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Abstract—
In a mobile ad hoc network, where nodes are deployed without

any wired infrastructure and communicate via multihop wireless
links, the network topology is based on the nodes’ locations and
transmission ranges. The nodes communicate through wireless
links, with each node acting as a relay when necessary to
allow multihop communications. The network topology can have
a major impact on network performance. We consider the
impact of number and placement of neighbours on mobile
network performance. Specifically, we consider how neighbour
node placement affects the network overhead and routing delay.
We develop an analytical model, verified by simulations, which
shows widely varying performance depending on source node
speed and, to a lesser extent, number of neighbour nodes.

Index Terms—MANET performance, neighbour node location,
mobile routing, network mobility

I. INTRODUCTION

A mobile ad hoc network (MANET) is an autonomous
system of mobile nodes that does not need any fixed infras-
tructure. The mobile nodes use wireless transceivers to com-
municate with each other, and communication between distant
nodes is achieved using a sequence of intermediate nodes,
called relays, to forward the packets from sender to receiver.
Much MANET research focuses on the routing protocol, which
determines the sequences of intermediate nodes [18].

Most MANET routing protocols rely on the network topol-
ogy, which is determined by node location and the nodes’
communication transmission ranges. In many protocols, full
knowledge of the network topology is not available, so each
node collects neighbourhood information through periodic,
asynchronous messages. This localized information is usually
based on 1-hop information (i.e., location information of all
immediate neighbours).

Routing protocols generally assume that the network is fully
connected. Various approaches, such as continuum percolation
[3], throughput maximization, and random graph theory [19],
[13], are proposed for the evaluation of the minimum number
of neighbours needed for full connectivity in a wireless
network [8], [17], [4], [10], [22] . It was first proposed
by Kleinrock and Silvester in [8] that six was the “magic
number”, i.e., on average every node should connect itself to
its six nearest neighbours, and various papers since then have
argued for magic numbers between five and eight [15], [5],

[23], [14]. Doci et al. [2] introduced maximum node degree
as a mobility metric, which represents the maximum number
of neighbours for each node and an algorithm is designed to
compute that metric.

Topology control in MANETs generally refers to selecting
an appropriate transmission power for each node in order to
reduce energy consumption and signal interference without
impeding performance. Typically, each node selects a few
logical neighbours from its 1-hop neighbours within the nor-
mal transmission range, and the (smaller) actual transmission
range of each node is set to be the distance to its farthest
logical neighbour. The schemes are designed to satisfy global
constraints, such as network connectivity, reduced channel
contention and other reliability and throughput related mea-
sures [9], [20], [11]. Blough et al. [1] showed that connectivity
is preserved with high probability (95 percent) if every node
keeps nine neighbours.

The majority of these approaches assume a static network
without mobility (even though they refer to Mobile Ad Hoc
networks). One exception is Wu and Dai [21], where the
logical neighbour set and transmission range are first computed
from the neighbourhood information of each individual node,
and then adjusted to compensate for node mobility. Again,
this work focuses on achieving and maintaining network
connectivity. Tian et al. [16] proposed a topology based model
to describe the mobility of networks by means of link duration
and connectivity. Yanmaz [24] also proposed a topology based
mobility model, where static nodes in the network are assigned
an importance metric. Mobile nodes move according to a type
of random walk, such that the probability distribution for the
direction depends on the locations of the static nodes. There-
fore, the mobile nodes are likely to move towards or around
more important nodes, based on their individual connectivities.

We contend that, even with a fully connected network, some
topologies are superior to others, and that this is best evaluated
via the standard routing protocol performance metrics, such
as routing overhead and routing delay. Within this context, we
aim to study the performance of dynamic network topologies.

In this paper we propose an analytical model to evaluate
the effect of neighbour nodes on mobile network performance.
Specifically, we explore how the number of neighbour nodes
affects the network overhead and routing delay. To investigate
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this topic, the Destination Source Routing (DSR) protocol
[7] is used for route establishment. While it is likely that
different routing protocols will have different saturation levels
and route characteristics, the results obtained with DSR can
be generalised to most on-demand ad hoc routing protocols.

