
978-1-4244-5113-5/09/$25.00 c©2009 IEEE

Design & Implementation of IEEE 802.11s Mesh Nodes with enhanced features

Pranjal Pandey, S.Satish, Joy Kuri, Haresh Dagale
Centre for Electronics Design and Technology,
Indian Insitute of Science, Bangalore, India

pranjal@ieee.org, satishs85@gmail.com, {kuri, haresh}@cedt.iisc.ernet.in

Abstract—This paper describes the implementation of wire-
less mesh nodes based on the IEEE 802.11s draft where the
motivation is to build a real life mesh network. The mesh
nodes developed have mesh, mesh access point and mesh portal
functionalities simultaneously. The mesh nodes use different
radios for mesh and access point functionalities, thus giving
better service to client stations. Both reactive and proactive
modes of HWMP are supported. The paper also suggests some
measures to enhance the performance of the overall network
by reducing the number of PREQs.

Keywords-IEEE 802.11s, Wireless Mesh Network (WMN),
Hybrid Wireless Mesh Protocol (HWMP).

I. INTRODUCTION

Wireless Mesh Networks (WMN) offer an inexpensive,
quickly deployable, stable and fault tolerant solution for
wireless coverage, requiring zero maintenance. Due to these
benefits, WMNs have received considerable attention from
both the academia as well as the industry. The WMN based
on 802.11 is most popular due to easily available and inex-
pensive radios. There are currently many implementations
of wireless mesh network based on 802.11 hardware. All of
these run some proprietary mesh protocol at network layer.
To produce a standard for 802.11 based mesh networks, task
group ’s’ has been set up by IEEE 802.11.

We have designed and implemented 802.11s based wire-
less mesh nodes which are capable of real life deployment.
Our work is based on open80211s 0.2.1 [1] which is an open
source reference implementation of 802.11s draft standard
for Linux. The important additions made to existing code in
open80211s include:

• Implementation of Proactive HWMP
• Implementation of 6 address scheme
• Interworking with stations outside MBSS
• Integration of MP, MAP and MPP in same node

Some of the points which distinguish our work from pre-
vious such works [2] are as follows: (a) The mesh nodes
have a single virtual interface for mesh network [1], (b)
The mesh protocol is implemented as a kernel module and
works closely with the device drivers, (c) Use of 6 address
frame format.

The rest of the paper is organized as follows. First, a
brief overview of the IEEE 802.11s draft is presented in
Section 2. Section 3 then gives details of the implementation
and Section 4 presents some observations and suggestions.

In Section 5, the tests and measurements carried out using
the implemented mesh network are discussed. The paper is
concluded in Section 6.

II. IEEE 802.11S

The task group 802.11s set by IEEE has been working
for the mesh amendment to the 802.11 standard. At the time
of this work, the most recent draft was P802.11s D3.0 [3].
This section gives an introduction to 802.11s features and
enhancements which are relevant to our work.

A. Mesh Basic Service Set (MBSS)

Independent Basic Service Set (IBSS) and Infrastructure
Basic Service Set (Infra-BSS) are the two Basic Service
Sets (BSS) defined by IEEE 802.11 standard. To these,
IEEE 802.11s adds a third type of network topology called
Mesh Basic Service Set or MBSS. An MBSS can have the
following three different kind of entities.

• Mesh Station or mesh STA
• Mesh Access Point or MAP
• Mesh Portal or MPP

Mesh STA is the necessary component for a BSS to qualify
as MBSS. It is a normal 802.11 STA with added features
of frame forwarding and path discovery. As the MPs(Mesh
Points) exchange frames at the MAC layer which is trans-
parent to the Logical Link Control (LLC) Layer, the MPs
form a single broadcast domain. When an MP also has an
access point functionality collocated with it, it is called Mesh
Access Point or MAP. A Mesh Portal or MPP has the frame
forwarding capability over non-802.11 networks like 802.3.
Thus different type of networks can be interconnected using
wireless mesh networks.

B. Path Selection Algorithm and Link Metric

IEEE 802.11s specifies the Hybrid Wireless Mesh Pro-
tocol (HWMP) as the mandatory Path Selection protocol.
HWMP runs at the MAC layer and has following two modes
of operation.

