopy can be
described as follows: when a beam passes through the
canopy, it will be partly intercepted by leaves and branches.
The thicker the canopy, the less the light captured by the
sensor nodes beneath. It has been proved in [13] that the
interception property of crop canopy follows the famous
model, Beer-Lambert law, which describes the quantitative
relationship between the light intensity un-intercepted and
the light intensity intercepted by canopy with certain thick-
ness. The law is as follows:

Qi = Q0e
−kLAIi (1)

Where Qi and Q0 are the vertical light intensity at height i in
the canopy and that uncovered (i.e., on the top), respectively.
k denotes the extinction coefficient, which means when
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light penetrates through each unit leaf area the rest of light
intensity will be proportional to k. LAIi is the local LAI
from the top of the canopy to the height i at a fixed point in
the farmland. The practical meaning of (1) is that if we use
two sensors to monitor a crop, one on the top and the other
under the canopy, we could estimate the local LAI value
if the extinction coefficient is known. Using the local LAI
computed from Equation (1), we can calculate global LAI.
The calculation details will be introduced in Section 4.

In our work, we only consider the condition that the zenith
angle1 is 0◦, which means the captured light is vertical, and
the Beer-Lambert law can be used directly. Other zenith
angles can be extended by computing the vertical fraction of
the light intensity. We assume that the light dispersion and
reflection in canopy can be ignored.

3.2. Crop Canopy Model

The canopy structure model and the leaf distribution are
essential for understanding the light interception property
and our LAI computation as well. In botany, lots of litera-
tures [14, 15] focus on these topics. Briefly, according to the
height, the canopy of a single crop can be vertically classi-
fied into several physical leaf layers with a certain interval,
such as 0.1m. And those leaves which cross two layers
would be clipped and put into the two layers respectively.
From the experiments, the vertical distribution of the number
of leaves can be approximated by Gaussian distribution,
meaning that most leaves assemble at the middle of the plant.
So a crop’s canopy can be generally modeled as an irregular
shuttle with a stem axis, as shown in Figure 2. In this model,
layer j of crop i is defined by a 4-tuple (pi, hij , sij , Fij),
where pi stands for the coordinates of crop i, hij and sij

denote the height and the total area size of leaves at layer j of
crop i, respectively. Fij is a set of functions which describe
the shape of the vertical projection of layer j. It is well
known that a beam more close to the axis needs to penetrate
more physical leaf layers, hence the corresponding readings
from the underneath sensors may be lower. We stress that
our FOCUS does not need any specific information about
the canopy structure in the target farmland, except the size
of the farmland and the extinction coefficient of this certain
type of crops.

3.3. The Objective

In this problem, the cost involves two aspects, one is
the number of sensor nodes deployed which represents
the long-term cost of crop monitoring. The other is the
cost in deployment process. the reason that we choose
random deployment scheme instead of grid-based scheme
is to reduce the deployment cost. Grid-based deployment
scheme (GDS) costs heavy human labor to locate each of
the accurate grid points in a large farmland. In some cases,

1. zenith angle is the angle between directly overhead and a line through
the sun.

Figure 2. Canopy Model

farmers use helicopters to deploy sensors, the same way
as they use helicopter to sprinkle seeds. So in our work,
it is reasonable to use the times of helicopter takeoffs to
approximate the deployment cost.

In a large farmland with an area size G, a set of sensor
nodes are randomly deployed on the ground for crop moni-
toring. They capture the light intensities under the canopies
and transmit their readings to the base station for the global
LAI computation. Our objective is to reduce the cost as
much as possible but also to achieve the user’s LAI precision
requirement ε (defined later).