Our results show that for most speeds both overhead and
delay experience diminishing returns for having increasing
numbers of neighbours or, correspondingly, caching a greater
number of routes. This becomes more pronounced with in-
creasing mobility. We also show that greater benefit is derived
from having more neighbours when the connectivity of the
network is lower.

The remainder of this paper is organized as follows. In
section II we introduce the geometry of the source node
and its neighbours, developing a statistical framework for
distances, locations and timing. In Section III we set up
the mathematical framework for later developing analytical
expressions for overhead and delay. In section IV we develop
expressions for expected overhead and delay, for single and
multiple routes stored in the source node cache, based on the
frameworks set up in the previous sections. In Section V we
present a comparison of theoretical and simulation results, with
conclusions in Section VI.

II. TOPOLOGY SCENARIO

In this paper we assume the “transmission range” model
of signal transmission. That is, it is assumed that each node
is equipped with an omnidirectional antenna and that signal
attenuation is due only to path loss related to distance trans-
mitted. We assume that the transmission ranges of all nodes
are identical and equal to r. Consider, then, a source node,
ns, with N neighbours distributed on a circle of radius r/2,
centred on ns. We choose an initial separation distance of r/2
so that the nodes are close enough to be communicating and
without their links breaking too soon, but not so close that
neighbour location diversity is compromised.

We assume that the velocities of the neighbour nodes are
slow enough to be considered stationary and that ns moves
with a constant speed v in a random direction θs. The scenario
could also be extended so that the speeds of the neighbouring
nodes are combined with the speed of ns, such that v is
the relative speed. This scenario fits well with the random
waypoint mobility model or for scenarios where packet arrival
times or the transmission range are small compared with node
speeds. All node-to-node communications are assumed to be
bi-directional.

In this section we derive or present expressions for the
respective probability density functions (PDFs) and cumulative
distribution functions (CDFs) of the link breakage distance,
link residual time neighbour node distance to destination node
and packet arrival time. We use these expressions later in
the paper to evaluate the network routing performance as the
number of neighbour nodes of the source node is varied.

A. Travelling Distance to Link Breakage
The source node/neighbour nodes scenario described above,

is illustrated in Fig. 1. To determine when the link between

Fig. 1. Distance relationship between moving source node ns and active
neighbour node ni, when ns moves in a straight line in direction θs and ni

is on a circle of radius r/2, initially centred on ns, at angle θi.

the source node and a given neighbour node, ni breaks, we
let ni be at angle θi on the radius r/2 neighbour circle. Then
the distance that ns has to travel from the centre of the circle,
in direction θs, before the link with ni breaks is given by

di = 0.5r
(
cos(θs − θi) +

√
cos2(θs − θi) + 3

)
. (1)

Because θs and θi are random variables, di is also a random
variable. Moreover, r/2 ≤ di ≤ 3r/2, where the limits are
achieved when θs = θi + π and θs = θi, respectively.

We assume that θs and θi are both uniformly distributed
between 0 and 2π. Then it can be shown that the PDF of
dr,i = di/r is given by

fD(dr,i) =
1 + 3

4d2
r,i

π

√
1−

(
dr,i − 3

4dr,i

)2
(2)

and the CDF of dr,i is given by

FD(dr,i) = 1− 1
π

arccos
(

dr,i − 3
4dr,i

)
. (3)

Finally, the expected value of dr,i is

E{dr,i} = 1. (4)

That is, the average distance that ns has to travel from the
centre of the circle of neighbours before the link with the
active neighbour breaks is equal to the transmission range r,
such that dr,i = di/r = 1.

