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Abstract

There is a growing need for enabling reprogramming in a
working sensor network. We prefer to meet the requirements
remotely instead of collecting all deployed sensors. Identi-
fying the version difference of data items, having the same
key, could significantly reduce the communication overhead,
because only those out-of-date items should be updated at
each sensor. Previous protocols need to exchange multiple
messages to identify a version difference between two items
with the same key. In this paper, we propose a reliable
and energy efficient data dissemination protocol (BDP) with
less propagation delay. BDP uses Bloom filters to identify
a version difference between two items with the same key,
and find the new one between two items having the same key
but different versions. Through comprehensive simulations,
we show that BDP outperforms previous work in terms of
energy cost and propagation delay of updating new items
with high reliability.

1. Introduction

Wireless sensor networks (WSN) are more and more
popular and widely used in many applications those days,
such as habitat or environment monitoring [1], [2], [3], struc-
tural health monitoring [4], [5], medical care [6] and other
scientific observations [7]. In those applications, sensors are
usually deployed at places where it is not convenient for
human to reach. In these scenarios, one of the challenging
issues is how to update the applications on sensors by in-
network reprogramming as the situation changes.
Data dissemination protocols emerge to solve this issue

and are generally classified into two types according to
the content of data. The first type of protocols needs to
redistribute large file (e.g. binaries or virtual program) into
the whole sensor network, including XNP [8], MOAP [9],
Deluge [10], MNP [11], Sprinkler [12], Typhoon [13],
CORD [14] and the protocols in works of Levis et al.
[16] and Gnawali et al. [17]. Those protocols usually mean
complete system or application-level reprogramming. The
second type of protocols only needs to redistribute con-
figuration parameters. Protocols of this types adjust the
behavior of applications on sensors by changing values of
the parameters, and thus are more energy efficient than
those of the former type because the data needed to be

disseminated is much less. Drip [18] and DIP [19] are two
representative examples of the second type of protocols, and
have been implemented in TinyOS as core components.
Dissemination protocols can also be classified into two

types according to the way the protocols disseminate data.
The first type disseminates in a two-phase way. The proto-
cols, such as Sprinkler and CORD, choose a set of core
nodes (usually chooses a connected dominating set) and
update these nodes with new data. Those core nodes are
responsible to update the rest of nodes in a parallel way.
The two-phase separation reduces the number of message
collisions, but it does not support updating newly joined
nodes after the updating period for existing nodes has
passed. Moreover, it might fail if the topology changes
after the first phase, which probably happens because of the
instability of wireless channel or mobile circumstances. The
second type of protocols disseminates data in a one-phase
way likes flooding in a flat (not layered) topology. These
protocols include MOAP, Deluge, MNP, Drip and DIP. Data
is propagated neighbor by neighbor throughout the whole
network. This type of protocol is more reliable and robust
than the first type of protocols because it needs no global
topology information.
This work focuses on disseminating a number of data

items in one-phase way and designs protocols which are
robust to instable wireless channels and topologies. In some
applications, it needs to update only a few items to change
the behavior of nodes. Thus, it may reduce communication
overhead if nodes know which item needs to be updated.
Previous work argues that the scan and search techniques
could reduce message cost due to identifying a new item
between two items with the same key [19].
Bloom filters are more space efficient for representing a

set of elements than other data structures, such as binary
search trees and hash tables. This is a good property in
sensor networks because the length of packet payload is
limited. Bloom filters also have a fantastic property that they
need constant time to check whether an element is in the
set, no matter how many elements have already been added
to the set. These two properties make it possible to reduce
communication overhead in sensor networks.
This paper proposes a Bloom filters based dissemination

protocol (BDP), which can be used for not only updating
configuration parameters but also distributing bulk data.
BDP is more energy efficient than other protocols with less
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delay. The probability that BDP fails to update all sensors is
very small if the false positive rate of Bloom filters is well
controlled. Thus, BDP is also a reliable protocol.
The main contributions of this work are as follows.
• We propose BDP, an efficient, fast and reliable dis-
semination protocol, which does not base on global
topology information or virtual infrastructure. It uses
Bloom filters to identify the version difference even find
the new version between two items having the same
key. To our knowledge, this is the first attempt to use
Bloom filters to find the new version between two items
having the same key in wireless sensor networks.

