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Abstract

Recently, Wireless Sensor Networks (WSNs) have
become increasingly available for data-intensive ap-
plications such as micro-climate monitoring, precision
agriculture, and audio/video surveillance. A key chal-
lenge faced by data-intensive WSNs is to transmit the
sheer amount of data generated within an application’s
lifetime to the base station despite the fact that sensor
nodes have limited power supplies such as batteries
or small solar panels. In this paper, we propose to
use low-cost disposable mobile relays to reduce the
energy consumption of data-intensive WSNs. Different
from previous work, our approach does not require
complex motion planning of mobile nodes, and hence
can be implemented on a number of low-cost mobile
sensor platforms. Moreover, we integrate the energy
consumption due to both mobility and wireless trans-
missions into a holistic optimization framework. The
optimal relay configuration is shown to depend on
both the positions of nodes and the amount of data
to be sent. We develop two algorithms that iteratively
refine the configuration of mobile relays and converge
to the optimal solution. These algorithms have efficient
distributed implementations that do not require explicit
synchronization. Our simulation results based on re-
alistic energy models obtained from existing mobile
and static sensor platforms show that our algorithms
significantly outperform the best existing solutions.

1. Introduction

Recent years have seen the deployments of WSNs
in a variety of data-intensive applications including
micro-climate and habitat monitoring [1], precision
agriculture, and audio/video surveillance [2]. It is
shown in [3] that a moderate-size WSN can gather
up to 1 Gb/year from a biological habitat. Due to the
limited storage capacity of sensor nodes, most data

must be transmitted to the base station for archiving
and analysis. However, sensor nodes must operate
on limited power supplies such as batteries or small
solar panels. Therefore, a key challenge faced by data-
intensive WSNs is to minimize the energy consumption
of sensor nodes such that the sheer amount of data
generated within the lifetime of the application can be
transmitted to the base station.

Recent work showed that the energy cost of WSNs
can be significantly reduced by utilizing the mobility
of nodes. Several different approaches have been pro-
posed. A robotic unit may move around the network
and collect data from static nodes through one-hop
or multi-hop transmissions [4]–[8]. The mobile node
may serve as the base station or a “data mule” that
transports data between static nodes and the base
station [9]–[11]. Mobile nodes may also be used as
relays [12] that forward the data from source nodes
to the base station. Several movement strategies for
mobile relays have been studied in [12], [13].

Although the effectiveness of mobility in energy
conservation is demonstrated by previous studies, the
following key issues have not been addressed collec-
tively. First, the movement cost of mobile nodes is not
accounted for in the total network energy consump-
tion. Instead, mobile nodes are often assumed to have
replenishable energy supplies. For instance, a mobile
node may periodically recharge its battery at a fixed
charging dock [7]. However, energy replenishment is
not always feasible due to the constraints of the physi-
cal environment. Second, complex motion planning of
mobile nodes is often assumed in existing solutions
which introduces significant design complexity and
manufacturing costs. In [7], [8], [14], [15], mobile
nodes need to compute optimal motion paths and
continuously change their orientation and/or speed of
movement. Such capabilities are usually not supported
by existing low-cost mobile sensor platforms. For
instance, Robomote [16] nodes are designed using 8-
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bit CPUs and small batteries that only last for about
25 minutes in full motion. Complex motion planning
is not practical for such platforms due to the limited
computational power and short battery lifetime.

In this paper, we use low-cost disposable mobile
relays to reduce the total energy consumption of data-
intensive WSNs. Different from mobile base station
or data mules, mobile relays do not transport data; in-
stead, they move to different locations and then remain
stationary to forward data along the paths from sources
to the base station. As a result, the communication
delays can be significantly reduced compared with
using mobile stations or data mules.