• On Demand (Reactive) Mode
• Proactive Tree Building Mode

Both these modes can also be used simultaneously.
The On Demand Mode is based on AODV [4]. But,

unlike AODV, it works at layer 2. It uses three different
types of management frames, viz.: Path Request (PREQ),

639



Path Reply (PREP) and Path Error (PERR). The working
of the on demand mode is depicted in Fig. 1. When MP4
has some data for MP9, it initiates broadcast PREQ frames
seeking a path for MP9. Every time an MP originates
PREQ, it increments the sequence number to indicate a fresh
PREQ frame. These PREQ frames may reach MP9 through
different paths. An MP accepts a received PREQ/ PREP
frame only if it carries a higher sequence number or if it
offers a better airtime metric [3], [5] with same sequence
number compared to the one present in the path table. If
the PREQ/PREP frame is accepted by the intermediate MP,
it updates its path table, adds last hop airtime link metric
to the path metric in PREQ/PREP frame and forwards it.
When these PREQs reach MP9, MP9 selects the path with
lowest metric and sends a unicast Path Reply (PREP) frame
back. Thus MP4 and MP9 establish a bidirectional path,
MP4−MP7−MP9 (say).

In the Proactive mode of HWMP, one of the MPs

Figure 1. Path Discovery using On-Demand Mode

acts as the ROOT node. The ROOT periodically broadcasts
proactive PREQ frames. The target address field of proactive
PREQ is set to all ’1’. Thus every MP forwards these PREQs
and sends PREP back to ROOT. Alternatively, the ROOT can
also send Root Announcement (RANN) frames, on receipt
of which the MPs may initiate PREQ to ROOT. So, finally,
the ROOT gets paths to all MPs present in the MBSS and
vice versa. Thus, the proactive tree is built. In case of
the proactive mode, if a node does not have a path for a
destination, it sends the frame to ROOT and ROOT then
forwards the frame to destination.

In hybrid mode, both proactive and reactive components
act concurrently. While forwarding the frame, ROOT also
indicates that the source is within the MBSS and so the
destination initiates PREQ for the source of the frame.

C. Frame Format and 6 Address Scheme

802.11s adds a mesh control field to the 802.11 frame
as shown in Fig. 2. The mesh control field starts after the
normal 802.11 header and is interpreted as payload by a

Figure 2. 802.11 frame format with Mesh header

normal 802.11 STA. The 2 bit Address Extension Flag (AE)
indicates which of the three address pairs are present in the
mesh control field. The Mesh Address Extension is required
in MBSS as three different source destination pairs can exist.
These pairs can be: (1) One Hop away transmitter [ADD2]
and receiver [ADD1], (2) Mesh Path source [ADD4] and
Destination [ADD3], and (3) End to End source [ADD6]
and destination [ADD5].

D. Interworking and Proxy Mechanism

Interworking of MBSS with other LANs is achieved using
the 6 address data frames, Portal Announcement frames
and Proxy mechanism. All portals send periodic portal
announcement frames to other MPs. Thus when an MP has
a data for some station for which it can not find a path, it
will send the data frame to all portals. A mesh STA who
proxies for 802 entities outside the MBSS is called a proxy
mesh STA. A Proxy Mesh STA can convey the proxied MAC
addresses to other MPs using Proxy Update (PU) frame. The
receiver of a PU frame updates its path table and sends a
Proxy Update Confirmation (PUC) frame back to originator
of PU.

The 802.11s implementation should support the 802.1D
bridge so that the bridge can learn and forward packets on
to its mesh port. Different bridges can communicate through
MBSS to participate in bridge protocols like the Spanning
Tree protocol.

III. IMPLEMENTATION DETAILS

A. Hardware Details

Router Board RB433ah based on the Atheros AR7161
processor running at 680 MHz, was chosen as the target
platform for implementing a mesh node. Each mesh node
uses one Ethernet port (for MPP) and two radios (one for
MAP functionality and other for MP). Atheros’ AR5413
a/b/g chipset based mini- PCI cards (WLM54AGP23) were
used as radios. The antennas used had omni-directional
radiation pattern with 5dBi gain. Fig. 3 shows an installed
mesh node and the node Internals respectively. The nodes
are powered from ac mains.

B. Software Architecture

The software implementation was done on Linux (kernel
2.6.28.5) using OpenWRT’s Kamikaze 8.09 [6] distribution.

640



Figure 3. Installed Mesh Node & Mesh Node Internals

’mac80211’ [7] was chosen as the wireless stack to im-
plement mesh network due to its extensive driver support.
It also supports virtual mesh interface using Open80211s
Mesh Implementation. Open80211s 0.2.1 has components
like Peer Link Management, On-Demand HWMP, Airtime
Link Metric and supports only MP functionality. Our work
is mainly focused on proactive HWMP and the interworking
of MBSS with other networks. As each node has to support
MP, MAP and MPP functionalities, extensive additions and
modifications were made to the existing mac80211. The
modifications include optimization of mesh path table and
support for new management frames.