• Through extensive simulations, we evaluate BDP and
compare it with DIP under different network topologies.
To the best of our knowledge, BDP is the most energy
efficient protocol to disseminate a large number of data
items.

The rest of this paper is organized as follows. We briefly
describe Bloom filters and related work in Section 2. We
discuss the detail of BDP in Section 4. Section 5 analyzes the
false positive problem of BDP. Section 6 evaluates BDP and
compares it with DIP under different network configurations.
We conclude the work in Section 7.

2. Preliminaries

2.1. Trickle

Trickle is a self-regulating algorithm for code propaga-
tion and maintenance in wireless sensor networks [20]. It
exchanges metadata in a gossip way, which does not need to
know the global information. Trickle periodically broadcasts
messages to all neighbors within transmission range. Motes
who hear the message could either get an update or detect a
need for update. Trickle also provides a straightforward way
to control the transmission overhead. In each propagation
period, a mote is suppressed for propagating metadata if the
mote has heard some metadata which is identical to its local
metadata.
Trickle has some good features. It provides rapid data

propagation with low maintenance, and scales well in var-
ious network density. The ideal results depend on some
assumptions, such as no packet loss and single-hop network.
In practical environment, the number of redundant messages
grows, however, is still controlled within the acceptable
boundary. Another good feature of Trickle is that it uses
a scheme to dynamically adjust the gossip interval. Trickle
achieves an optimal trade off between communication over-
head and propagation speed.

2.2. Bloom Filter

Bloom filter was first introduced in 1970s. It is now
widely used in database and networking applications because

it is space-efficient and can reduce communication overhead
[21]. A Bloom filter (BF) is a compact data structure for
probabilistic representation of a set S = {s1, s2, . . . , sn}
of n elements. It uses a vector of m bits to represent
the elements. These m bits are initially set to 0. Then k
independent hash functions h1, h2,. . . , hk are used to add
the elements into the BF. For each element si, bit hj(si) is
set to 1 for j = 1, . . . , k. To do a membership query, we
check all bits hj(x) of an element x, j = 1, . . . , k. If all
these bits were set to 1, we may consider x belongs to the
set S with some probability. Otherwise, we may infer that
x is not a member of S.
A major aspect of optimizing BF is to maximize the

probability of true match, which in turn means to decrease
the probability of making the wrong inference that an
element belongs to set S (this is also called false positive
or false match). False positive is due to a filter collision, in
which all associated bits were set to 1 by other elements
in set S. Given the assumptions that hash functions are
perfectly random and independent to each other, the false
positive rate is

f ≈ (1− (1 − 1/m)kn)k. (1)

The four important parameters of BF are m, n, k, f . Given
the combination of values of any two or three parameters,
we can optimize the value of remainder parameters. We will
discuss this issue in Section 5.

2.3. Related Work

There are some data dissemination protocols in wireless
sensor networks. A common target of XNP [8], MOAP
[9], Deluge [10], MNP [11], Sprinkler [12], Typhoon [13],
Flush [24] and CORD [14], is to realize reliable bulk data
dissemination. Performance of some bulk data dissemination
protocols are analyzed in [15]. Typhoon and CORD both
assume that all the receivers should be updated. Flush is
a receiver-initiated transport protocol. Some other protocols
aim at updating configuration parameters, such Drip [18]
and DIP [19]. They both use Trickle algorithm. Drip has a
constant latency of O(T ) to disseminate T items, and the
transmission rate also grows with O(T ). The most related
protocol to our work is DIP which is currently the most
efficient one to disseminate large number of data items. DIP
uses a hybrid method of scan and search combining with
Bloom filters to detect data difference and then disseminate
data. DIP outperforms scan and search methods, but still
causes O(log(T )) messages when identifying a changed
item among T data items. Furthermore, DIP accelerates the
updating process through an estimation method, however,
may fail to update all items completely. DIP uses a BF
to recognize whether two items having the same key are
different in version, however, cannot directly tell which is
the newer item. The major objective of BDP is to directly
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Table 1. Main Notations