B. Link Residual Time

The time from when ns moves from the centre of the circle
to the point where the link with ni breaks at a distance of di
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Fig. 2. The effect of velocity on the CDF of the link residual time, from (7)

is called the link residual time. The time required for ns to
move distance di at velocity v is given by

Ri =
di

v
=

dr,i

v/r
. (5)

Because dr,i is a random variable, the link residual time, Ri,
is also a random variable. The PDF of Ri can be shown to be
given by

fRi(ri) =
v
r + 3r

4vr2
i

π

√
1−

(
vri

r − 3r
4vri

)2
(6)

with the CDF of Ri given by

FRi(ri) = 1− 1
π

arccos
(

vri

r
− 3r

4vri

)
. (7)

Finally, the expected value of Ri is

E{Ri} =
r

v
. (8)

Using (7), we can study the effect of velocity on the link
residual time as shown in Fig. 2 where CDF of Ri is plotted
for different ns speed to transmission radius ratios. It can be
seen that for high speeds the link residual time is very small
with a small variance. As the speed decreases, the link residual
time increases with a corresponding increase in variance. The
observations noted here will be used later to explain some
seeming inconsistencies in the delay results.

C. Distance to Destination

We now consider the location of the destination node, nd.
Let the angle to the destination node be θd and the distance
from the source node, ns, to nd be Ld, as shown in Fig. 3.
Let the distance from neighbour ni to the destination nd be
Li. Then

Li =

√(r

2

)2

+ L2
d − Ldr cos(θd − θi) (9)

Because θd and θi are random variables, Li is also a random
variable. As above, we assume that θd and θi are uniformly
distributed between 0 and 2π. Then it can be shown that the
PDF of Li is given by

fLi(`i) =
2`i

π

√
r2L2

d − (
(

r
2

)2 + L2
d − `2i )2

(10)

and the CDF of Li is given by

FLi(`i) =
1
π

arccos

((
r
2

)2 + L2
d − `2i

rLd

)
. (11)

The minimum distance between the neighbour node and the
destination is Li,min = Ld − r/2 when |θi − θd| = 0 and the
maximum distance is Li,max = Ld + r/2 when |θi− θd| = π.
Using (10), the expected value of the distance between the
neighbour nodes and the destination is, then

E{Li} = Ld. (12)

Fig. 3. Distance relationship between moving source node, ns, active
neighbour node, ni, and destination node, nd, when ns moves in a straight
line in direction θs, ni is on a circle of radius r/2, initially centred on ns,
at an angle θi and nd is outside the radius r/2 circle at a distance Ld from
the circle centre, at an angle θd.

D. Packet Arrival Time

Packet arrival times, ta, are generally modelled as having
an exponential distribution, with parameter λa appropriate to
the given network. We use this model here. The PDF of ta is,
therefore, given by

fa(t) = λae−λat (13)

and the CDF of ta is given by

Fa(t) = 1− e−λat. (14)

In this section we have presented a statistical model of
the topology scenario we use for investigating the effects of
neighbours on MANET performance. We will use this model
to develop an analytical model of selected performance criteria
in the coming sections.
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III. ON-DEMAND ROUTING

In on-demand routing protocols, a source node attempts to
discover a route to a destination only when it is presented with
a packet for forwarding to that destination. Usually a route
cache is also employed to avoid carrying out a route discovery
for every new packet to the same destination. However, cached
routes may become outdated if, for example, two nodes in the
route have moved out of each others’ transmission ranges. This
stale data may degrade performance, so a process for removing
old routes is employed.

Overhead models for on-demand routing protocols are gen-
erally based on the following principles [12].
• When a source node, ns , initiates a new route discovery,

the consequent route request (RREQ) packet is broadcast
throughout the network. Any node receiving a duplicate
RREQ discards the duplicate, so that each node is con-
sidered to have only dealt with each RREQ once.

• When a destination node, nd, receives a RREQ from ns,
it returns to ns a route reply (RREP) packet back along
the route via which the RREQ arrived.

• If a node involved in forwarding a data packet along
an established route determines that the link of which
it is at the head is no longer valid, it returns an error
packet (RERR) to ns back along the route. Monitoring
the correct operation of a route in use is referred to as
route maintenance [7].

Note that in the following analyses, all network traffic is
ignored except for the route discovery itself. This is to isolate
the effects of numbers and positions of neighbours.

