Dynamic Linking and Loading in Networked Embedded Systems

Wei Dong', Chun Chen', Xue Liu?, Jiajun Bu', and Yunhao Liu?
1Zhejiang Key Laboratory of Service Robot, College of Computer Science, Zhejiang University
2School of Computer Science, McGill University
3Department of Computer Science, HKUST
{dongw, chenc, bjj} @zju.edu.cn, xueliu@cs.mcgill.ca, liu@cse.ust.hk

Abstract

We present a holistic dynamic linking and loading mech-
anism in networked embedded systems. Our design and
implementation are guided by four requirements, which
are to provide (i) minimal code size (ii) efficient execution
and loading speed (iii) portable design (iv) isolated ker-
nel/application development. First, we develop a tool to
minimize the standard ELF format via many techniques in
order to reduce the code dissemination cost. Second, we
employ the techniques of pre-relocating and pre-linking (to
kernel functions) to reduce the run-time linking overhead,
thus improving the loading speed. Third, based on relo-
catable ELF and the modular design of the dynamic linker
and loader, our approach can be easily ported to different
platforms. Fourth, by maintaining a kernel jump table, we
provide a clean isolation between kernel and application
development. We have implemented the dynamic linking
and loading mechanism on SenSpire OS, a micro sensor
node operating system. The evaluation results show that
our design and implementation meet our design goals: the
code size of our SELF format is only 15%-30% of that of
standard ELF, 38%-83% of that of CELF, a compact ELF
format for the Contiki operating system; the loading speed
improvement varies from 40%—-50% compared to the stan-
dard mechanism; our design is portable to both MicaZ and
TelosB motes, and we allow updating both application mod-
ules and kernel services in isolation without prior knowl-
edge about the whole system information.

1. Introduction

Wireless sensor networks (WSNs) have been proposed
for a wide range of applications such as military surveil-
lance, habitat monitoring, and infrastructure protection, etc.
WSN applications need to be changed after deployment
for a variety of reasons, such as correcting software bugs,
modifying tasks of individual nodes, and patching secu-

978-1-4244-5113-5/09/$25.00 ©2009 |IEEE

rity holes. Many large-scale WSNs, however, are deployed
in environments where physically collecting previously de-
ployed nodes is either very difficult or infeasible. Enabling
sensor nodes to be reprogrammable over the air is an im-
portant technique to address such challenges [23].

In the reprogramming process, the loading mechanism
of a sensor node is responsible to load a new code image
(disseminated over the air) onto the program flash, enabling
sensor nodes to execute the new code. The loading mecha-
nism impacts the overall reprogramming efficiency: a sim-
ple bootloader, e.g., TOSBoot [9], requires the replacement
of an entire application image, which is not energy-efficient
to disseminate; a virtual machine (VM), e.g., Maté [14] and
JVM [5], can naturally support loading and executing a very
compact code, but is not energy-efficient to execute in the
long-term [5].

Contrary to the abovementioned mechanisms, dynamic
linking and loading is an efficient way to enable sensor
nodes to be reprogrammable: on one hand, it allows dissem-
inating the loadable module, which is much smaller than the
entire application image required by the bootloader mecha-
nism; on the other hand, it allows executing the native code,
which is much more efficient for execution than the VM in-
structions required by the virtual machine mechanism.

To this end, we explore the design of a dynamic linking
and loading mechanism for micro sensor nodes. Our design
and implementation are guided by four requirements:

Minimal Code Size. The radio subsystem is one of the
major cost drivers in terms of energy consumption on cur-
rent mote platforms. Therefore, communication should be
limited to a minimum during code dissemination in order
not to reduce the lifetime of the network too much. In order
to reduce the communication cost, the disseminated code
size should be minimized.

Efficient Execution and Loading. In many application
scenarios, e.g., correction of software bugs, the dissemi-
nated code is expected to be executed for a long time [5].
Therefore, the code execution speed should be very effi-
cient to reduce the duty cycle in order to save energy. In

554

other application scenarios, e.g., software development, the
code update frequency is very often [5]. It is hence expected
that the loading process should be efficient in terms of load-
ing speed, RAM consumption, and Flash I/Os.

Portable Design. Because of the diversity of sensor
node hardware, the dynamic linking and loading mecha-
nism should be designed to be easily portable between dif-
ferent platforms (e.g., MicaZ and TelosB).