Term Definition
S a set of elements
si an element in S
n the number of elements in S
hi a hash function
BF a Bloom filter
n0 the capacity of a BF
k the number of hash functions of Bloom filter
m the bits(vector) length of Bloom filter
x an element to do membership query
f the false positive rate of Bloom filter
T the number of data items on each sensor node
N the number of new data items
key an exclusive identifier of a data item
ver a version number of a data item
Dkey a data item with an identifier key
M or Mkey a metadata tuple of data item (Dkey)
L or Lkey a data value (of Dkey)
HNew state value “new”
HOld state value “old”
HUnknown state value “unknown”
Hkey state value of a data item Dkey

DM a data message
SM a summary message
V M a vector message

identify the version difference even the newer item of two
items with the same key. In addition, BDP is more energy
efficient and scalable than DIP.
BDP uses Bloom filters in a way similar to direct Bloom

filter (DBF) in Bonomi’s work [23] under a different appli-
cation background. Lookup operation is done with a state as
a given input; that is, do membership query for a (id, state)
pair. If the state of corresponding id is not the lookup input,
then one has to check all the possible states. In the scenario
of DBF, the number of possible states is not too large and
the length of DBF is not limited.

3. Problem Definition and Assumptions

We focus on the problem of disseminating a number of
data items in a flat sensor network. Links between nodes
may be asymmetric. There are T data items on each sensor
node. These items are organized as a list, with an index
assigned to each item. Of all T items, only N items need
to be updated. Each date item D is associated with a
metadata tuple M = (key, ver), where key and ver denote
an exclusive identifier and a version number, respectively.
We call items with the same key as associated items on
different nodes. Any version number is set to an integer, and
is added by one when content of the associated data item
is updated. If a data item has a larger version number than
an associated item on another node, the data item is newer
than the associated item. That is, the associated item is older
than that item. We use Dkey to denote a data item with an
identifier key. Let Mkey denote a metadata tuple of Dkey ,

respectively. Each sensor node has the same set of items
whose versions are initially set to zero. The value of item
Dkey is denoted as Lkey . For ease of presentation, we treat
Lkey as a numerical value, but our protocol is not limited
to applications with numerical data items. The identifier of
a data item is unchangeable while the value and version
number of an item can be changed.
Inspired by [23], we use HNew, HOld, and HUnknown

to describe three different states for each data item. HNew

means that the item is newly updated or newer than an
associated item on some neighbor nodes. HOld denotes
that there is no newer associated item in the neighborhood.
HOld is the default state value for each item on all nodes.
HUnknown denotes that the item has a different version
number with some associated items in the neighborhood.
Each data item is assigned one of the three state values.
Main notations used in this work are listed in Table 1.

4. BDP

4.1. Overview

The difference between BDP and any other dissemination
protocols is that BDP mainly uses BF to identify the
version difference of any two associated items. If the version
difference varies in a small range, BDP can find which node
has the newer data item by conducting membership queries
locally at the cost of only one message. BDP speeds up
the update process and depresses redundant broadcast by
using state values of data items and achieves high energy
efficient. The last but not least strongpoint of BDP is that
it needs no topology or other global information and thus
is robust to environment change and node failures. Sensor
nodes are supposed to be autonomous and communicate with
one hop neighbors in a broadcast manner. Initially, all nodes
have the same data items with the same version number
of zero. Each node uses a Trickle timer to fire an event
periodically. An event triggers a node to check all state
values of its data items, and then sends one category of
message accordingly. In the ideal cases, all nodes only send
summary messages with maximum gossip interval after the
dissemination process ended. If the whole network keeps
this status for a relative long time, we say the network
reaches a steady state. At this time, either all nodes share
the same data items with the same versions, or there exists
version difference(s) but the dissemination protocol does
not recognize it (them). In the rest of this Section, we
will introduce three important part of BDP, namely message
types, decision making and state value updating strategies.