Our approach is motivated by the current state of
mobile sensor platform technology. On the one hand,
numerous low-cost mobile sensor prototypes such as
Packbot [14], Robomote [16], Khepera [17], and FIRA
[18] are now available. Their manufacturing cost is
comparable to that of typical static sensor platforms.
As a result, they can be massively deployed in a net-
work and used in a disposable manner. Our approach
takes advantage of this capability by assuming that we
have a large number of mobile relay nodes. On the
other hand, due to low manufacturing cost, existing
mobile sensor platforms are typically powered by bat-
teries and only capable of limited mobility. Consistent
with this constraint, our approach only requires simple
motions of mobile relays, i.e., one-shot relocation to
designated positions after deployment. Compared with
our approach, existing mobility approaches (such as
mobile base station and data mule) typically assume a
small number of powerful mobile nodes, which does
not exploit the availability of massive low-cost mobile
nodes.

We make the following contributions in this paper.
(1) We formulate the problem of Optimal Mobile
Relay Configuration in data-intensive WSNs. Our ob-
jective of energy conservation is holistic in that the
total energy consumed by both mobility of relays
and wireless transmissions is minimized, which is
in contrast to existing mobility approaches that only
minimize the transmission energy consumption. The
tradeoff in energy consumption between mobility and
transmission is exploited by configuring the positions
of mobile relays. (2) We develop two algorithms that
iteratively refine the configuration of mobile relays and
converge to the optimal solution. We show that the
optimal position for a mobile relay is not the midpoint
of its neighbors, which is in contrast to the result of
several previous studies [13], [19] that only account for
transmission costs. Instead, the optimal relay configu-
ration depends on both the initial positions of nodes
and the amount of data to be transmitted. Our optimal

algorithms have efficient distributed implementations
that do not require explicit synchronization. (3) We
conduct extensive simulations based on realistic energy
models obtained from existing mobile and static sensor
platforms. Our results show that our algorithms can
reduce energy consumption by roughly 23% compared
to the best existing solutions.

The rest of the paper is organized as follows. Section
2 reviews related work. In Section 3, we formally
define our problem. We propose an iterative algorithm
for the single-flow problem in Section 4. In Section
5, we extend our solution to the multi-flow problem.
Section 6 describes our simulation results and Section
7 concludes this paper.

2. Related Work

We review three different approaches, mobile base
stations, data mules, and mobile relays, that use mo-
bility to reduce energy consumption. A mobile base
station moves around the network and collects data
from the nodes. In some work, all nodes are always
performing multiple hop transmissions to the base
station, and the goal is to rotate which nodes are close
to the base station in order to balance the transmission
load [4]–[6]. In other work, nodes only transmit to the
base station when it is close to them (or a neighbor).
The goal is to compute a mobility path to collect data
from visited nodes before those nodes suffer buffer
overflows [7], [8], [14], [15]. These approaches incur
high latencies due to the low to moderate speed, e.g.
0.1-1 m/s [14], [16], of mobile base stations.

Data mules are similar to the second form of mobile
base stations [9]–[11]. Data mules pick up data from
the sensors and transport it to the sink. In [20], the data
mule visits all the sources to collect data, transports
data over some distance, and then transmits it to the
static base station through the network. The goal is
to find a movement path that minimizes both commu-
nication and mobility energy consumption. Similar to
mobile base stations, data mules introduce large delays
since sensors have to wait for a mule to pass by before
starting their transmission.

In the third approach, the network consists of mobile
relay nodes along with static base station and data
sources. Relay nodes do not transport data; instead,
they move to different locations to decrease the trans-
mission costs. We use the mobile relay approach in this
work. Goldenberg et al. [13] showed that an iterative
mobility algorithm where each relay node moves to
the midpoint of its neighbors converges on the optimal
solution for a single routing path. However, they do
not take into consideration the cost of moving the relay
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nodes. In [19], mobile nodes decide to move only when
moving is beneficial, (i.e., mobility costs are covered
by the savings in transmission costs). However, only
the cost of moving to the midpoint of neighbors is
considered in [19].

Compared to the approaches of mobile base stations
and data mules, our approach considers the energy
consumption of both mobility and transmission, and
requires much simpler motion planning. Specifically,
after deployment, each mobile relay relocates only
once and then remains stationary for data forward-
ing. The key difference between our approach and
the mobile relay schemes in [13] and [19] is that
we consider all possible locations as possible target
locations for a mobile node instead of just its current
position and the midpoint of its neighbors. Moreover,
our approach accurately computes the optimal position
of each mobile relay node.