Isolated Kernel/Application Development. Modern sen-
sor network systems are very complex, which require dif-
ferent classes of developers. For example, kernel develop-
ers are responsible to provide system services while appli-
cation developers are responsible to construct application
logic. It is desired that kernel developers and application
developers should be able to update their own code in iso-
lation without prior knowledge about the whole system in-
formation.

To the best of our knowledge, no existing dynamic link-
ing and loading mechanisms satisfy all of these require-
ments. FlexCup [15] allows dynamic loading of TinyOS
components, but the loading overhead is large because it
makes extensive use of Flash and requires a hardware re-
boot for executing the new code image. Contiki [5, 6] uses
the CELF format for dynamic linking and loading. As the
design philosophy of Contiki is somewhat towards using
standard mechanisms and file formats, the code size is not
yet minimized. SOS [8] uses the Mini ELF (MELF) for-
mat for dynamically loading and unloading modules. As
described in [5, 8, 19], the MELF format uses position in-
dependent code (PIC) and due to architectural limitations
on common embedded platforms, the relative jumps can be
only within a certain offset (such as 4K for the AVR plat-
form). RETOS [2] and LiteOS [1] also support loadable
modules by using specific file formats. However, no spe-
cific techniques for improving the loading speed are em-
ployed.

This paper presents a holistic dynamic linking and load-
ing mechanism in networked embedded systems. First, we
develop a tool (i.e., elftoself) to minimize the standard ELF
format via many techniques, to reduce the code dissem-
ination cost. Second, we employ the techniques of pre-
relocating and pre-linking (to kernel functions) to reduce
the run-time linking overhead, thus improving the loading
speed. Third, based on relocatable ELF and the modular de-
sign of the dynamic linker and loader, our approach can be
easily ported to different platforms. Fourth, by maintaining
a kernel jump table, we provide a clean isolation between
kernel and application development.

We have implemented the dynamic linking and loading
mechanism on SenSpire OS, a recent micro sensor node op-
erating system. It is worth noting that, our mechanism can
also be ported to other sensor node operating systems. We
chose SenSpire OS mostly because of its kernel code acces-

| SenSpire | External Flash RAM

appllcatlon Kernel data
App data

SenSpire
make system
Program Flash

[ar |

elftoself

v SenSpire OS

SEI kernel
P{ SELF

pre-relocate
& pre-link

A4

pre-relocated

and pre-linked
SELF

protocol

Dissemination

Figure 1. Architectural overview of the dy-
namic linking and loading mechanism based
on SenSpire OS

sibility and multi-platform support. The evaluation results
show that our design and implementation meet our design
goals: the code size of our SELF format is only 15%-30%
of that of standard ELF, 38%—83% of that of CELF, a com-
pact ELF format for the Contiki operating system; the load-
ing speed improvement varies from 40%-50% compared
to the standard mechanism; our design is portable to both
MicaZ and TelosB motes, and we allow updating both ap-
plication modules and kernel services in isolation without
prior knowledge about the whole system information.

The rest of this paper is structured as follows. Sec-
tion 2 gives an overview of our dynamic linking and loading
mechanism. Section 3 presents our design and implemen-
tation. Section 4 shows the evaluation results. Section 5
describes related work. Section 6 concludes this paper.

2. Overview

Figure 1 depicts the architectural overview of the dy-
namic linking and loading mechanism based on SenSpire
OS. Programmers write SenSpire applications which will be
compiled (and linked) by our SenSpire make system. Our
SenSpire make system generates a standard ELF file using
relocatable code, which is more portable than position in-
dependent code (PIC). As the standard ELF file is initially
designed for traditional PCs, it contains extra overheads and
is not energy-efficient to disseminate. Thus, we have devel-
oped a tool, i.e., elftoself, to transform the standard ELF
into the SELF (i.e., “Slim” ELF) file, in order to minimize
the code size.

At this time, it still contains internal symbols and ex-
ternal symbols to be resolved at run-time. For the clarity
of presentation, we call the process of resolving internal
symbols as relocating and the process of resolving exter-
nal symbols as linking [5]. We try to avoid run-time re-
locating and linking by employing the techniques of pre-

555

relocating and pre-linking (to kernel functions) at compile-
time, thus improving the loading efficiency. Traditional pre-
relocating and pre-linking techniques improve loading ef-
ficiency at the cost of limited flexibility, as the layout of
program flash (e.g., addresses of variables and functions)
must be all the same for all nodes. We address this problem
by two mechanisms. First, we always remain necessary re-
location information for code and data references to cope
with the situation when the actual allocated base addresses
do not match the “pre-allocated” based addresses. Second,
we keep a kernel jump table to remain the flexibility of ker-
nel code layout and application code layout. The existence
of the kernel jump table allows updating kernel/application
code in isolation. After this step, we obtain a pre-relocated
and pre-linked SELF file.