4.2. Message Types

The three types of messages used by BDP are as follows.
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Data message: Data message is used to deliver new data
to neighbors. It is similar to the same term used by many
other dissemination protocols, such as Drip and DIP. A data
message, denoted as a tuple DM = (M, L), includes data
value and metadata of an item.
Summary message: Summary message is the major

difference between BDP and other dissemination protocols.
A summary message is used to discover a difference in
version numbers of some associated items in neighborhood.
A summary message is denoted as a tuple SM = (BF, d, c),
where d is an index position of the first item of the set in
local list which stores all items, c is a counter which records
the number of items contained in the BF. This work uses the
exclusive identifier (key) of an item as the index. A node
represents the metadata of each item by a BF, and broadcasts
the BF as a summary message when needed. A receiver
can conduct the membership queries of the metadata of its
local items on the basis of a received summary message.
If the queries show that a metadata is not represented by
the received BF, a local item is different in the version with
an associated item in a neighbor. Due to the false match
problem of BF, a different metadata might be missed.
To make the false positive rate of a BF under a threshold,

more bits should be allocated such that the BF can contain
more elements. Due to the limitation of packet size, a BF
needs multiple packets to accommodate the m bits if m is
larger than the payload size of a packet. Here, we borrow the
idea from dynamic Bloom filters [25], and allocate a constant
length of bytes to store a BF. To ensure that f is less than
a given value, BF could contain at most n0 elements. We
call n0 the capacity of BF. If T>n0, we select the first n0

items to construct a BF for in first summary message, then
use the next n0 ones to construct another BF for the second
summary message, and so on. When all items in the items
list have been selected, the process repeats by selecting items
from the head of the items list. Note that d and c indicate
the index and number of items in BF, respectively.
Vector message: A summary message is usually enough

for a receiver to determine whether each local data item is
newer than an associated item on sender. A receiver, how-
ever, cannot draw a conclusion and thus marks the state value
as HUnknown in some special conditions. To address this is-
sue, a vector message is employed to send metadata of items
whose state value areHUnknown. A vector message contains
an array of metadata and a counter which records the number
of associated tuples in the message. A vector message can
be denoted as V M=(c, Mkey1

, Mkey2
, ..., Mkeyc), where

Mkey1
, Mkey2

, ..., Mkeyc are a series of metadata tuples and
c recorders the number of metadata tuples in a message.

4.3. Decision Making

After introducing the three type of messages used by
BDP, we propose the following rules for each node to make

decision on which type of message it should send. All
decisions are made based on the states of local data items.
• If any local data item has the state value of HNew, the
node sends a data message which contains the key and
the value of the item, then changes the state value of
the item to HOld.

• If no local item has the state value of HNew but some
items have the state value ofHUnknown, the node sends
a vector message.

• If all the state values of local items equal to HOld, the
node sends a summary message.

Note that we allocate different priority levels for those
state values. Specifically, HNew has the highest priority
level. This favors the dissemination of new data items. If
more than one item has the state value of HNew , we choose
the first one in index sequence to construct a message. The
second highest priority level is assigned to HUnknown. If no
newer item is discovered, BDP chooses those items which
may be newer to construct a message. This is also more
likely to favor the dissemination of potential newer items.
It uses the same index sequence to choose items if there
are multiple items with the state value of HUnknown. The
lowest priority level is assigned to HOld. If all state values
are HOld, it means that there is no existing clue for new data
items. BDP tries to produce clue itself by sending summary
message.