3.4. Basic Ideas of FOCUS

The main challenge of the global LAI computation is
to count the total leaf area of the canopies with various
leaf densities at different points of the field. We regard all
the individual canopies as a whole called global canopy
and define the important terminology logical leaf layer as
a virtual layer of the global canopy. It is composed of
leaves from different crops with the same thickness of leaves
underneath, or, in other words, with the same number of
physical leaf layers underneath. For example, as shown in
Figure 3, the leaves at position A and B are at the same
physical layer, but they belong to different logical leaf layers;
the leaves at position A and C are at the different physical
layers, but at the same logical layer, because there are many
leaves overlapping with each other under position A, and
the leaf area density 2 under position A is equal to that of
position C, but much higher than that of position B. Based
on this concept, we can find these logical leaf layers and re-
construct the global canopy model for the LAI computation.

The design of FOCUS is based on Monte Carlo theory
[16], which guarantees the precision of using randomly
selected points (sensor nodes) to measure the area size. we
use R to stand for the ratio of the size of the area vertically
projected by points at a particular logical leaf layer to the
size of the farmland. We call R the projection area ratio.

2. The leaf area density is defined as the square meters of leaves per
cubic meters [3].
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Figure 3. Logical leaf layer vs. physical leaf layer

According to [17], if we regard the R as a random variable,
using the Central Limit Theorem and the Large Number
Theorem, the area measurement accuracy is calculated as:

ε =
c · σ√

N
=

c ·
√

(1−R) ·R√
N

(2)

Where c denotes the confidential interval, σ is the standard
deviation of the projection area distribution and N is the
number of sensor nodes deployed in the farmland. Obvi-
ously, the more sensor nodes deployed, the higher accuracy
we can achieve. However, to reduce the cost, we use a few
iterative steps to gradually deploy sensor nodes into the
farmland, until the precision requirement is achieved.

4. Design of FOCUS

In this section, we introduce the design of FOCUS in
great detail. The outline is as follows: first, the number
of sensor nodes needed is unknown at the beginning. We
predict the initial number of nodes by using some empirical
information. Second, in each deployment steps, we collect
the light intensity readings, and group the sensor nodes by
the extended Jaccard coefficients of these readings to find the
logical leaf layers of the global canopy. Third, A heuristic
rule is given to decide which logical layer’s precision should
be satisfied first, based on which we compute the extra
number of sensor nodes needed in the next step. Finally,
we propose a quasi-integral method to compute the global
LAI.

4.1. Initial Prediction and Grouping Process

Before deployment, it is necessary to derive a general
estimation on the number of sensor nodes needed in the
farmland. In our work, we utilize some loose empirical in-
formation to do this estimation. We stress that the empirical
information does not have to be very accurate, since we
would use iterative steps to adjust the precision.

We first predict the projection area size of the global
canopy through some probabilistic analysis as an approx-
imation of area size of the largest logical layer. When seeds

are sprinkled, they actually fall into the land in sequence.
We use s to stand for projection area size of a single grown
crop, which comes from empirical data. Suppose we could
count the seeds one by one, we use Ai to denote the size of
the projection area formed by up to i seeds, then:

A1 = s

A2 = s + (1− s/G) · s
...

An = An−1 + (1− (An−1/G)) · s (3)

Transform (3) as follows:

Ak = ((G− s)/G)Ak−1 + s (4)

We set α = (G− s)/G, then:

An = αAn−1 + s

= α(αAn−2 + s) + s

= α2An−2 + αs + s

= ...

= αn−1A1 + s ·
n−2∑

i=0

αi

= αn−1A1 + s.α(1− αn)/(1− α),

Assume that M seeds are sprinkled into the land and will
grow into M crops. The expected projection area size of
the global canopy can be estimated as αM−1A1 + s.α(1−
αM )/(1−α). Then the projection area ratio, which also can
be considered as the expected probability of a sensor node
fallen into the projection in the farmland is:

Rinit =
αM−1A1 + s.α(1− αM )/(1− α)

G
(5)

Apply (2) and (5), we can compute the number of nodes for
the initial deployment. Suppose the number is Ninit.