The SELF file (either pre-relocated and pre-linked or
not) is then transmitted to all sensor nodes via a code dis-
semination protocol, and is saved onto the external flash.
Next, the dynamic loader starts loading the file: it resolves
symbols if necessary; it writes the code section onto the
program flash and the data section onto the data RAM; fi-
nally, the loader executes the initialization routine provided
by the application module. It is worth noting that based on
the modular design, our dynamic loader is easily portable
to different sensor node platforms.

3. Design and Implementation

This section describes our design and implementation to
meet the requirements listed in Section 1, including tech-
niques to minimize the code size (Section 3.1), techniques
to improve loading efficiency (Section 3.2), portability con-
siderations (Section 3.3), and the kernel/application bound-
ary for isolated development (Section 3.4).

3.1. Code Size

As we have already mentioned, it is very important to
minimize the code size in order to reduce the code dissemi-
nation cost. To achieve this goal, we have developed a tool,
i.e., elftoself, to transform standard ELF to SELF. The basic
techniques we employed are described as follows.

Redefining Basic Data Types. The standard ELF format
is originally designed to work on 32-bit and 64-bit architec-
tures. This causes all ELF data structures to be defined with
32-bit data types. For 8-bit or 16-bit targets, such as current
sensor nodes, the high 16 bits of these fields are unused. For
this purpose, we have redefined the basic data types in stan-
dard ELF to the minimized data types in SELF (as shown in
Table 1).

Tailoring the ELF Content. From the viewpoint of link-
ing, the ELF content includes (i) the ELF header (ii) section
headers (iii) various sections. We tailor the ELF content

Table 1. Data types redefinitions

Name Def. in ELF/bits Def. in SELF/bits
elf_addr unsigned int/32 uintl6_t/16
elf_half unsigned short/16 uint8_t/8
elf_off unsigned int/32 uintl6_t/16
elf sword int/32 intl6_t/16
elf_word unsigned int/32 uintl6_t/16

-
-

relocation symbol string

A G info for .text table table
1 I —

text .data .bss .rela.text .symtab .strtab

Figure 2. The SELF format

by two methods. First, the definitions of the ELF header,
the section header, the symbol, and the relocation entry
are tailored as many fields in the standard ELF will not be
used in our limited environment. Second, we exclude un-
related sections by including only the text section (for the
code), the data section (for the initialized data), the reloca-
tion table, the symbol table, and the string table. Figure 2
shows the graphical layout of the SELF format, which in-
cludes: (i) the SELF header, which is used to provide basic
file information, and to locate section headers. (ii) section
headers, which are used to locate corresponding sections.
(iii) sections, which contain the text section (for code), the
data section (for initialized data), the relocation table (for
relocation), the symbol table (for internal and external sym-
bols), and the string table (string representations of sym-
bols). Note that, the bss section (for uninitialized data) are
actually not contained in the file, because all variables in
this section are known to be zero.

Tailoring the Relocation Table. The relocation table
contains relocation entries for symbol relocation. In stan-
dard ELF, each relocation entry contains an index to the
symbol and a pointer to the unresolved reference. The GCC
compiler generates a relocation entry for each unresolved
reference. To reduce the number of relocation entries, we
employ the chained references technique [13]. The basic
idea of this technique is trying to merge the relocation en-
tries for the same unresolved symbol, because references to
the same symbol in different locations of the program must
point to the same address. To achieve this goal, we use
references to the same unresolved symbol in the program
(which contain useless values before relocation) to create a
linked list. Therefore, in SELF, each entry in the relocation
table requires only two values: an index to the symbol and

556

read file info alloc. RAM load data section
{ & section info (bss+data) set RAM (bss) to 0 to RAM (data) }

alloc. prog flash

y
load text section to
exec entry prog flash

Figure 3. Dynamic linking and loading

a pointer to the first reference (i.e., the header of the linked
list) of that symbol. Hence, the relocation table grows with
the number of unique symbols, instead of the number of
references.