4.4. State Value Updating

After receiving a message, a node updates the state value
even the data and version number of each respective item,
according to the type and content of the received message.
If the type of received message is data, the node compares
the version number of an item in the message with that of a
local item which has the same key as showed in Algorithm
1. If the local item is newer, the node changes the state to
HNew. If the local item is older, the node updates the data
value and sets the state value to HNew. In other conditions,
the node sets the state value to HOld.
Algorithm 1 reduces the communication overhead effec-

tively in any case. First, nodes who overhear a data message
with older items will set the state values of respective local
items to HNew. According to rules discussed in Section 4.3,
nodes actively update their neighbors so as to reduce the
communication overhead due to useless update of an item
with older version or identify a version difference. Second,
nodes who overhear a newer data could make themselves
be updated and propagate the new data to their neighbors.
Third, nodes who hear a data which has the same version
with the local one, are suppressed to send messages to avoid
flooding. Although a node may fail to update their neighbors
who host older data, the neighbors might be updated with
the supplement of summary and vector messages or by other
neighbors.
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Algorithm 1 Receive (DM )
Preconditions: Hkey1

stands for the state value of Dkey1
.

1: key1 ← DM.M.key
2: ver1 ← DM.M.ver
3: ver0 ←Mkey1

.ver
4: if ver0 > ver1 then
5: Hkey1

← HNew

6: else if ver0 < ver1 then
7: Lkey1

← DM.L
8: Hkey1

← HNew

9: else
10: Hkey1

← HOld

11: end if

If the type of received message is summary, the receiver
tries to identify the difference of version according to
Algorithm 2. First, it gets the range information of elements
set in the BF, and obtains a set of local associated items.
Then, the node conducts membership query for each of these
items. If the query result is true, the local associated item is
identical to the one on the sender. If the query result is false,
a version difference is found. Furthermore, the node tries to
identify whether the local data item is newer than that on the
sender only based on the received BF and local information.
Given a certain key, for each ver ∈ [ver2−α, ver2) (α is a
positive integer, ver2 is the version number of the local item
with a different version), node does a membership query
again. We call this procedure as test scan and α as scan
range. If it responses a positive result, the node can tell
whether the local item is newer according to the difference
between ver and ver2.
Algorithm 2 reveals that BDP is efficient since it can

find the version difference between items having the same
key and even identify which is newer at the cost of a
single summary message. For other protocols for example
DIP, the same process needs to transmit several messages.
The limitation of Algorithm 2 is that it might induce false
match problem in two scenarios (line 6 and line 11). The
fundamental cause is that BF only provides a probabilistic
membership query result.
In the first scenario, an item with different version may

be wrongly considered that it has the same metadata as a
local item, and thus Algorithm 2 cannot reveal the existing
difference in versions. It is well-known that this problem
can not be avoided in theory and practice. The false positive
rate, however, can be controlled at a low level if we assign
values for those parameters of BF carefully. We will discuss
how to control the false positive rate in detail in Section 5.
In the second scenario, Algorithm 2 wrongly reckons a

local item which may be an older one as a newer one.
This mistake could be corrected by algorithm 1. When an
item is wrongly considered as a newer one, the node will
broadcast a data message with the item. If some neighbors

Algorithm 2 Receive (SM )
Preconditions: MQuery(M) denotes a membership query

of a BF. It returns true if M is represented by the BF,
otherwise returns false. A function GetKey(d) can get
the exclusive identifier of an item with an index d. Let
α indicate the range for test scan and TestM represent
a temporal metadata tuple.

1: d1 ← SM.d
2: c1 ← SM.c
3: BF1 ← SM.BF
4: for i ← d1, d1 + c1 do
5: key2 ← GetKey(i)
6: if MQuery(Mkey2

) is false then
7: ver2 ←Mkey2

.ver
8: TestM.key ← key2

9: for j ← 1, α do
10: TestM.ver ← ver2 − i
11: if MQuery(TestM) is true then
12: Hkey2