3. Problem Definition

3.1. Energy Consumption Models

Nodes consume energy during communication, com-
putation, and movement, but communication and mo-
bility energy consumption are the major cause of
battery drainage. Radios consume considerable energy
even in an idle listening state, but the idle listening time
of radios can be significantly reduced by a number
of sleep scheduling protocols [21]. In this work, we
focus on reducing the total energy consumption due to
transmissions and mobility. Such a holistic objective
of energy conservation is motivated by the fact that
mobile relays act the same as static forwarding nodes
after movement.

For mobility, we consider wheeled sensor nodes with
differential drives such as Khepera [17], Robomote
[16] and FIRA [18]. This type of node usually has two
wheels, each controlled by independent engines. We
adopt the distance proportional energy consumption
model which is appropriate for this kind of node [22].
The energy EM (d) consumed by moving a distance d
is modeled as:

EM (d) = kd

The value of the parameter k depends on the speed
of the node. In general, there is an optimal speed at
which k is lowest. In [22], the authors discuss in detail
the variation of the energy consumption with respect
to the speed of the mote. When the node is running at
optimal speed, k = 2 [22].

To model the energy consumed through transmis-
sions, we analyze the empirical results obtained by
two radios CC2420 [23] and CC1000 [24] that are

widely used on existing sensor network platforms. For
CC2420, the authors of [25] studied the transmission
power level needed for transmitting packets reliably
(e.g., above 95% packet reception ratio) over differ-
ent distances. Let ET (d) be the energy consumed to
transmit reliably over distance d. It can be modeled as

ET (d) = m(a+ bd2)

where m is the number of bits transmitted and a and b
are constants depending on the environment. We now
discuss the instantiation of the above model for both
CC2420 and CC1000 radio platforms. In an outdoor
environment, for received signal strength of -80 dbm
(which corresponds to a packet reception ratio higher
than 95%), we obtain a = 0.6×10−7J/bit and b = 4×
10−10Jm−2/bit from the measurements on CC2420
in [25]. This model is consistent with the theoretical
analysis discussed in [26]. We also consider the energy
needed by CC1000 to output the same levels. We get
lower consumption parameters: a = 0.3 × 10−7J/bit
and b = 2 × 10−10Jm−2/bit. We will see in section
4.1 that we maintain this high packet reception ratio
throughout our algorithm.

3.2. An Illustrative Example

We now describe the main idea of our approach
using a simple example. Suppose we have three nodes
s1, s2, s3 located at positions x1, x2, x3, respectively
(Figure 1), such that s2 is a mobile relay node. The
objective is to minimize the total energy consumption
due to both movement and transmissions. Data storage
node s1 needs to transmit a data chunk to sink s3
through relay node s2. One solution is to have s1
transmit the data from x1 to node s2 at position
x2 and node s2 relays it to sink s3 at position x3;
that is, node s2 does not move. Another solution,
which takes advantage of s2’s mobility, is to move
s2 to the midpoint of the segment x1x3, which is
suggested in [13]. This will reduce the transmission
energy by reducing the distances separating the nodes.
However, moving relay node s2 also consumes energy.
We assume the following parameters for the energy
models: k = 2, a = 0.6× 10−7, b = 4× 10−10.

In this example, for a given data chunk mi, the
optimal solution is to move s2 to xi2 (a position that
we can compute precisely). This will minimize the
total energy consumption due to both transmission and
mobility. For small messages, s2 moves very little if
at all. As the size of the data increases, relay node
s2 moves closer to the midpoint. Table 1 illustrates
how much energy can be saved by using the optimal
approach instead of the other two approaches. In this
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example, for large enough messages ( 13 MB), one
relay node can reduce total energy consumption by
10% compared to the other two approaches. In general,
the energy consumption reduction is higher when there
are multiple mobile relay nodes.

Figure 1. Reduction in energy consumption due to
mobile relay. As the data chunk size increases, the
optimal position converges to the midpoint of s1s3.