Tailoring the Symbol Table (and the String Table). In
standard ELF, the symbol table and string table are sepa-
rately stored. A symbol entry stores the pointer to the cor-
responding string representation. The reason is that this
scheme saves storage when the string sizes are arbitrary.
A symbol entry also contains the relative loading address
used for address adjustment during relocating or linking.
First, we remove the kernel symbols by the pre-linking (to
kernel functions) approach (discussed in the next section).
Second, to exclude useless symbols produced by the GCC
utility, we tailor the symbol table by including symbols that
need relocation or linking. The string table is tailored and
restructured in accordance with the symbol table.

3.2. Loading Efficiency

After the code is disseminated and saved onto the exter-
nal flash, our dynamic loader starts loading the code image
for execution. As the dynamic linking and loading process
is done at resource-constrained sensor nodes, it is important
to improve loading efficiency to save energy. As a lot of
work is spent on run-time relocating and linking, we try to
reduce the relocating and linking overhead. Before we dig
into the technical details, we first give an overview of the
dynamic linking and loading process.

Figure 3 shows the dynamic linking and loading pro-
cess. First, we read the SELF file header and section head-
ers for general information. Second, we allocate data RAM
for storing the bss and data sections according the specified
sizes. We set the RAM for bss section to zero, and initial-
ize the RAM for data section. Third, we allocate program
flash for storing the program code. We do relocating if the
actual allocated base address and the “pre-allocated” based
address do not match. Finally, we load the relocated code
onto program flash and execute the entry function defined
in the code module.

In order to improve loading efficiency, we use pre-
relocating and pre-linking (to kernel functions) to reduce
the run-time relocating and linking overhead respectively.

\
1

parse SELF & get
code/data info

send code/data size
to a node

Figure 4. The pre-relocating process

First, we use the pre-relocating technique to reduce the
run-time relocating overhead. As illustrated in Fig. 4, the
base station first requests to a representative node for pre-
allocating RAM space and program space. After obtaining
the base addresses, we do pre-relocation at the base station.
Finally, we disseminate the pre-relocated SELF to the net-
work. It is worth noting that our approach is different from
the simple pre-link approach as described in [5], where the
pre-link process is totally done by the GCC utility and the
relocation table is thus removed away after this process.
We implement this functionality in our tool, i.e., elftoself,
in which we still retain the necessary relocation informa-
tion. The reason is that if the pre-allocated address does
not match the actual loading address on certain nodes, the
existence of the relocation information still allows the code
module to be loaded onto the actual loading address. We do
allow further removing the relocation entries for code refer-
ences when the layouts of program flash are the same on all
nodes (e.g., the compiling environments and the program
logics are the same for all nodes).

Second, we use pre-linking (to kernel functions) to re-
duce the run-time linking overhead. To remain the flexibil-
ity of kernel code layout and application code layout, we
maintain a kernel jump table in the program flash. A kernel
function address called by an application is bound (i.e., pre-
linked) to a pre-determined address of a table slot, which
indirects it to the actual address of the kernel function. It is
worth noting that this technique also reduces the code size
as the kernel symbols are not stored in the SELF file.

3.3. Portability

The portability considerations in our design and imple-
mentation reflect in two main aspects.

First, we use relocatable code, instead of position inde-
pendent code (i.e., PIC, as was used in SOS [8]). The major
reason is that PIC is architecture dependent, and due to ar-
chitectural limitations on common embedded platforms, the

557

relative jumps can be only within a certain offset (such as
4K for the AVR platform). In addition, PIC is currently
not supported by the GCC utility for MSP430 platforms.
Finally, it is also worth noting that relocatable code elimi-
nates indirection cost incurred by PIC, which also improves
execution efficiency.

Second, after processing the relocatable ELF for various
optimizations (see Section 3.1 and Section 3.2), the result-
ing SELF format is still the same across different platforms.
Correspondingly, our dynamic loader is designed to be eas-
ily portable to different platforms. With the same design
approach in CELF loader [6], our loader is split into one
generic part and one architecture-specific part: the generic
part parses the SELF file, finds relevant sections, looks
up symbols, and performs the generic relocation logic; the
architecture-specific part allocates data RAM and program
flash, writes the code to the program flash, and understand-
ing the relocation types in order to modify machine code
instructions that need to be relocated.