After Ninit sensor nodes are randomly deployed into the
farmland, FOCUS gathers Ninit series of feedback readings
for a certain time interval, then conducts the grouping
process. In the grouping process, FOCUS first computes the
Similarity Matrix [rkl].




r11 r12 ... r1n

r21 r22 ... r2n

...
rn1 rn2 ... rnn




Where rkl stands for the extended Jaccard coefficient of
nodes k and l, and is defined as:

rkl =
Xk ·Xl

‖Xk‖2 + ‖Xl‖2 −Xk ·Xl

(6)

In the above formula, we consider the readings of sensor
nodes k and l as vectors Xk and Xl, respectively and
use Xk · Xl to denote their dot product, and ‖Xk‖ to
denote the modules of Xk. The extended Jaccard coefficient
takes values in the interval [0, 1]. Given a threshold θ, the
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similarity test succeeds when θ ≥ 0. Then we transform
[rkl] into a 0-1 matrix, where 1 represents rkl ≥ θ, and
0 is used otherwise. Actually, the Similarity Matrix [rkl]
can be considered as an Adjacency Matrix of an undirected
graph, whose nodes are the sensors and edges represent the
data similarity between two sensors. Using approximation
algorithm in [18] to solve the clique cover problem3, we
group the nodes in the adjacency matrix. Suppose that the
result is denoted by Ci = {si1, si2, ..., sin}, where i is the
group number, and n is the number of nodes in group i.
Therefore, FOCUS classifies the deployed sensor nodes into
several groups. In each group, the readings of any two nodes
are similar according to the threshold θ. Clearly, different
groups represent different canopy thicknesses. In the per-
spective of the canopy structure, the sensors belonging to the
same group have the same number of logical layers above
them.

4.2. Incremental Deployment

After the initial deployment, the actual values of global
LAI may not satisfy the precision requirement, since the
projection area size predicted initially is based on some
empirical information and only an approximation of the area
size of one logical leaf layer. Intuitively, there are some
naive schemes for the later steps. One is to deploy sensor
nodes one by one till the precision requirement is satisfied.
However, this scheme brings too many iterative steps. A
better choice is to deploy a bigger fixed number of nodes in
each step, like 20, 50. However, this may cause excessive
cost of sensor nodes and some undesired deployment cost.

In FOCUS, We propose an iterative scheme to gradually
improve the precision. In each later step, using the informa-
tion supplied by the formal steps, we adaptively compute a
certain number of complementary nodes, which can reduce
the cost as much as possible.

To compute the number of complementary nodes, We
first count the projection area ratio of each logical layer.
Based on Monte Carlo theory, the projection area ratio can
be accurately approximated by the ratio of the number of
sensor nodes deployed in the projection of this logical layer
to the total number of sensor nodes in the farmland. So
the issue is transformed to calculate the number of sensor
nodes at each logical layer. This calculation is based on
the following observation: when a beam penetrates thicker
canopies, it passes through more intermediate logical layers.
Statistically, this means the logical layers have an embedding
relationship, i.e., a logical layer i at which sensors have
smaller light intensity readings is embedded in another
logical layer j(j > i) at which sensors’ light intensity
readings are higher. By “embedding”, we mean that the
sensor nodes at logical layer i are included in logical layer
j. Suppose that the groups sorted by ascending order of
their readings are C1, C2, ..., Cn. We use |Ci| to denote

3. The clique cover is to use the minimum number of cliques to cover
all vertices in the graph.

the number of nodes in group i. According to the above
reasoning, the number of nodes in logical layer i can be

counted as:Ni =
i∑

k=1

|Ck|. So the projection area ratio of the

ith logical layer Ri can be computed as follows:

Ri =
Ni

Ntotal
=

i∑
k=1

|Ck|
n∑

k=1

|Ck|
(7)

Where Ntotal stands for the total number of nodes. From (7)
and (2), we can easily compute the complementary number
of nodes needed to meet the precision requirement of each
logical layer.

However, there are still two challenges about which
logical layer should be satisfied first and how many nodes
we should deploy in the next step. We utilize an important
feature of Monte Carlo theory that more nodes are needed
to satisfy the precision requirement at a logical layer whose
projection area ratio is closer to fifty percent [16], which
brings us a heuristic rule to decide the extra number of
nodes in the next step:

Theorem 1: In each iterative step of FOCUS, if we guar-
antee the number of nodes needed in a certain logical layer
whose projection area ratio is the closest to fifty percent, then
the precision requirement of other existing logical layers is
also satisfied.