The complete software architecture is shown in Fig. 4. As

Figure 4. Software Architecture for the Mesh Node

’mac80211’ does not have full support for AP interface in
itself, it needs a user space daemon called ’hostapd’ for AP
support. When a STA is associated or disassociated, hostapd
updates the list of associated STAs present in mac80211.

All the data frame handling for AP interface is done by
mac80211. The Mesh, AP and LAN interfaces are bridged
together using ’brctl’. Brctl is the 802.1D bridge utility in
Linux.

C. Implementation

A simple mesh network interconnecting three wired
LANs is shown in Fig. 5. All the nodes operate in IEEE
802.11g band. Nodes 3, 4 & 5 have collocated MAP as
well. This topology will be used to explain the mesh
node implementation. All the nodes use the same channel
for mesh functionality and a different non-overlapping
channel for access point functionality. Any mesh node can
be configured to act as ROOT of the network. A ROOT
node periodically sends proactive PREQ. In case there is
more than one node configured as ROOT, a mesh node
will receive proactive PREQs with different originator mac
addresses. The mesh node then sets the lowest originator
mac address as the ROOT. All mesh nodes configured to
act as ROOT, upon receiving proactive PREQ with lower
originator mac address, stop sending proactive PREQ and
set the originator of the proactive PREQ with lower MAC
address as the ROOT. So finally there remains a single
ROOT node which sends proactive PREQs and has paths to
all nodes within the MBSS. In Fig. 5, node 1 is the ROOT
node. The proactive tree built by ROOT is shown by bold
dashed links.

When a mesh node (say node 3) does not have path for
the destination (say node 5), it sends a 6 address frame to
ROOT. The ROOT node then forwards the frame to node
5 via node 4. ROOT sets a flag (VIA_ROOT) in the frame
to indicate that the frame is forwarded by ROOT [3]. Here,
it should be noted that add6 of the frame can as well be a
station outside MBSS (like STA1). In HWMP, there may
exist many non-bidirectional paths. By non-bidirectional
path between two nodes X and Y, we mean node X has
a path for Y but Y either does not have a path for X
or has a different path for X (not the same as the one
X has for Y). The origin of non-bidirectional paths is
explained as follows. In HWMP the PREQ frames traverse
in all directions and every MP receiving the PREQ may
add/update path for the originator. But the originator adds
path only for the target of the PREQ frame. Similarly all
intermediate nodes receiving the PREP frame add/update
path for the target address but the target only adds/updates
path for the originator and not for the intermediate nodes.

To indicate whether a node has a bidirectional path for
another node, a flag (bidirectional flag, BDF) is maintained
for every path in the path table. The target sets the BDF
of originator’s path to ’1’ when it initiates a PREP for that
originator. Similarly, the originator sets the BDF of target’s
path to ’1’ when it receives the PREP. The need for this
flag is explained later.

In Fig. 5, consider the case that node 2 has a path for

641



node 5 through node 3, but node 5 does not have a path for
node 2. Now if node 2 sends data to node 5 through node
3 and node 5 has to reply back, node 5 will send the frame
first to ROOT. But if node 5 and the intermediate nodes (in
this case, node 3) are allowed to update the path for node 2
on receiving the data packet (which is not part of 802.11s
draft), it can send the reply back to node 2 through node 3.

To implement the access point functionality collocated
with an MP, the AP interface is bridged with the MP
interface. When a station gets associated/ disassociated
with the access point and the list of associated stations is
updated, the mesh interface sends a ’Proxy Update (PU)’
frame to ROOT. This is possible only when the driver for
MP radio and MAP radio use mac80211 stack. So, the
ROOT instantly knows about the ’proxy mesh node’ for a
station when it associates to an MAP for the first time or it
moves from one MAP to another.

Similarly the portal functionality was implemented by
bridging the Ethernet interface with the mesh interface.
All nodes configured as portal periodically send Portal
Announcement (PANN) frames to ROOT. If the mesh
interface has to send PU frame for the stations in the wired
LAN, for every frame it receives from the bridge, it has to
check if the frame was originally received by an Ethernet
interface. It also needs to check if a ’PU’ has already been
sent for the address 2 of the frame. This requires a list of
stations present in the LAN to be maintained by the mesh
interface. This can avoided if the mesh nodes are allowed
to add path using the 6 address frame they receive. To
update the path information using the 6 address frame, the
node first checks if add4 and add6 are different and then
adds add4 as the proxy mesh station for add6.