3.4. Kernel/Application Isolation

As mentioned in Section 3.2, in order to improve loading
efficiency and to reduce the code size, we always pre-link
kernel functions. If not handled carefully, when the Sen-
Spire OS kernel is modified, it will no longer support old
applications that are pre-linked to old kernel functions. In
order to address this issue and allow a clean isolation be-
tween kernel/application development, we have used a ker-
nel jump table to implement the mechanism of lightweight
system calls (as in LiteOS [1]). Each entry in the jump table
represents a callgate (i.e., a special type of function point-
ers) to a predefined kernel function. These callgates are the
only access points through which user applications access
system resources. Therefore, they implement a strict sepa-
ration between the kernel and applications.

The benefits of this scheme are twofold. First, as long
as the system calls remain supported by newer versions of
SenSpire OS, user binaries do not need to be recompiled.
Second, more importantly, it allows in-situ reprogramming
a specific kernel function without interfering existing appli-
cations by modifying a specified callgate to point to a new
kernel function.

The kernel jump table takes up space of program flash.
For example, on MicaZ, each system call gate takes 2 bytes,
with 512 bytes of program space allocated for at most 256
system calls. Compared to the total program flash on Mi-
caZ, i.e., 128K, this overhead is acceptable. Moreover, as
this kernel jump table is programmed along with the Sen-
Spire OS kernel before deployment, it would not incur dis-
semination cost. Indeed, the jump table adds execution
overhead. For example, on MicaZ, compared to directly
invoking kernel functions, each system call adds approx-

[_JELF (TelosB) aon
2500 |- | I SELF (TelosB)
[CJELF (Micaz) nilon
I SELF (MicaZ)
2000 |- 4

1500 —

Code size (bytes)

1000 - 4

500 | 4

K ° e o ™

?\ec\\\eco\‘ o~ 6"1‘\5 A &2 é(’?\

O O 05
o° <

N oo

Figure 5. Code size comparisons (SELF vs.
ELF)

imately 10 clock cycles (i.e., 1.36us), a sufficiently low
overhead to be supported on current mote platforms.

4. Evaluations

In this section, we evaluate how well our design and im-
plementation meet the requirements listed in Section 1.

e In Section 4.1, we examine the code size. We write
a suite of benchmarks based on SenSpire OS’s linking
and loading mechanism, and compare the code sizes
of SELF with that of standard ELF. We also conduct
a comparative study among Contiki OS, SOS, and our
approach using three common benchmarks.

e In Section 4.2, we examine the execution and load-
ing efficiency. Previous work already shows that
the native code executes much faster than VM code,
and relocate code executes slightly faster than posi-
tion independent code (PIC). We quantify how the
pre-relocating and pre-linking techniques improve the
loading speed using two typical benchmarks.

e In Section 4.3, we examine whether our approach is
easily portable to different mote platforms.

o In Section 4.4, we demonstrate how applications and
the SenSpire OS kernel can be developed and updated
in isolation.

4.1. Code Size

We first compare the code sizes of SELF to that of stan-
dard ELF, based on a suite of benchmarks implemented on
SenSpire OS. Figure 5 depicts the results. We can see that
on both MicaZ and TelosB, our SELF reduces the code sizes
considerably compared to ELF: the code sizes of our SELF
format are 15%-30% of that of standard ELF.

558

C_JELF ,
C_ICELF
2000 | [0 MELF E
I SELF ,

1500 =

1000 4

Code size (bytes)

500 —

Blink Ping Surge

Figure 6. Code size comparisons (SELF vs.
CELF, MELF, ELF)

We then conduct a comparative study among Contiki
0OS, SOS, and our approach. We select three benchmarks
in the SOS distribution, i.e., Blink, Ping, and Surge. SOS’s
MELF file is generated using the tool in the SOS distribu-
tion, i.e., elftomini. We implement these benchmarks in
SenSpire OS. The SELF file is generated using our tool, i.e.,
elftoself. Contiki’s CELF file is also generated using the
method described in [5]. Figure 6 depicts the results. We
can see that the code sizes of SELF are 38%-83% of that
of CELF, and both SELF and MELF generate the smallest
code sizes.

4.2. Execution and Loading Efficiency

In order to see the execution efficiency of our approach,
we first notice that the native code is inherently much more
efficient than the VM code. For example, as reported in
[5], for an object tracking benchmark, the native code ex-
ecutes more than three times faster than the JVM coun-
terpart. Within the native code, relocatable code executes
faster than PIC (which is employed in SOS [8]), as it elim-
inates indirection costs. For example, as reported in [19],
for the Surge benchmark, the relocatable code executes ap-
proximately 12.8% faster than PIC.