Proof: Suppose 4i denotes the difference between fifty
percent to the projection area ratio of layer i, therefore, Ri

can be represented as 0.5 ± 4i. From (2), we obtain the
precision formula:

εi =
c
√

((1− (0.5 + ∆i))(0.5 + ∆i)√
Ntotal

=
c

√
0.52 − |∆i|2√

Ntotal

Since we assume that the projection area ratio of layer i is
more adjacent to fifty percent than layer j, so |∆i| ≤ |∆j |.
Hence we get εi > εj , which ends the proof.

By Theorem 1, FOCUS always first satisfies the preci-
sion requirement of the layer whose projection area ratio
is the closest to fifty percent. Our simulation shows that
Theorem 1 largely decreases the iterative steps and brings
no excessive nodes.

4.3. Quasi-integral LAI Computation

The ultimate goal of our work is to compute the global
LAI periodically. Based on Equation (1) and the explanation
in Section 3, we can obtain the local LAI value at each sen-
sor’s location based on the sensor’s light intensity readings.
The challenge is that we cannot simply add up all local
LAI values to obtain the global LAI value, because such
calculation may count a local LAI value multiple times due
to the overlap of crop leaves.
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Figure 4. A cone type frustum built by the leaves of
the whole farmland: each transverse section denotes a
logical layer whose size is known

Thus far, we have formed logical layers based on sensors’
light intensity readings after incremental deployment pro-
cess. By the “embedding” relationship mentioned in Section
4.2 and Formula (7), the projection area size of logical
layer i is included in the projection area of logical layer j.
This relationship is determined by the way we calculate the
projection area ratio of a logical layer based on Equation (7).
With this embedding relationship, the leaves of the whole
farmland can be built into a virtual cone type frustum to
facilitate the global LAI calculation. As shown in Figure 4,
the height of the virtual frustum is equal to the maximum
local LAI values. Each logical layer can be imagined as a
horizontal transverse section of the frustum. The size of each
transverse section is equal to the projection area size of the
logical layer, which has been obtained with the method in
Section 4.2. In order to calculate the global LAI, we thus
need to calculate the total size of leaves in the frustum.

To calculate the total size of leaves in the virtual frustum,
we utilize the following important fact: The leaf area density
in the virtual frustum is uniform. This is because the heights
of these logical layers in the virtual frustum are proportional
to their local LAIs. If h and a denote the variables of height
in the virtual frustum and the leaf area density, respectively,
we have the following integral to calculate the total size of
leaves:

Atotal =
∫

a · dV =
∫ H

0

a ·A(h)dh (8)

Where dV denotes the volume element of the integral, H is
the total height of the frustum and A(h) is the area function.
To compute this integral, we have to get the three undefined
parameters a, H and A(h).

We first consider how to determine a and H . In fact, the
Beer-Lambert law has its original form as:

T =
Qi

Q0
= e−klN (9)

Where l is the distance the light travels through the material
and N is the density of absorbers. Comparing (9) with (1),

the local LAI can be computed as the product of distance
and density. So formula (8) can be transformed as:

Atotal =

∫ H

0

A(h)d(a · h) =

∫ LAI′

0

A(LAIlayer)dLAIlayer

(10)
Where LAIlayer and LAI ′ stand for the integral variable

and the integral upper bound of LAI, respectively. According
to (1), LAIlayer and LAI ′ can be computed by the light
intensity readings without a and H .

Formula (10) is in the form of continuous integral, while
what we have found so far are the discrete logical layers.
Therefore, we approximate Formula (10) with the volume
cumulative formula of several discontinuous cylinders, that
is,

Atotal =
n∑

i=1

A(LAIi) ·∆LAIi

≈
n−1∑

i=1

(LAIi − LAIi+1) ·Ai

=
n−1∑

i=1

(LAIi − LAIi+1) ·Ri ·G, (11)

Where Ai and Ri (i = 1, 2n − 1) express the size of the
projection area and the projection area ratio of logical layer
i, respectively, LAIi denotes the average local LAI of layer
i, and G denotes the size of the farmland.