When ROOT receives a frame for a station outside the
MBSS for which it has a path, it forwards the frame to
the ’proxy’ for the outside station. It also sends the proxy
information to the mesh path source of the frame. If it does
not have a path, it forwards the frame to all portals. To
explain the interworking between wired LANs, MBSS and
the IBSS, we consider the following two cases:
1) Communication between an MP and a station
outside the MBSS: Suppose the station STA3 wants to
communicate to node 2. If node 5 has a path for node 2, it
will forward the frame to node 2. When node 2 receives
the frame, it adds node 5 as the proxy for STA3. If node 2
does not have a path for node 5 it also initiates PREQ for
it.

But if node 5 does not have path for node 2, it will send
the frame to ROOT and ROOT forwards the frame to node
2. ROOT will also add node 5 as proxy for STA3. In that
case, node 2 first sends PREQ frame for node 5 and then
adds node 5 as proxy for STA3.

Similarly when the node 2 wants to communicate to
STA3 and it does not have a path, it will send the frame to
ROOT. ROOT will forward the frame to node 5 and also

Figure 5. Test Setup

send a PU back to node 2 if it has a path for STA3. After
receiving PU from ROOT, node 2 will first initiate a PREQ
for node 5 (only if either it does not have a path for node
5 or the BDF flag for the path is ’0’). Node 2 then adds
node 5 as the proxy for STA3. Then onwards, node 2 will
send the frame for STA3 to node 5.
2) Communication between external stations: Suppose
STA3 wants to communicate to STA7. If node 5 does not
have path for STA7, it will send the frame to ROOT. ROOT
will add a path for STA3 through node 5, if it does not
already have one. If ROOT does not have a path for STA7,
it will forward the frame to all portals except node 5 (in
this case only node 3). ROOT also sends the frame to the
upper layer (bridge). When node 3 receives the frame from
ROOT (via_root=’1’), being a portal, it should not add
path for STA3 now. [This is done so that the first frame
from STA7 goes through ROOT and ROOT can add a path
for STA7. So, ROOT can send PU when some other STA
wants to communicate to STA7.] All subsequent frames
from STA3 to STA7 follow the same path until STA7 sends
a reply back. When STA7 replies to STA3, node 3 sends
the frame to ROOT. ROOT then adds node 3 as proxy for
STA7 and forwards the frame only to node 5. ROOT also
sends a PU (to reach STA3) back to node 3. When node
3 receives the PU from ROOT, it initiates PREQ for node
5 if either it does not have a path to node 5 or the BDF
flag is ’0’. Node 3 also adds node 5 as proxy for STA3 and
then onwards sends the frames for STA3 to node 5. When
node 5 receives a frame from STA7 directly from node 3
(via_root=’0’), it adds node 3 as proxy for STA7.

In case the destination station is associated with an MAP,

642



ROOT will send PU to the source MP immediately. This is
because ROOT always has updated path information for all
stations associated with MAPs.

IV. ISSUES AND OBSERVATIONS WITH 802.11S

As PREQ frames are always sent to the broadcast address,
they result is severe flooding over the entire MBSS. This gets
even worse if we add to it the fact that multicast frames are
sent at the basic transmit rate (1 Mbps for 802.11g). This
is because the receivers of the frames may not support the
high rate either due hardware limitation or poor link quality.
So the number of PREQ frames in the MBSS should be as
low as possible.

In our implementation, mesh nodes never initiate PREQ
for a station outside the MBSS. Instead, ROOT unicasts
the proxy information to the node when required. This is
possible because ROOT maintains the path for all external
stations from whom ROOT has either received or to whom
ROOT has forwarded a frame. Thus the number of PREQs
is minimized.

We suggest a mechanism of controlled flooding of PREQ
named as ’Limited PREQ’. This mechanism minimizes the
impact of PREQs by controlling the TTL value of PREQ
frames. Normally the TTL value is set to a value which will
assure that the PREQ frame can traverse the whole MBSS.
But this may not be required as the target can sometimes be
very close to the originator. So, if the originator knows the
approximate number of hops to target, it can set the TTL of
PREQ appropriately. This can be implemented by adding a
’hop_count’ field in the mesh header. Now, suppose node 5
in Fig. 5 has a path for node 2 but node 2 does not have
a path for node 5. So node 5 can directly send the frame
to node 2. When node 2 receives the frame from node 5,
it also comes to know the number of hops to node 5. This
information can be used while initiating the PREQ for node
5. But if node 5 also does not have path for node 2, the
frame from node 5 will then reach node 2 through ROOT.
After receiving this frame (via_root=’1’), node 2 can initiate
PREQ with the TTL equal to ’hop count’ present in the
received frame. If the originator does not receive PREP, the
TTL value of next PREQ can be made twice the previous
value. The hop count of the path should be saved and any
PREQ sent to refresh the path, should use the same hop
count. This mechanism is similar to the ’expanding ring
search’(ERS) discussed in [4]. But unlike ERS, where the
initial TTL value of PREQ frames is static, Limited PREQ
mechanism learns the initial TTL value from the network (if
possible). As the benefit of ’Limited PREQ’ mechanism will
be evident only in big networks, results are not available.