In order to see the loading efficiency of our approach,
we write two benchmarks, i.e., Blink and CntToLeds. We
compare the loading speed of our approach (i.e., using opti-
mizations described in Section 3.2) with the standard mech-
anism employed in SOS, RETOS, and LiteOS [1,2,8]. We
run both benchmarks on Avrora [20], a cycle accurate sen-
sor node simulator. Figure 7 depicts the results. We can see
that the loading speed improvements vary from 40%—-50%
compared to the standard mechanism.

4.3. Portability

To evaluate the portability of our design, we have ported
our implementation to two different mote platforms: Mi-

standard
07 - | I pre-relocating+pre-linking B

0.6 |- 4
05 4

04} 4

Loading speed (seconds)

o
T
L

0.0

Blink CntTolLeds

Figure 7. Loading speed comparisons (pre-
relocating+pre-linking vs. standard mecha-
nism used by SOS, RETOS, LiteOS)

Table 2. LoC of different modules in our im-
plementation

Module Sub-module LoC
generic 496
elftoself AVR-specific 129
MSP-specific 52
generic 302
dynamic loader | AVR-specific 149
MSP-specific 58

caZ with Atmegal28L microcontroller and TelosB with
MSP430 microcontroller. First, we notice that based on
relocatable ELF, our approach can support arbitrary pro-
grams on both platforms. Second, as we already mentioned
in Section 3.3, the modular design of our approach facil-
itates porting to different platforms. Table 2 shows the
lines of code (LoC) needed to implement each module. The
main difference between the MSP430-specific module and
the AVR-specific module is due to the different address-
ing modes used by the machine code of the two microcon-
troller. While the MSP430 has only one addressing mode,
the AVR has 19 different addressing modes [5]. Each ad-
dressing mode must be handled differently by the reloca-
tion function, which leads to a larger amount of code for
the AVR-specific module.

4.4. Kernel/Application Isolation

We demonstrate how applications and the OS kernel can
be separately developed and updated by two illustrative ex-
amples.

First, there is almost no visible difference to develop an
application module (based on the dynamic linking and load-
ing mechanism) and to develop a single application/kernel
image. Figure 8 shows the Blink application module writ-

559

import System, Led, Task;

[@module]
static class Blink

{

void start ()

{
Task.startPeriodic(blink, DELAY);

}
void blink (uint8_t msg, wvoidx data)
{

Led.redToggle () ;

Figure 8. The Blink application module

import System;

static class Task2

{
void startPeriodic (callback_t func,

uint8_t period)

/]

}

void start ()

{
System.register (SYS_STARTPERIODIC,

startPeriodic);

Figure 9. Code module to update the kernel
function Task.startPeriodic

ten in the CSpire language which is used to develop Sen-
Spire applications [4]. Note that, we only need to specify
the @module attribute to the B1ink class. According to this
attribute, our SenSpire make system will handle all specific
details to compile and link the Blink module.

Second, the SenSpire OS kernel can be incrementally
upgraded on-site without interfering existing applications.
Suppose that the kernel function Task.startPeriodic
has to be changed for safety reasons. To accomplish this
goal, we only need to disseminate the code module shown
in Fig. 9, instead of the entire kernel. In Fig. 9, we re-
implement this kernel function, using any other standard
kernel functions if needed. In the initialization routine, we
invoke a system call, i.e., System.register, to update
the kernel jump table slot. When the code module is dis-
seminated to a sensor node, the initialization routine will
be executed by the dynamic loader, modifying the corre-

sponding kernel jump table slot to point to the new kernel
function. As long as the this function’s semantic and sig-
nature keep consistent, applications residing on the sensor
node can seamlessly invoke this new function for increased
safety.

5. Related Work

Reprogramming wireless sensor networks have been an
active research area in recent years [9, 12, 18,23]. To en-
able sensor nodes to be reprogrammable, code must first be
disseminated to all via a reliable code dissemination proto-
col. Then the loading mechanism on each sensor node is
responsible to load and execute the new code image.

There is a lot of work devoted to code dissemination pro-
tocols in WSNs [9, 11, 12,17, 18]. The loading mechanism
also attracts research attentions in recent years because it
can largely impact the code size to be disseminated. A small
code size yields small dissemination cost, which improves
the energy efficiency of WSNs. As we have already men-
tioned, the simple bootloader approach is not desired as it
requires the replacement of entire application image. On
the other hand, the virtual machine approach [14] allows
disseminating a very compact code, but it is not efficient to
execute in the long-term. The dynamic linking and load-
ing approach can address the dissemination deficiency and
execution deficiency of the above approaches. Thus, it is
adopted in almost all recent sensornet OSes [3]. In the fol-
lowing, we will discuss the loading mechanisms on several
notable sensornet OSes.