Finally, we have the equation to calculate the global LAI,
denoted as LAIglobal, with the data that we have already
obtained:

LAIglobal = Atotal/G =
n−1∑

i=1

(LAIi − LAIi+1) ·Ri (12)

The quasi-integral method implies that the more logical
layers found, the higher precisions achieved. However, the
tradeoff between the cost and the precision and the limited
accuracy of the sensor readings make the error inevitable.
We evaluate the errors in Section 6.

5. Refinement

Weather conditions and changeable canopy figures may
impact the global LAI results. Fortunately, the usage of the
global LAI is to detect concerned events in a relatively large-
time scale, e.g. diseases, pests, and coverage. The impacts
of weather conditions and outliers are usually temporary.
Nevertheless, we introduce some methods to reduce these
impacts to further enhance accuracy and reliability as seen
in a small time scale.

5.1. Non-Uniform Clouds Coverage

In cloudy days, sunlight may first be intercepted by the
clouds and then penetrates the crops’ canopies. Based on
Beer-Lambert Law, the ratio Qi/Q0 can be regarded as a
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descriptor of the local LAI or canopy thickness. That’s to
say, if we utilize Qi/Q0 to group the sensor nodes, the
condition that the whole farmland is covered by the clouds
uniformly is equivalent to the condition that no clouds above.
Note that Q0 is measured by sensors above the canopies
or in the gap between crops. To consider partial clouds
coverage, it is not appropriate to use one reading sequence
Q0 to stand for the light intensity above the canopies in the
whole farmland, since different places in the field may have
different Q0 values. Intuitively, to handle this problem, we
can measure Q0 for each node, but this would cost too much.
The reasonable method is to use the readings captured by the
sensor node at the nearest gap between crops to approximate
Q0 for each covered node.

5.2. Outliers

Due to some temporary node failures or incidents (e.g.
some insect stays on the sensing board for a while), sen-
sor nodes may momentarily capture outliers, whose values
are much smaller or larger than the historical readings.
In FOCUS, we take Median filter [19] as a component
to cut unpredictable and temporary outliers. In our real
implementation, given the sampling rate of the sensor as
once per minute, each sensor node uses a FIFO buffer to
cache the latest 60 readings. Before transmitting the data
directly, the Median filter sorts them according to ascending
order, then transmit the average value of 30th and 31st
to the base station. By using Median filter, the temporary
outliers will be replaced by Median values in half an hour.
What’s more, some concerned events (e.g. disease or pests)
which last more than half an hour will be reflected to the
base station. Another reason that we choose Median filter
as our component is because it has lower time and space
complexity, and it is very easy to implement.

5.3. Errors from Rains and Winds

Winds and rains also bring errors into the light inten-
sity readings, since they may slightly change the leaves’
positions and vary the foliage inclination angles. These
two factors can hardly be modeled. In this case, FOCUS
utilizes Kalman filter to control the impacts. Kalman filter
is a recursive estimator and takes optimal estimates only
from the previous time interval. Its low resource requirement
inherently suits sensor nodes. In our work, it is easy to con-
struct the measurement equation and the state equation from
the light intensity readings. With Kalman filter equations
flushed into the sensor nodes, the captured readings have
been calibrated and the impact of rains and winds can be
alleviated.

5.4. Changeable Canopy Figures

In crop’s lifecycle, the canopy figure may change season-
ally. From spouting to maturity and to death of the crops,

the sensor nodes under the canopies may capture diverse
light intensity readings. Since crop growth is a long time
process, FOCUS can periodically check the validation of the
layered model and slowly adapt to the new canopy figures.
In some cases, FOCUS may re-conduct iterative steps to
deploy complementary nodes into the farmland to improve
the layered model. However, we stress that it’s not necessary
to reclaim the excessive nodes deployed in the farmland,
because they may contribute higher precision to the final
results.