Table 1. Energy consumption comparison

Data Size Costs at Costs at Costs at Reduction
(MB) Original Pos. Midpoints Optimal Pos.
11.00 94.12 101.93 88.39 6.09%
12.00 102.68 107.13 94.71 7.75%
13.00 111.23 112.33 100.87 9.32%
14.00 119.79 117.53 106.89 9.06%
15.00 128.35 122.74 112.80 8.09%
16.00 136.90 127.94 118.62 7.28%
17.00 145.46 133.14 124.37 6.58%
18.00 154.01 138.34 130.06 5.98%

The above example illustrates two interesting results.
The optimal position of a mobile relay is not the mid-
point between the source and sink when both mobility
and transmissions costs are taken into consideration.
This is in contrast to the conclusion of several previous
studies [12], [13] which only account for transmission
costs. Second, the optimal position of a mobile relay
depends on not only the network topology (e.g., the
initial positions of nodes) but also the amount of
data to be transmitted. Moreover, as the data chunk
size increases, the optimal position converges to the
midpoint of s1 and s3. These results are particularly
important for minimizing the energy cost of data-
intensive WSNs as the traffic load of such networks
varies significantly with the sampling rates of nodes
and network density.

3.3. Problem Formulation

In our definitions, we assume that all movements
are completed before any transmissions begin. As we
show in section 4.1, the distance moved by a mobile
relay is no more than the distance between its starting
position and its corresponding position in the evenly
spaced configuration along the straight line between
the source and the destination, which often leads to a

short delay in mobile relay relocation. We assume that
transmission routes from the sources to the sink are
already determined. This is a first step towards solving
the more general problem in which transmission routes
are not known in advance. Furthermore, we assume
that all mobile nodes know their locations either by
GPS units mounted on them or a localization service
in the network. We focus on the case where all nodes
are in a 2-dimensional plane <2, but the results apply
to <3 and other metric spaces.

Our problem can be described as follows. Given a
network containing one or more static source nodes
that store data gathered by other nodes, a number of
mobile relay nodes and a static sink, we want to find
the optimal positions to move the mobile relays to
in order to minimize the total energy consumed by
transmitting a data chunk from the source(s) to the sink
and the energy consumed by the mobile relays to reach
their new locations. The source nodes in our problem
formulation serve as storage points which cache the
data gathered by other nodes and periodically transmit
to the sink, in response to user queries. Such a network
architecture is consistent with the design of storage-
centric sensor networks [27]. Our problem formulation
also considers the initial positions of nodes and the
amount of data that needs to be transmitted from each
storage node to the sink. The formal definition of the
problem is given below.

Definition 1 (Mobile Relay Configuration):
Input Instance: S, a list of n nodes (s1, . . . , sn) in the
network; O, a list of n locations (o1, . . . , on) where
oi is the initial position of node si for 1 ≤ i ≤
n; Ssources, a subset of S representing the source
nodes; r, a node in S, representing the single sink;
Msources = {Mi | si ∈ Ssources}, a set of data chunk
sizes for all sources in Ssources; E, a set of directed
arcs (si, sj) that represents the directed tree in which
all sources are leaves and the sink is the root.

We define mi, which we compute later, to be the
weight of node si which is equal to the total number
of bits to be transmitted by node si. We define a
configuration U as a list of n locations (u1, . . . , un)
where ui is the transmission position for node si for
1 ≤ i ≤ n. The cost of a configuration U is given by:
c(U) =

∑
(si,sj)∈E

ami + b‖ui − uj‖2mi + k‖oi − ui‖

Output: U , an optimal configuration that minimizes the
cost c(U).

We note that if only a subset of the relay nodes is
mobile, we can decompose the problem into subprob-
lems in which all intermediate relay nodes in each sub-
tree are mobile. Also, if there is one or more sources
that are not leaves in the tree, we can decompose again
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to subproblems in which each non-mobile intermediate
source node is a sink. Our algorithm can be applied to
each subproblem to yield an optimal solution for the
main problem.

4. Mobile Relay Configuration for Single
Data Flow

We first study the special case where there exists
only one data flow. For example, storage nodes may
be sparsely distributed and their paths to the sink may
not share any intermediate nodes. The solution to this
special case also provides important insights for the
general case with multiple data flows (Section 5).