A. Routing Overhead

When the details of an established route are saved in the
cache, a route expiry time, T , is determined and saved for that
route. After this time it is assumed that the route is no longer
valid. If ns wishes to transmit to nd after this time it must
carry out a new route discovery process. That is, if we let ta
be the time of arrival of a new packet destined for nd, then, if
ta < T and the cached route is not broken, no routing overhead
is incurred in sending the new data packet. However, if ta > T
a route discovery process is automatically undertaken, using
flooding of RREQs, as discussed above. If there are n nodes
in the network, n− 1 RREQ packets are transmitted during a
flood (all nodes in the network receive the RREQ except for
ns), plus h RREPs where h is the number of hops between nd

and ns in the route chosen by nd as decided by the route of
the first RREQ to reach nd. This scenario assumes that only
one route is cached in any route discovery process.

In summary, the number of overhead packets generated by
an on-demand routing protocol in response to a packet arrival
at time ta is given by,

OH =

{
0 ta < T

n + h− 1 ta > T.
(15)

Usually a third case, where ta < T but some later link in
the cached route is broken, should be considered. However

we discount this case because we wish to isolate the effect of
neighbour nodes on routing performance. We assume that all
links in the active route remain intact except for the first link,
that between ns and its active neighbour, ni.

B. Routing Delay

The routing delay is the time taken to transmit any control
packets necessary to establish a route, before sending a data
packet between ns and nd. Since RREQ packets must prop-
agate through the network to the destination, followed by the
return of RREP packets, the routing delay is given by

D =

{
0 ta < T

2thh ta > T,
(16)

where h is the number of hops in the discovered path, and th is
the time taken for transmission over a single hop. We assume
th is a constant and the same for all hops in the network, and
includes processing time at the nodes at either end of the hop
as well as propagation time.

As each wireless transmission has a maximum range, r,
there is a strong relationship between the distance, Ld, from
ns to nd and the minimum hop count. All routes must obey
[6]

Number of hops in shortest path ≥ Ld

r
. (17)

Most ad hoc routing protocols utilise hop count in their route
selection criteria. This approach minimises the total number of
transmissions required to send a packet on the selected path.
If, in addition, the network is dense, then the number of hops
in the minimum hop path approaches L/r.

IV. ROUTING OVERHEAD AND DELAY

In this section we consider the expected overhead generated
and the expected delay incurred with the occurrence of a
new route request. In each case, the expected value of the
overhead is equal to the cost of an individual route discovery
process, multiplied by the probability that the route discovery
is necessary. The probability of route discovery is determined
by the topology scenario and the caching strategy.

We consider two different caching strategies at the source
node. First, we assume that a single route to each destination
is stored in the source node cache. Next, we assume that the
source node cache holds multiple paths to each destination,
each one commencing with one of its neighbour nodes.

A. One Route in Cache

1) Overhead: In this case we assume that the cache at node
ns stores a single route for each destination nd, and that the
route commences with neighbour i with probability 1/N . That
is, we assume that all of the neighbour nodes are equally likely
to be the first hop on the active route.

In order to incur routing overhead, the route must have
broken prior to the arrival of the next packet to send. That is,
ns must have reached the breaking distance with respect to ni,
such that Ri < ta. Then the expected value of the overhead,
given link residual times R = (R1, R2, · · · , RN ) (i.e., given
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that we know the position of each of the neighbour nodes and
the direction of travel of ns) is given by

E{OH|R = r}

=
(n + h− 1)

N

N∑

i=1

[1− P (ta < ri)]

=
(n + h− 1)

N

N∑

i=1

[1− Fa(ri)]

=
(n + h− 1)

N

N∑

i=1

e−λari . (18)

We have used the fact that neighbour nodes are independently
placed, so link residual times are independent of each other.