6. Performance Evaluation

We first implement and test our approach in a small testing
cotton field. To save cost, we conduct simulation for large
farmlands based on the measurements from the field test.

6.1. Field Test

To better understand the light interception model and to
validate our design, we conducted a field test in a 50m×50m
testing cotton field near Hunan Agricultural University in the
second week of September 2008. In the test, the network was
consisted of 11 Crossbow Micaz motes with 10 XMTS310
sensing boards. One Mote without sensing board worked
as a sink node. We tied one of the 10 sensor nodes on a
wood shelf for the light intensity in the uncovered area as
a reference (i.e.,Q0 in Formula (1)). This shelf was above
the canopy and was in the center of the field. We set the
sampling rate as once per minute. The everyday test was
operated from 11 am. to 15 pm., and the whole test lasted
for one week. Figure 5 exhibits our field test.

The field test has two parts. One is to measure individual
crops. We first randomly deployed the rest of the 9 sensor
nodes in a single crop’s projection on the ground and
collected their readings for about 3 hours. As illustrated in
Figure 6, the 10 light intensity sequences can be divided
into 5 groups, and the highest values come from the node
on the shelf. Based on these measurements, we can construct
a model for the large-scale simulation. In Figure 5, we can
also find that when the readings from the node on the shelf
fluctuate, other readings also fluctuate with similar wave
shapes. It proves that apparent correlations exist between
different sensors’ readings, since they all originate from the
sunlight. That is the reason why we choose extended Jaccard
coefficient to test the similarity.

The other is to measure the whole field. The 9 sensor
nodes were randomly deployed into the whole field in
multiple rounds to represent more nodes on the ground at
one time4. In each round, the 9 nodes gathered readings to
the base station for half an hour. This lasts about 3 hour
to simulate a test bed of 54 nodes. To use this method,

4. This practice of course has less accurate results compared to using
hundreds of sensors at the same time. But in this way, we can use much
smaller system cost to obtain good approximation because the global LAI
results are not very time sensitive as seen in the first part of the test.
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Figure 5. Field Survey

Figure 6. Light Intensity Readings captured in a single
crop’s Projection

we roughly verified the validity of FOCUS under lower
LAI precision requirement and collect the raw data of light
intensity for the later large-scale simulation. Our test results
also confirm the validity of Beer-Lambert law with k around
0.5 for the tested cotton plants.

6.2. Large-Scale Simulation

We do large-scale simulation in a C-based simulator to
evaluate FOCUS. We first generate a 1, 000m × 1, 000m
square farmland region with various number of crops on
it. We utilize the canopy model mentioned in Section 3 to
generate diversity crops, each of which has 8 discontinuous
physical leaf layers but with random layer shape and random
area size. Suppose that the vertical distribution of the area
size of each physical layer in a single crop subjects to Gaus-
sian distribution N(0.6, 0.1). We record the large amount of
data deliberately for the later computation. Suppose that the
extinction coefficient k is set to 0.5. FOCUS is conducted
to compute the global LAI in this farmland.

In the simulation, we first analyze how to choose the
grouping threshold θ , then evaluate the performance using
three metrics, which are the number of sensor nodes needed
nnode, the number of deployment steps nstep, and the
relative error of LAI computation ê, which is defined as
ê = e/LAIactual, where LAIactual is the actual global LAI,

(a) LAI

(b) Number of layers

Figure 7. Grouping threshold analysis

which can be computed from crop canopy models mentioned
above. And e denotes the error of LAI computation, which
is defined as e = |LAIactual − LAIglobal|.