FlexCup [15] supports update of binary components
in TinyOS. Compared to our approach, FlexCup is less
portable as it is designed specifically for TinyOS. What’s
more, its loading overhead is large as it makes extensive
use of Flash and requires a hardware reboot each time a
program is to be installed.

SOS [8] natively supports dynamically-loadable mod-
ules. SOS uses position independent code (PIC) to avoid
code relocation. PIC is architecture dependent, and due
to architectural limitation on common embedded platforms,
the relative jumps can be only within a certain offset (such
as 4K on the AVR platform). Moreover, PIC is currently
not supported by the GCC utility for MSP430.

Contiki [6] also supports loadable modules. Contiki sup-
ports both ELF and CELF (a compact ELF) for dynamic
linking and loading. The CELF only uses “data type redef-
inition” to reduce the code size. As such, the CELF size is
much larger than that of SELF. Besides, it does not consider
issues relating to kernel/application developments. SELF
also retain the portability of CELF by using relocatable code
and the modular design approach. FiGaRo [16] enhances
Contiki’s loadable module support by providing a module
reconfiguration system, which handles inter-module depen-

560

dencies. This work is orthogonal to our work, and can be
incorporated into our current implementation.

RETOS [2] and LiteOS [1] are two recent sensornet
OSes that support dynamic linking and loading by using
specific file formats. However, no specific techniques for
improving the loading speed are employed.

Finally, it is worth mentioning that there is a tradeoff
between the code size and loading efficiency. For exam-
ple, data encoding and decoding [21] can be used to fur-
ther reduce the native code size, but incurs a large decod-
ing overhead during the loading process. Also, there is a
tradeoff between the code size and flexibility. For example,
with a prior knowledge about the program of the previous
version, it is able to disseminate just the difference (i.e.,
delta) [7, 10,22], but it limits the flexibility, e.g., it is only
viable when all the sensor nodes have the same program
layout, and is thus not easily applicable to heterogeneous
sensor networks.

6. Conclusions

We present a holistic dynamic linking and loading mech-
anism in networked embedded systems, to meet the require-
ments of minimal code size, efficient execution and load-
ing, portable design, and isolated kernel/application devel-
opment.

First, we develop a tool to minimize the standard ELF
format via many techniques in order to reduce the code dis-
semination cost. Second, we employ the techniques of pre-
relocating and pre-linking (to kernel functions) to reduce
the run-time linking overhead, thus improving the loading
speed. Third, based on relocatable ELF and the modular de-
sign of the dynamic linker and loader, our approach can be
easily ported to different platforms. Fourth, by maintaining
a kernel jump table, we provide a clean isolation between
kernel and application development.

We have implemented the dynamic linking and loading
mechanism on SenSpire OS, a micro sensor node operating
system. The evaluation results show that our design and
implementation meet our design goals: the code size of our
SELF format is only 15%-30% of that of standard ELF,
38%—83% of that of CELF, a compact ELF format for the
Contiki operating system; the loading speed improvement
varies from 40%-50% compared to the standard mecha-
nism; our design is portable to both MicaZ and TelosB
motes, and we allow updating both application modules and
kernel services in isolation without prior knowledge about
the whole system information.

Acknowledgements

The authors would like to thank Shuopei Meng for his
initial implementation of this work. This work is sup-

ported by the National Basic Research Program of China
(973 Program) under grant No. 2006CB303000, and in part
by NSERC Discovery Grant 341823-07, NSERC Strate-
gic Grant STPGP 364910-08 and FQRNT Grant 2010-NC-
131844.

References

[1] Q. Cao, T. Abdelzaher, J. Stankovic, and T. He.
The LiteOS Operating System: Towards Unix-like
Abstractions for Wireless Sensor Networks. In
ACM/IEEE IPSN, St. Loius, Missouri, USA, April
2008.

[2] H. Cha, S. Choi, I. Jung, H. Kim, H. Shin, J. Yoo,
and C. Yoon. RETOS: Resilient, Expandable, and
Threaded Operating System for Wireless Sensor Net-
works. In ACM/IEEE IPSN, Cambridge, Mas-
sachusetts, USA, April 2007.