The minimum distance travelled until a link breaks is
di,min = r/2 when |θs − θi| = π, such that dr,i,min = 1/2
and the maximum travelled distance is di,max = 3r/2 when
θs = θi, such that dr,i,max = 3/2. The corresponding values
of Ri are Ri,min = r/2v and Ri,max = 3r/2v. Using (6), and
letting vr = v/r, the expected value of the routing overhead
is, then

E{OH|one cached route}

=
∫ R1,max

R1,min

· · ·
∫ RN,max

RN,min

E{OH|R = r}fR(r)dr

=
(n + h− 1)

π

∫ 3/2vr

1/2vr

e−λari

(
vr + 3

4vrr2
i

)
√

1−
(
vrri − 3

4vrri

)2
dri (19)

Unfortunately, there is no closed form solution to (19), so
it must be calculated numerically. Note that the expected
overhead is independent of the number of neighbours when
only one route is cached.

2) Delay: When considering delay incurred with only one
path cached, we assume the routing protocol is configured to
aggressively seek a minimum hop length path, which gives
us a lower bound on delay. In this case the node ns caches
only the route via the neighbour node with minimum distance
(hops) to the destination. Once this route is broken, a new
route discovery process is necessary.

In order to calculate the expected route delay we need first to
find the distribution of the minimum distance Lmin = mini Li

between the neighbour nodes and the destination. Since neigh-
bour node positions are independent and identically distributed
in angle and distance from ns, we find that the CDF of the
minimum distance is

FLmin(`) = 1− (1− FL(`))N (20)

and the PDF of the minimum distance is

fLmin(`) = N(1− FL(`))N−1fL(`). (21)

The expected value of the minimum distance between the
neighbour nodes and the destination is, then

E{Lmin} =
∫ Li,max

Li,min

`N(1− FL(`))N−1fL(`)d`. (22)

The hop between this closest neighbour to the destination and
the source node will be broken when the source node moves
too far away. Since the direction of movement of the source
node is independently distributed from the destination node,
the link residual time is unaffected by the fact that we have
chosen the closest neighbour to the destination. Hence the
probability that the link is broken when the route is needed is
given by fRi

(ta). We have the expected delay

E{D|one cached route}

= 2th(E{Lmin}/r + 1)
∫ 3/2vr

1/2vr

e−λatfRi
(t)dt (23)

Comparing (23) with (19) we can see that the overhead and
delay for one cached route are identical in form, differing only
by a constant factor.

B. Multiple Routes in Cache
In this case we assume that the routing protocol is con-

figured to avoid route discovery as long as possible. If there
are multiple routes in the cache, the moving source node will
progressively lose connection with the first hop in each route.
If there are routes originating with each neighbour node, the
last route to be broken in this way will correspond to the
closest neighbour the direction of movement of the source
node.

1) Overhead: The cache at node ns stores multiple routes
to nd, each commencing with a different neighbour node ni.
A route to nd via neighbour node ni is stored with probability
p. The probability that there are k routes cached is equal to

Pr(K = k) =
N !

k!(N − k)!
pk(1− p)N−k. (24)

In particular, if p = 1, then there are N cached routes with
probability 1.

As mentioned above, in this case the source node can use
the route through the neighbour closest to its direction of
movement, θs, and no route discovery process is incurred until
the link to that closest neighbour breaks. Let rmax k be the
maximum Ri value, i ∈ {1, · · · , k}, for some k ≤ N .

Thus the expected value of the overhead, given Ri, i =
{1, 2, · · · , N} is given by

E{OH|k = K,R = r}
= E{OH|k = K,Rmax K = rmax K}
= (n + h− 1)P{ta > rmax K}
= (n + h− 1)(1− Fa(rmax K))

= (n + h− 1)e−λarmax K (25)

Since k > 0, the PDF of the maximum Rmax k is determined
by finding the CDF first, as follows.

FRmax k
(t) = P{Rmax k < t}

= P{(R1 < t) ∪ (R2 < t) ∪ · · · ∪ (Rk < t)}

=
k∏

i=1

P{Ri < t}

= F k
Ri

(t). (26)
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Taking the derivative of (26) it can be seen that the PDF of
the maximum Ri value is given by

fRmax k
(t) = kF k−1

Ri
(t)fRi(t), (27)

where FRi
(ri) is from (7) and fRi

(ri) is from (6).
Combining (25) and (27), we can determine an expression

for expected overhead when multiple paths are cached.