←HNew

13: Return null
14: end if
15: end for
16: Hkey2

←HUnknown

17: end if
18: end for

holding a newer item hear the message, it may broadcast a
data message immediately to clear the difference. But if we
conduct test scan in a range [ver2−α, ver2+α], an item may
be falsely considered as an older one. As shown in Figure
1, nodes A and B have a data item Dkey while Dkey on
node A is newer than that on node B. When performing the
test scan operation, node A and node B wrongly believes
that their items Dkeyare older at the same time. It is clear
that this result leads to deadlock. Both of nodes A and B
know that there is a different item between them, however,
neither of them actively claims to be updated. To address this
scenario, BDP only conducts test scan operation on single
side, and sets the state value to HUnknown once the test scan
operation ends without returning null.
If the type of a received message is vector, the receiver

simply compares the version numbers in received message
to the local ones as shown in Algorithm 3. If the local item is
newer, the receiver sets the state value of the item to HNew,
otherwise sets the value to HOld. A vector message deals
with the state value of HUnknown and is a supplement of a
summary message.
In aforementioned algorithms, the state value of each item

might be updated only when receiving a message. Actually, a
sender might also change the state value of an item to HOld

when sending a corresponding data message. The objective
is to avoid transmitting the same data message many times.
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Algorithm 3 Receive (V M )
Preconditions: Mkeyi stands for metadata of local data item

with identifier keyi.
1: c1 ← V M.c
2: for i ← 1, c1 do
3: ver1 ← V M.Mkeyi .ver
4: key1 ← V M.Mkeyi .key
5: ver0 ←Mkeyi .ver
6: if ver0 > ver1 then
7: Hkeyi←HNew

8: else
9: Hkeyi←HOld

10: end if
11: end for

4.5. Example

To demonstrate the logic of identifying a version differ-
ence in BDP, we compare it with DIP [19] under a simple
example with two nodes. We assume that DIP only sends
vector messages at the bottom of the hash tree. Figure 2
shows that two nodes running DIP need to exchange multiple
messages to identify a difference and get an update. The
two nodes running BDP, however, only need to exchange
two or three messages if all items can be contained in only
one summary message. In BDP, node A sends a summary
message with a BF which contains metadata of all data
items. Node B can discover that the local item 5 is newer
after invoking Algorithm 2, and then sends a data message to
update Node A. If Algorithm 2 identifies a version difference
but does not know whether the local item is newer, Node B
sends a vector message with the metadata of item 5. Node A
receives the vector message and makes decision on sending
the data or not. Intuitively, BDP is more efficient than DIP
since it results in less transmission of messages.
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Figure 1. An illustrative example of deadlock.
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Figure 2. Processes of DIP and BDP with two nodes.

5. False Positive Control

Despite the benefits offered by BF, it may yields a
false positive due to hash collisions, for which it wrongly
determines an item belongs to a data set when it is actually
not. In BDP, the following two factors dominate the false
positive rate of BF.

5.1. Parameters Settings of BF

False positive problem of BF is considerably serious in
wireless sensor networks because of the limitation of the
packet size. Specifically, the capacity of a BF suffers the
limited payload of a single packet. The false positive rate of
a BF increases to an unacceptable level if the cardinality of
set represented by the BF exceeds the capacity of the BF.
To make the false positive rate of a BF stay at an

acceptable level, we impose constraint on the number of
items represented by a BF. That is, we reduce the value of n.
After constructing a BF, a node only represents part of local
items using the BF as described in section 4.2. Given the
value of m and f , the maximum value of n could be easily
calculated by using some derivative techniques. According
to equation (1), we have the following expressions

n ≈
ln(1 − f1/k)

k ln(1− 1/m)
. (2)

Assuming that equation (2) is continuous, we may ap-
proximately infer that when

dn

dk
=

f1/k−1

k(1−f1/k)
− ln(1− f1/k)

k2 ln(1− 1/m)
= 0, (3)

n achieves an optimal value.
For example, if 24 bytes are allocated to store a BF (m =

192), to restrict the false match rate below 0.1%, as shown
in Figure 3 the optimal value of n varies according to the
value of k. When k = 10, n reaches the maximum value
13, that means the BF can contain up to 13 elements.
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Figure 3. The value of n when m=192 and f=0.001.