4.1. Iterative Algorithm

We propose a simple iterative approach to compute
the optimal position ui for each node si. To define our
algorithm, we need the following notation. In <2, let
the original position of node si be oi = (pi, qi), and let
uji = (xji , y

j
i ) be the position of node si after the jth

iteration of our algorithm for j ≥ 0. We define u0
i = oi.

Let U j = (uj1, . . . , u
j
n) be the computed configuration

of nodes s1 through sn after j iterations of our
algorithm. Note that the mobile relay nodes typically
do not move until the final positions are computed.
Since there is a single source, the same data chunk size
is transmitted from the source through intermediate
nodes. We define m to be this value (m = M1).
According to our energy models, the total transmission
and movement energy cost incurred by mobile relay
node si assuming all the mobile relays move from
the initial configuration U0 directly to configuration
U j before performing any transmissions is ci(U j) =
k‖uji −oi‖+am+ b‖uji+1−u

j
i‖2m, and the total cost

of configuration U j is c(U j) =
∑n−1
i=1 ci(U

j). Finally,
we define Ci(U j) = ci(U j) + am+ b‖uji − u

j
i−1‖2m;

this corresponds to the transmission cost of node si−1

plus the total cost of node si.
In odd iterations j, the algorithm computes a posi-

tion uji for each odd-numbered node si that minimizes
Ci(U j) assuming that uji−1 = uj−1

i−1 and uji+1 = uj−1
i+1 ;

that is, node si’s even numbered neighboring nodes are
at the same positions in configurations U j−1 and U j .
In even-numbered iterations, the controller does the
same for even-numbered nodes. The algorithm behaves
this way because the optimization of uji requires a
fixed location for nodes i−1 and i+1. By alternating
between optimizing for odd and even numbered nodes,
the algorithm guarantees that the node si is always
making progress towards the optimal position ui.

The algorithm calculates position uji = (xji , y
j
i ) for

node si by finding the values for xji and yji where the
partial derivatives of the cost function Ci(U j) with
respect to xji and yji become zero. Position uji will
be toward the midpoint of positions uji−1 and uji+1.
The partial derivatives δCi(U

j)

δxj
i

, δCi(U
j)

δyj
i

at xji and yji ,
respectively are defined as follows.

δCi(U
j)

δxj
i

= −2bm(xj
i+1 − xj

i ) + 2bm(xj
i − xj

i−1)

+ k
(xj

i − pi)√
(xj

i − pi)2 + (yj
i − qi)2

δCi(U
j)

δyj
i

= −2bm(yj
i+1 − yj

i ) + 2bm(yj
i − yj

i−1)

+ k
(yj

i − qi)√
(xj

i − pi)2 + (yj
i − qi)2

Setting δCi(U
j)

δxj
i

= 0, δCi(U
j)

δyj
i

= 0, we get the
following two cases. Suppose si needs to move left.
This means pi is to the right of the midpoint of nodes
si−1 and si+1. Let Y ji = k

4bm
1√

1+
(y

j
i−1

+y
j
i+1

−2qi)
2

(x
j
i−1

+x
j
i+1

−2pi)
2

.

The optimal position is then xji = 1
2 (xji−1+x

j
i+1)+Y

j
i .

If si needs to move right, then pi is to the left of the
midpoint of nodes si−1 and si+1. The optimal position
is then xji = 1

2 (xji−1 +xji+1)−Y
j
i . The corresponding

yji in both cases is
(xj

i−1+x
j
i+1−2pi)

(yj
i−1+y

j
i+1−2qi)

(xji − pi) + qi.
Figure 3 shows an example of an optimal con-

figuration. Nodes start at configuration U0. In the
first iteration, odd nodes (s3 and s5) moved to their
new positions (u1

3, u
1
5) computed based on the current

location of their (even) neighbors (u0
2, u

0
4, u

0
6). In the

second iteration, only even nodes (s2 and s4) moved
to their new positions (u2

2, u
2
4) computed based on the

current location of their (odd) neighbors (u1
1, u

1
3, u

1
5).

Since s3 and s5 did not move, their position at the
end of this iteration remains the same, so u1

3 = u2
3 and

u1
5 = u2

5. In this example, nodes did two more sets of
iterations, and finally converged to the optimal solution
shown by configuration U6.