V. TESTS AND VALIDATION

The Test Bed is same as the network shown in Fig. 5. All
the mesh nodes are in the interference range of one another.

Figure 6. Snap Shot of GUI

An ’ncurses’ based program was written to graphically
display the present proactive tree structure. ’mac80211’
passes the list of immediate children to user space through
debugfs interface. A small UDP client program running on
the mesh node, sends this information to ROOT. ROOT
(a desktop machine) displays the results on terminal using
ncurses package. Fig. 6 shows a snapshot of the graphical
display. Also a mac layer utility was developed to trace the
path for a desired destination mac. Fig. 7 shows the path
traced from node 1 to node 3.

Fig. 8 shows Ethereal capture of the frame sequence when

Figure 7. Snap Shot of the Path Trace

Figure 8. Ethereal Capture of ping request from node 5 to node 3

node 5 communicates to node 3. Here node 5 does not have
path for node 3 and so the first ping request frame is sent to
the ROOT. Frames inside the box show how the first ’ping
request’ from node 5 reaches node 3 through intermediate

643



nodes. It also shows the corresponding ACK frames. The
path followed can be traced using the receiver address of
the ACK frames. Here, source and destination addresses are
same for all the four data frames as Ethereal displays only
the end-to-end source and destination addresses. Node 3 then
initiates PREQs and after getting PREP frames, sends the
ping reply directly to node 5.

Throughput measurements (using iperf) done on the

Figure 9. Throughput vs hopcount

testbed network are shown in Fig. 9 as bar graphs. The light
grey bars represent the throughput between the two mesh
STAs A and B when they are ’N’ hops away from each
other. The dark grey bars represent the throughput between
the mesh STA A and the STA P (associated to MAP B)
through MAP B. Since MAP B has separate radio for mesh
and access point functionalities, both the radios can be active
simultaneously in different channels. So an extra wireless
hop from MAP B to STA P should not degrade the overall
throughput. As expected, for a given number of mesh hops
between mesh STAs A and B, the throughput from A to P
(dark bars) and the throughput from A to B (light bars) have
a very small difference.

The impact of PREQ flooding on throughput is shown
in Fig. 10. This experiment was done on a different setup
having 5 nodes. One node was programmed to send PREQs
periodically and the throughput between two neighbouring
nodes (one hop away) was measured.

VI. CONCLUSION

We have implemented 802.11s based single radio and
single channel (with respect to MP) wireless mesh nodes
which are capable of real life deployment. Based on the
tests and measurements carried out using the developed
nodes, several issues which can degrade the performance
are pointed out and a possible solution is also presented.
It is observed that throughput degrades with the number of
hops when single radio single channel mesh nodes are used.

Future work will concentrate on design and development

Figure 10. Link throughput vs number of PREQs per second

of multi-radio (with respect to MP) wireless mesh node and
incorporating congestion control schemes. In particular, we
are interested in dual radio mesh stations. Improvements
to hardware include the addition of battery backup and
deploying higher gain antennas.

REFERENCES

[1] Open source implementation of ieee 80211s. [Online].
Available: http://open80211s.org

[2] D. I. L. T. Rosario G. Garroppo, Stefano Giordano, “Notes on
implementing a ieee 802.11s mesh point,” in 4th International
Workshop of the EuroNGI/EuroFGI Network of Excellence,
Barcelona, Jan. 2008.

[3] Draft Standard for Information Technology - Telecommunica-
tions and Information Exchange Between Systems - LAN/MAN
Specific Requirements - Part 11: Wireless Medium Access Con-
trol (MAC) and physical layer (PHY) specifications: Amend-
ment: ESS Mesh Networking, IEEE draft P802.11s/D3.0,
March 2009.

[4] E. B. R. C. Perkins and S.Das, “Ad hoc on-demand
distance vector (aodv) routing,” IETF Std. 3561,
http://tools.ietf.org/html/rfc3561, Jul. 2003.

[5] R. G.R.Hiertz, S.Max, “Principles of ieee 802.11s,” in Proc. of
16th International Conference on Computer Communications
and Networks (ICCCN), 2007.

[6] Linux distribution for embedded devices. [Online]. Available:
http://openwrt.org/

[7] Linux api to write softmac wireless drivers. [Online].
Available: http://linuxwireless.org/

644