5.2. Range of Test Scan

Another important factor which may increase the false
positive rate is the length of test scan. In the worst case,
BDP has to scan all the versions in the range [ver2−α, ver2)
by conducting α membership queries. To make query result
reliable, we should ensure that the false positive rate of all
these α membership queries is under a certain threshold.
Intuitively, the false positive rate increases as α grows.
According to equation (1) and Algorithm 2 , we have the
expression

fscan ≈ f(1− (1− f)α), (4)

where fscan denotes the maximum false positive rate in-
duced by a test scan operation.
Figure 4 plots the distribution of false positive rate when

m = 192. We can see that for any given value of n, the
false positive rate increases almost linearly as the scan range
increases. A large scan range may reduce communication
overhead, but also has chance to increase false positive
rate. More false positive judgments, however, results in
additional communication overhead according to Algorithm
2. Therefore, the scan range should be restricted to a small
value. Actually, the version difference should not be very
large as long as the environment (wireless channel) does
not change severely and no new node joins the network.
Simulation results show that the version difference is only
one in most cases. No matter how large is the range assigned
for the test scan, it is always possible that no false positive
result is returned even we scan the entire range. It is caused
by the large version difference between a local item and an
associated item on the sender. In this case, a node sets the
state value of an unidentified item as HUnknown, and adds
the metadata into a vector message for further identification.

6. Evaluation

We evaluate the performance of BDP from three aspects
and compare BDP against DIP which is the most energy
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Figure 4. False positive rate of test scan, where m=192,
k=10.

efficient among previous dissemination protocols.

6.1. Simulation Methodology and Metrics

We implement BDP in TinyOS 2.0. In our implementa-
tion, we use 24 bytes for a BF in summary message. Vector
messages can store metadata of no more than 3 data items.
We use the same Trickle timer as DIP. The maximum and
minimum intervals are set to 1 minute and 1 second, re-
spectively. We adopt TOSSIM [22] to simulate the multihop
dissemination process in grid and random topologies. We
set the path loss exponent to 4.7, and shadowing standard
deviation to 3.2, reference distance to 1 meter, and power
decay for the reference distance to 55.4db. The radio noise
is set to -105dBm. The standard deviation of additive white
Gaussian noise is set to 4. We compare the performance of
BDP and DIP in the terms of the three metrics.
• Total Message Cost. The energy cost of communica-
tion is a critical metric in WSNs. Here, we use the total
number of messages that all nodes in a WSN have sent
as an approximate energy cost.

• Completion rate. Dissemination protocol should be
reliable. Once a group of items are injected to the net-
work, associated items on all nodes should be updated.
We define the completion rate as the ratio of nodes
which have updated the group of items to all nodes.

• Propagation Delay. We measure the whole network
propagation delay, which is defined as the time needed
for the entire network to get the last update before the
network reaches a steady state defined in Section 4.1.

6.2. TOSSIM Evaluation

In our simulations based on TOSSIM, the following three
topologies are employed. The first one is a 16 × 16 grid
topology in which the inter-node distance is 2 units and each
node has about 16 neighbors in its communication range.

599



20 40 60 80 100 120 140

1200

1400

1600

1800

2000

2200

2400

Total Items

To
ta

l M
es

sa
ge

s

DIP Grid
BDP Grid
DIP Random
BDP Random

(a)

0 20 40 60 80 100 120 140
0.75

0.8

0.85

0.9

0.95

1

Total Items

C
om

pl
et

io
n 

R
at

e

DIP Grid
BDP Grid
DIP Random
BDP Random

(b)

0 20 40 60 80 100 120 140
30

40

50

60

70

80

90

100

Total Items

P
ro

pa
ga

tio
n 

D
el

ay

DIP Grid
BDP Grid
DIP Random
BDP Random

(c)

Figure 5. Total messages, completion rate and propagation delay of DIP and BDP in grid and random topologies
when N=16.
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Figure 6. Total messages, completion rate and propagation delay of DIP and BDP in grid and random topologies of
256 nodes when T=64.