Even though configurations change with every iter-
ation, nodes only move after the final positions have
been computed. So each node follows a straight line to
its final destination. As the data chunk size increases,
the optimal configuration gets closer to the straight line
connecting the source and the sink and the nodes get
more evenly spaced along that line. In fact, in any
given configuration, the maximum distance travelled
by a node is bounded by the distance between its
starting position and its final position in the evenly
spaced configuration.
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procedure OPTIMALPOSITIONS(U0)
converged ← false;
j ← 0;
repeat

anymove ← false;
j ← j + 1;

. Start an odd iteration
for i = 2 to n, i is odd do

(uj
i
,moved)← LOCALPOS(oi, u

j−1, uj−1
i−1 , u

j−1
i+1 );

. Record if any node moved
anymove ← anymove OR moved

end for

. Start an even iteration
for i = 2 to n, i is even do

(uj
i
,moved)← LOCALPOS(oi, u

j−1, uj
i−1, u

j
i+1);

. Record if any node moved
anymove ← anymove OR moved

end for

. Update convergence status
converged ← NOT anymove

until converged
end procedure

function LOCALPOS(oi, u
j
i
, uk

i−1, u
k
i+1)

. Consider case si moves right
xi ← 1

2 (xi−1 + xi+1)− Yi;
if xi > pi then
yi ←

(xi−1+xi+1−2pi)
(yi−1+yi+1−2qi)

(xi − pi) + qi;

uj+1
i

= (xi, yi);
. Record if new position is different from previous one
if
∥∥uj+1

i
− uj

i

∥∥ < threshold then
return (uj+1, FALSE);

else
return (uj+1, TRUE);

end if
end if

. Consider case si moves left
xi ← 1

2 (xi−1 + xi+1) + Yi

if xi < pi then
yi ←

(xi−1+xi+1−2pi)
(yi−1+yi+1−2qi)

(xi − pi) + qi;

uj+1
i

= (xi, yi);
. Record if new position is different from previous one
if
∥∥uj+1

i
− uj

i

∥∥ < threshold then
return (uj+1, FALSE);

else
return (uj+1, TRUE);

end if
end if

. not beneficial to move, stay at original position
return (oi, FALSE);

end function

Figure 2. Centralized Algorithm to Compute Opti-
mal Positions

The above example shows another property of our
algorithm. When a node si moves and its neighbors
(si−1 and si+1) remain in place, it moves in the
direction of the midpoint of si−1si+1. This results in
a reduction in the length of one of the transmission
links. The other may increase in length but will never
exceed the new length of the first link. So in any
configuration U i+1, the length of the largest link is
at most the length of the largest link in the previous

configuration U i. So if we start with a route along
links with good quality, this quality will be preserved in
the optimal configuration (and throughout intermediate
configurations).

Figure 3. Convergence of iterative approach to the
optimal solution. Each line shows the configuration
obtained after 2 iterations. The optimal configura-
tion is reached after 6 iterations.

4.2. Convergence and Optimality

Our algorithm continues iterating until the change
in position for each node falls below a predefined
threshold. Upon termination, no node can move by
itself to improve the overall cost (within the threshold
bound). We prove that such a configuration is globally
optimal, and no simultaneous relocation of multiple
nodes can improve the overall cost. The proof of opti-
mality is omitted due to lack of space and can be found
in [28]. The key intuition is that for a configuration
in which no relay node can move and improve the
cost by itself, the directional derivative [29] at that
configuration is positive; this is a sufficient condition
for the optimality of that configuration because the cost
function is convex.

We have not completed a rate of convergence analy-
sis for our algorithm. However, in our simulations, we
reach our error threshold within 6 to 8 iterations. Since
each iteration involves only half the nodes and each
computation of uji can be performed in constant time,
the time complexity of our algorithm is O(λn), where
λ is the number of iterations to reach convergence.
Given that λ ≤ 8 in our simulations, our observed
time complexity is O(n).