[3] W. Dong, C. Chen, X. Liu, and J. Bu. Providing OS
Support for Wireless Sensor Networks: Challenges
and Approaches. IEEE Communications Surveys and
Tutorials, to appear.

[4] W. Dong, C. Chen, X. Liu, K. Zheng, and J. Bu. Sen-
Spire OS: A Predictable, Flexible, and Efficient OS
for Wireless Sensor Networks. Technical report, ZJU-
CS-2008-01, Zhejiang University, 2008.

[5] A.Dunkels, N. Finne, J. Eriksson, and T. Voigt. Run-
Time Dynamic Linking for Reprogramming Wireless
Sensor Networks. In ACM SenSys, Boulder, Colorado,
USA, November 2006.

[6] A. Dunkels, B. Gronvall, and T. Voigt. Contiki—a
Lightweight and Flexible Operating System for Tiny
Networked Sensors. In EmNets, Tampa, Florida,
USA, November 2004.

[71 M. Ekman and H. Thane. Dynamic Patching of Em-
bedded Software. In IEEE RTAS, Bellevue, WA,
USA, April 2007.

[8] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Sri-
vastava. A Dynamic Operating System for Sensor
Nodes. In ACM MobiSys, Seattle, Washington, USA,
June 2005.

[9] J. W. Hui and D. Culler. The dynamic behavior of
a data dissemination protocol for network program-
ming at scale. In ACM SenSys, Baltimore, Maryland,
November 2004.

[10] J. Koshy and R. Pandey. Remote Incremental Linking
for Energy-Efficient Reprogramming of Sensor Net-
works. In EWSN, Istanbul, Turkey, February 2005.

561

(11]

(12]

[13]

(14]

(15]

[16]

(17]

(18]

(19]

[20]

(21]

[22]

(23]

M. D. Krasniewski, R. K. Panta, S. Bagchi, C.-L.
Yang, and W. J. Chappell. Energy-efficient on-
demand reprogramming of large-scale sensor net-
works. ACM Transactions on Sensor Networks
(TOSN), 4(1):1-38, 2008.

S. S. Kulkarni and L. Wang. MNP: Multihop Net-
work Reprogramming Service for Sensor Networks.
In IEEE ICDCS, 2005.

J. R. Levine. Linkers and Loaders. Morgan Kauf-
mann, 2000.

P. Levis and D. Culler. Maté: a tiny virtual machine
for sensor networks. In ASPLOS, 2002.

P. J. Marr6én, M. Gauger, A. Lachenmann, D. Min-
der, O. Saukh, and K. Rothermel. FlexCup: A Flexi-
ble and Efficient Code Update Mechanism for Sensor
Networks. In EWSN, Zurich, Switzerland, February
2006.

L. Mottola, G. P. Picco, and A. A. Sheikh. FiGaRo:
Fine-Grained Software Reconfiguration for Wireless
Sensor Networks. In EWSN, Bologna, Italy, February
2008.

V. Naik, A. Arora, P. Sinha, and H. Zhang. Sprin-
kler: A Reliable and Energy Efficient Data Dissem-
ination Service for Wireless Embedded Devices. In
IEEE RTSS, 2005.

R. K. Panta, I. Khalil, and S. Bagchi. Stream: Low
Overhead Wireless Reprogramming for Sensor Net-
works. In IEEE INFOCOM, Anchorage, Alaska,
USA, May 2007.

H. Shin and H. Cha. Supporting Application-Oriented
Kernel Functionality for Resource Constrained Wire-
less Sensor Nodes. In MSN, Hong Kong, China, De-
cember 2006.

B. L. Titzer, D. K. Lee, and J. Palsberg. Avrora: Scal-
able Sensor Network Simulation with Precise Timing.
In ACM/IEEE IPSN, 2005.

N. Tsiftes, A. Dunkels, and T. Voigt. Efficient Sen-
sor Network Reprogramming through Compression of
Executable Modules. In IEEE SECON, 2008.

P. von Richenbash and R. Wattenhofer. Decoding
Code on a Sensor Node. In IEEE DCOSS, Santorini
Island, Greece, June 2008.

Q. Wang, Y. Zhu, and L. Cheng. Reprogram-
ming Wireless Sensor Networks: Challenges and Ap-
proaches. IEEE Network Magazine, 20(3):48-55,
2006.

562