E{OH|many cached routes}

=
N∑

K=0

∫ Ri,max

Ri,min

Pr(k = K)

· E{OH|k = K,Rmax k = t}
· fRmax k

(t)dt

= (n + h− 1)
[
(1− p)N +

N∑

K=1

N !
K!(N −K)!

pK(1− p)N−K

K

∫ 3/2vr

1/2vr

e−λatFK−1
R (t)fR(t)dt

]
(28)

In the special case where p = 1, then k = N . That is, the
source node stores one route to the destination through each
neighbour node. We find that the expected overhead when all
N neighbours have paths in the cache is

E{OH|N paths}

=
∫ Ri,max

Ri,min

E{OH|R1 = r1, · · · , RN = rN}fRmax(t) dt

= (n + h− 1)N
∫ Ri,max

Ri,min

e−λatFN−1
Ri

(t)fRi(t)dt (29)

There is no closed form solution to either (28) or (29), so
they must be calculated numerically. Note that in both cases
the expected overhead is now dependent on the number of
neighbours.

2) Delay: Following similar reasoning to above, we find
that the expected value of the delay is equal to the expected
time taken for an individual route discovery process, multiplied
by the probability that the route discovery process is necessary.
This probability is the same as in (29).

E{D|many routes}

= 2thE{h}N
∫ Ri,max

Ri,min

e−λatFN−1
Ri

(t)fRi(t)dt (30)

As discussed in section III-B, the expected number of hops
from the source to the destination is approximately E{Li}/r,
where Li is the distance from the neighbour node i to the
destination node.

While the position of the neighbour node that is closest
to the direction of movement of ns will tend towards the
direction of movement of the source node if N is large, there
is no dependence of the distance of this neighbour node to
the destination on N because the direction of the destination
node from the source node, which also determines length Li,

is uniformly distributed independently of θs. Thus E{Li} is
given in (21), and the expected route delay is

E{D|many routes}

= 2th(Ld/r)
∫ Ri,max

Ri,min

Ne−λatFN−1
Ri

(t)fRi
(t)dt. (31)

Again, comparing (29) with (31) we can see that the overhead
and delay for multiple cached routes are identical in form,
differing only by a constant factor.

V. RESULTS

In this section we present and discuss results of compar-
isons of theoretical calculations and Monte-Carlo simulations,
conducted in Matlab, for the expected overhead and delay,
discussed above. Note that the purpose of these simulations
is to validate the accuracy of the theoretical results, under
the given network assumptions, rather than provide a realistic
network simulation. More realistic simulation scenarios will
be the subject of future work.

The simulations were constructed based on the scenario in
Figure 3 such that the relationship between the initial distance
of the source node to its neighbours and the transmission range
is 1/2. The neighbour nodes are distributed around the source
node at uniformly distributed random angles. Note that no
units are specified as it is the relative and not absolute distance
that is important.

In order to have statistically accurate results, 10000 sim-
ulation repetitions were carried out for each combination of
number of neighbour nodes and source node velocity. The
reported results are the average of those simulations. For each
simulation repetition, the source node direction θs, ∼ u[0, 2π),
and the neighbour node locations θi, ∼ u[0, 2π) are generated.
These are used in equation (5) to calculate the link residual
times. The packet arrival times, ta, at the source node are
then generated according to an exponential distribution with
parameter λa = 0.1. The packet arrival times are compared
to the link residual times, and the overhead and delay are
incremented if all routes in the cache have expired.

A. One Cached Route

The integral for the theoretical expression for expected
overhead with one route saved in the cache, given in (19), was
calculated using a sum of the values of the integrand calculated
at incremental intervals. It was found that 105 increments
were required for an accurate representation for one cached
path. The overhead has been normalized by not including the
(n + h− 1) factor.

Figure 4 compares the theoretical expression in (19) to
simulation results. It can be seen that the theoretical and
simulation results match very well. The overhead for one
cached path increases with the ratio of source node velocity, v,
to transmission range, r, reaching 90% of the maximum by the
time the ratio is equal to 1. The increase is quite steep initially,
levelling off as v/r increases past 1. This makes sense as, as
the velocity increases, the difference between the link residual
time of the shortest possible link and the longest possible link
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becomes more and more negligible. However, as mentioned in
Section IV-A, there is no overhead benefit from having extra
neighbours if only one path is cached.