The second one is a random topology of 256 nodes within
a terrain of 30units× 30units. The third topology has the
same setting as the second topology except the density of
nodes. The number of nodes ranges from 64 to 384.
After determining the topology, there still exist two pa-

rameters which influence the aforementioned three metrics.
They are the number of total items (denoted as T ) and that
of new items (denoted as N ). We fist use a basic scenario
with 64 total items and 16 new items, and then measure the
effect of variable N and T on the three metrics, respectively.
In each individual scenario, we run the simulation 10 rounds
and calculate the average value of each metric. In each
simulation, source nodes are chosen randomly.
In our first experiment, we evaluate the three metrics

under grid and random topologies with 256 nodes. The
number of new items is 16, while the total items ranges
from 16 to 128. The simulation results are plotted in Figure
5. Figure 5(a) shows that BDP saves about 10% to 20%
messages than DIP to update all nodes. The reason is that
BDP mainly uses BF to discover the version difference
between two items and identify which one is newer. Figure
5(b) shows that neither DIP nor BDP could guarantee that
each node finally updates all items, but both of them achieve
high completion rate in most cases. BDP is more stable than

DIP since DIP sometimes performs terribly and only updates
a few items especially in the random topology. A possible
reason is inaccurate use of the estimate value in DIP and is
out of the scope of this work. Figure 5(c) shows that BDP is
obviously faster and more stable than DIP in both topologies.
BDP reduces the propagation delay of DIP by about 15% on
average. We can also see that the communication overhead
and propagation delay almost do not change (or not increase
considerately) as T increases. It means that the value of T
does not affect the performance too much.
As shown in Figure 5, the performance improvement

of BDP fluctuates in random topology. This is because
the performance of both DIP and BDP are influenced by
topological features and the positions of source nodes, but
the influences on the two protocols may be different. In a
static topology, as we could see from Figure 5, curves of grid
topology are smoother than those of random topologies.
Our second experiment uses the same topologies as the

first experiment, sets the number of total items to 64, and
varies the number of new items from 8 to 64. Figure 6
shows that BDP outperforms DIP in terms of the three
metrics. The experimental results are in accord with that in
the first experiment. That is, BDP is more energy efficient
and faster than DIP and the completion rate of BDP is also
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Figure 7. Total messages, completion rate and propagation delay of DIP and BDP in random topologies when
T=64, N=16.

high. BDP is even more stable than DIP in the random
topology. The communication overhead and propagation
delay increase linearly as the number of new items(N )
increases. It indicates that the value of N is the critical
factor which influences the communication overhead and
propagation delay, despite the influence of network topology.
Note that the above two experiments are carried out in

topologies with constant density of nodes. To achieve more
comprehensive results, we change the number of nodes
from 64 to 384 in the random topology such that the
node density ranges from 4 to 24. As shown in Figure 7,
BDP overwhelms DIP in terms of communication overhead
and propagation delay, without trade-off of reliability. The
experimental results are in accordance with the first two
experiments. Figure 7(a) shows that the communication
overhead tends to increase linearly but not so sharp as the
density increases. It means that the node density is another
factor which influences the communication overhead. Figure
7(c) shows that the propagation delay decreases slightly as
the node density increases.
In summary, BDP outperforms DIP in terms of the com-

munication overhead and propagation delay in both grid and
random topologies as the number of total items, the number
of new items and the node density varies. Both BDP and
DIP achieve high reliability in most cases and BDP is more
stable since DIP sometimes can only update a few items.

7. Conclusion

In this paper, we propose BDP, a Bloom filter based
dissemination protocol for large number of data items in
multihop wireless sensor networks. BDP provides algorithms
for autonomous nodes to update their data items in a neigh-
bor by neighbor way without global topology information.
Bloom filters are used to identify version differences even
find the newer item from items on neighbor nodes, and make
BDP work more efficiently with less propagation delay.
Although false match problem is inevitable, we can associate

critical parameters with appropriate values so as to control
the false match rate at an acceptable level. We evaluate
BDP and DIP via extensive simulations in grid and random
topologies. The simulation results show that BDP is more
energy efficient and faster than DIP and is more reliable in
random topologies.
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