6.2.1. Grouping Threshold. To study the grouping thresh-
old θ in FOCUS, we set the number of crops as a fixed value
3, 000, 000, the precision requirement as 0.05, and change
θ from 0 to 1. For each threshold, FOCUS runs 50 times
to get the average results. As shown in Figure 7(a), when θ
is small, the LAI computation results deviate largely from
the actual global LAI (denoted by the horizontal straight
line), because lots of the sensor nodes with distinct readings
would be put into the same group. When θ becomes larger
than 0.7, the results approach the requirement and the gain
becomes trivial. Figure 7(b) plots the relationship between
the number of logical layers and θ. With the threshold
increasing, the number of layers increases steadily. However,
the curve achieves a rapid ascend after 0.85, since at this
point a slightly difference between two nodes’ readings will
lead them to different groups. So 0.7 to 0.8 might be good
choices for θ considering the tradeoff between the accuracy
and the grouping overhead. In the later simulation, we use
0.75 as a default grouping threshold for other evaluations.

6.2.2. Number of Nodes & Number of Steps Needed.
Both nnode and nstep are evaluated under two varied param-
eters: the number of crops in the farmland and the precision
requirement.

Figure 8(a) shows that with the number of crops increas-
ing from 0.1 million to 0.9 million, nnode rises gradu-
ally, since the predicted projection area size of the global
canopy becomes more close to fifty percent of the farmland.
However, as shown in Figure 8(b), when the number of
crops exceeds 0.9 million, nnode becomes stable round 270.
Because after the coverage reaches a certain degree, FOCUS
can always find a logical layer whose projection area ratio
is very close to fifty percent. It proves that FOCUS is very
scalable for large-scale crop monitoring, since the number
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(a) Under small number of crops

(b) Under large number of crops

(c) Under varied precision requirements

Figure 8. Evaluation of the number of nodes needed

of nodes has its upper-bound under different crop densities.
Figure 8(c) represents the relationship between the precision
requirements and nnode. We can see that nnode increases
rapidly after the precision requirement exceeds 0.03. When
the precision requirement reaches 0.01, we need more than
7, 000 sensor nodes to monitor the farmland. So, 0.05 to 0.04
is a good choice for the precision requirement, considering
the tradeoff between the cost and the reliability of the global
LAI results.

Figure 9(a) and Figure 9(b) show the probability of the
number of required steps under different number of crops
and the precision requirements, respectively. No matter how
these two parameters change, we have a high probability
to use only 2 or 3 iterative steps to finish the deployment
process in FOCUS. We compare FOCUS with the heuristic
rule with random layer chosen scheme. In each deployment
step, the later scheme randomly choose a logical layer to
satisfy the precision requirement. The results are plotted in
Figure 9(c). As we can see that by using FOCUS nstep is
only about 1/3 to that in the random layer scheme.

6.2.3. Relative Errors of global LAI. Given the rate of
LAI computation is once per hour, we set the same number
of sensor nodes deployed with FOCUS and grid-based
deployment scheme(GDS). Figure 10(a) shows that FOCUS
and GDS have similar relative errors of LAI results ê, which
are below 0.06. However, GDS cannot achieve the exact
number of nodes needed in such a few steps and it has to
spend more human resources to locate the grid points for
nodes deployment.

To evaluate the effects of outlier filter, several random
outliers are injected in the simulation. Each outlier would
last a random time but no more than half an hour. As shown
in Figure 10(b), the relative errors of LAI ê with outlier
filter are much lower than that without outlier filter, since

the unfiltered outliers affect the grouping process. Figure
10(c) illustrates the relative errors of LAI with or without
Kalman filter. We use the readings and LAI measurements
collected in field test to test the effects. We can see that
the LAI precision values with Kalman filter will be slightly
higher than that without.

7. Conclusion

In this paper, we present a novel approach called FOCUS
for cost-effective, large-scale crop monitoring with sensor
networks. In FOCUS, we use iterative steps to randomly
deploy sensor nodes into a large farmland in order to save
cost both for deployment process and long-term monitoring.
We use a grouping process to transfer the original canopies
with various thicknesses into a frustum with uniform leaf
area density and compute global LAI by quasi-integral
method. Both our field test and simulation show that FOCUS
achieves desirable precision of global LAI measurements
with a low cost.
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