The results for delay for only one cached route are shown
in Figures 6 and 7, along with the delay for the N cached
route case and are discussed in the next section.

B. N Cached Routes

1) Overhead: Similarly to the one cached route case, the
integral for the theoretical expression for the expected over-
head for N cached routes, given in (29), was calculated using
a sum of the values of the integrand calculated at incremental
intervals. It was found that 106 increments were required for
an accurate representation for N cached paths. Again, the
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Fig. 6. Delay as it varies with the number of cached paths from different
neighbour nodes, for h = Ld/r = 5 and various ratios of ns velocity to
transmission range, from (23) and (31). Simulation results are depicted by
markers while theoretical results are depicted by lines.

overhead has been normalized by not including the (n+h−1)
factor. A comparison of theoretical and simulation results for
overhead for N cached routes is shown in Figure 5. Again the
theoretical and simulation results match very well. It can be
seen that as the number of neighbouring nodes and, therefore,
cached paths, increases, the overhead decreases. There is
a levelling off of the overhead after an initial pronounced
decrease. The overhead decrease with increase in neighbours,
N , is more pronounced with small v/r ratios. As v/r increases
the difference in amount of overhead for different numbers of
cached paths becomes less pronounced to the point of being
almost negligible when v/r = 5. Again, all of these trends are
as would be expected. Except for the very slowest v/r ratio
tested, the overhead is within 10% of its asymptotic value
with 4 neighbour nodes. For the slowest ratio, 6 neighbours
are required to reach this mark.

2) Delay: Figures 6 and 7 show comparisons of the the-
oretical expressions for delay with one and N cached paths,
respectively, given in (23) and (31), with simulation results.
Note that the delay is shown in terms of th, the one-hop packet
transmission time. In the simulations, th was arbitrarily set to
1 time step. The “Avoid Discovery” case corresponds to the N
cached route case, described by (31) and the “Min. Hop” case
corresponds to the one cached route case, described by (31).
Note that in Figure 6, the number of hops to the destination
was kept small, at 5, and in Figure 7, the number of hops to the
destination was made larger, at 16. The results show that as the
number of cached paths from neighbouring nodes increases,
the delay decreases, with the decrease more pronounced for
smaller v/r ratios. Again the delay decreases with small v/r
ratios because of a decrease in the number of route discovery
processes required.

In both Figure 6 and Figure 7 it can be seen that the route
delay is almost always smaller when N routes were cached
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Fig. 7. Delay as it varies with the number of cached paths from different
neighbour nodes, for h = Ld/r = 16 and various ratios of ns velocity to
transmission range, from (23) and (31). Simulation results are depicted by
markers while theoretical results are depicted by lines.

(“Avoid Discovery”) than when only the minimum hop route
(one route) was cached. The only exception is for high v/r
ratio, for the smaller number of hops. However, both delays
are very close at high speeds and the switch is caused by
a trade-off between the number of hops between neighbour
nodes and the destination node and the number of times a
new route discovery process is required. Recall from Figure 2
that for high velocities the link residual time is very small with
only a small variation over possible positions of the neighbour
nodes, meaning there will be little difference in how often a
new route discovery process is required at such speeds. Also,
the difference in number of hops between the routes to the
destination of the neighbour with the minimum number of
hops and that closest to the source (last route to fail when N
routes are cached) is likely to be, at most, 2. So, in general,
there is little delay benefit in caching only the minimum hop
route if the speed is high.

For the small number of hops case, except for the very
slowest speed v/r ratio tested, and only for the avoid discovery
case, the delay is within 10% of its asymptotic value with 4
neighbour nodes. For the slowest ratio, for the avoid discovery
case, 6 neighbours are required to reach this mark.

For the large number of hops case, except for the very
slowest speed v/r ratio tested, and only for the avoid discovery
case, the delay is within 10% of its asymptotic value with 4
neighbour nodes. For the slowest ratio, for the avoid discovery
case, 8 neighbours are required to reach this mark.

C. k Cached Routes

Figures 8 and 9 illustrate the overhead incurred when k
routes to the destination node are cached, from (28), with
probability of any particular neighbour node’s route being
chosen, of 0.2 and 0.7, respectively. These two cases could,
for example, correspond to a poorly connected network and
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Fig. 8. Normalized overhead as it varies with the k cached paths from
different neighbour nodes with probability of a path, p = 0.2, for various
ratios of ns velocity to transmission range, from (28). Simulation results are
depicted by markers while theoretical results are depicted by lines.
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Fig. 9. Normalized overhead as it varies with k cached paths from different
neighbour nodes with probability of a path, p = 0.7, for various ratios of ns

velocity to transmission range, from (28). Simulation results are depicted by
markers while theoretical results are depicted by lines.

a well-connected network, respectively. As the number of
neighbour nodes increases, the number of cached paths from
neighbour nodes correspondingly increases, and it can be seen
that the overhead decreases. The overhead decrease is more
pronounced with small v/r ratios, becoming almost negligible
with larger speeds. In fact, with low speeds and low probability
of any particular neighbour node having a cached route to the
destination, it is best for the source to have as many neighbours
as possible. Further, the overhead is greater for all speeds and
numbers of neighbours when the probability of a route being
cached for any given neighbour is smaller. All of these trends
are as would be expected.
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For the small probability of a cached route case, there is,
again, quite a variation in the number of neighbour nodes
required to achieve within 10% of the asymptotic performance.
In fact, even for N = 20 neighbour nodes, it is not clear what
the asymptotic overhead values are for any of the speeds tested,
except, possibly for the very fastest, because the overhead is
practically constant across all N .

VI. CONCLUSION

In this paper we have considered the effects of number
of neighbour nodes on MANET performance, specifically for
overhead and delay caused by frequency of route discovery
process. We have developed analytical models to describe the
network behaviour, validated by simulation results. We have
shown that performance can vary quite significantly depending
on the mobility (speed) of the source node, with respect to
the transmission range, as well as with respect to number of
neighbour nodes. Further, the required number of neighbours
for a given performance level depends on the performance
measure being considered.

The work in this paper is the first step in an attempt
to analytically describe the topological features which are
most effective in achieving good performance outcomes, for
example, by considering the performance effects of different
neighbour node location distributions. In this case, it is almost
certain that a few spatially well-distributed neighbour nodes
will serve better than a lot of closely clustered neighbour
nodes. As a part of the investigation in to effect of neighbour
node distributions on network performance, we will include
an analysis of the effect on performance measures such as
network lifetime.

APPENDIX

We derive the CDF and PDF of dr,i from (1), (3) and (2).
Recall that dr,i is a function of cos(θs − θi) where θs − θi is
a uniformly distributed variable between 0 and 2π. Note that
we get the same CDF and PDF when considering a uniformly
distributed variable between 0 and π. As this makes the
derivation slightly simpler in terms of cases to be considered,
we make this assumption. Let Y = cos θ where θ = (θs−θi).
From (1)

dr,i = 0.1
(

yi +
√

y2
i + 3

)

⇒ yi = dr,i − 3
4dr,i

(32)

Because of the non-positive slope of cos θ for 0 ≤ θ ≤ π, we
can write

Fy(y) = P (θ ≥ arccos y)
= 1− Fθ(arccos y)

= 1− 1
π

arccos y. (33)

Now, using (32) and (33), we can derive the CDF of dr,i, as
follows.

FD(dr,i) = P (Y ≥ yi)

= P

(
Y ≥ dr,i − 3

4dr,i

)

= 1− FY

(
dr,i − 3

4dr,i

)

= 1− 1
π

arccos
(

dr,i − 3
4dr,i

)
. (34)

The PDF of dr,i, from (2), is found by taking the derivative of
(34) with respect to dr,i. The CDF and PDF of the link residual
time, Ri, from (7) and (6), can be derived in a similar way.
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