4.3. Centralized and Distributed Implementa-
tion

One implementation of our iterative approach is
a centralized scheme in which one node has full
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knowledge of the network including which nodes (s1,
. . . , sn) are on the transmission path, the order position
i of each node si, the original physical position oi of
each node si, and the total message length m to be
sent. This node computes ui, the final position of each
node si and sends ui to node si. Each node si then
moves to ui before the transmission begins.

While the centralized algorithm computes optimal
position ui for each node si, it incurs prohibitively
high overhead in large-scale networks. We now present
a distributed and decentralized version of our optimal
algorithm. The key observation is that computing each
uji for node si only depends on the current position
of si’s two neighbors, si−1 and si+1. Thus, si can
perform this computation.

The distributed implementation proceeds as follows.
First, there is a setup process where the sender s1 sends
a discover message that ends with the receiver sn; the
two purposes of this message are (1) to assign a label
of odd or even to each node si and (2) for each node
si to learn the current positions of nodes si−1 and
si+1. A node si sends its current position to node si−1

when acknowledging receipt of the discover message.
Second, there is a distributed process by which the
nodes compute their transmission positions. We make
each iteration of the basic algorithm a “round”, though
there does not need to be explicit synchronization.
In odd rounds, each odd node computes its locally
optimal position and transmits this new position to
its two neighbors. In even rounds, each even node
does the same. A node begins its next round when
it receives updated positions from its two neighbors.
The final step is to have the nodes move to their
computed transmission positions, send messages to
their neighbors saying they are in position, and finally
perform the transmission. To ensure the second process
does not take too long, we limit the number of rounds
to 4; that is, each node computes an updated position
two times. Simulation results show that this is enough
to obtain costs close to optimal (see Section 6).

5. Mobile Relay Configuration for Multi-
ple Data Flows

We extend our solution to the the more general
multiple flows traffic pattern. We assume that we know
the path from each source to the sink. The set of paths
form a directed tree in which the leaves are sources
and the root is the sink. We also assume that separate
messages cannot be compressed through merging; that
is, if two distinct messages of lengths m1 and m2 use
the same link (si, sj) on the path from a source to a

sink, the total number of bits that must traverse link
(si, sj) is m1 +m2.

Before we can describe our modified iterative algo-
rithm, we need to define the following notation. First,
for a given node si, we define node sd to be the parent
node of si in the directed tree; that is, node si will
transmit to node sd. Furthermore, we use S(si) to
denote the set of nodes that have si as their parent
in the tree. The cost incurred by si in a configuration
U j is ci(U j) = k‖uji − oi‖+ ami + bmi‖ujd − u

j
i‖2;

remember that si transmits to sd. The total cost of U j

is c(U j) =
∑
ci(U j). Finally, Ci(U j) = ci(U j) +∑

sl∈S(si)
aml + b‖uji − u

j
l ‖2ml; this corresponds to

the transmission cost of all nodes sl that send messages
to node si plus the total cost of node si.

The key modifications to our iterative algorithm are
modified routines for labeling nodes as odd or even,
a new routine to calculate mi for each node si, and
an updated routine to determine position uji that takes
into account multiple nodes transmitting to node si.
To obtain consistent labels for nodes, we start the
labeling process from the root using a breadth first
traversal of the tree. The root gets labeled as even. Each
of its children gets labeled as odd. Each subsequent
child is then given the opposite label of its parent. We
define mi, the weight of a node si, to be the sum
of message lengths over all paths passing through si.
This computation starts from the sources or leaves of
our routing tree. Initially, we know mi = Mi for each
source leaf node si. For each intermediate node si, we
compute its weight as the sum of the weights of its
children.

The routine for calculating uji still minimizes
Ci(U j). The difference is that Ci(U j) includes the
transmission cost of all nodes sl ∈ S(si) that transmit
to node si. Setting δCi(U

j)

δxj
i

= 0, δCi(U
j)

δyj
i

= 0, the new
position of node si can be computed as follows:

xji =
−Bjxrj + kxjiA

A(rj + k)
, yi =

−Bjyrj + kyjiA

A(rj + k)

where A = mi +
∑

sl∈S(si)

ml

Bjx = mix
j
d +

∑
sl∈S(si)

mlx
j
l

By = miy
j
d +

∑
sl∈S(si)

mly
j
l

r = −k ±
√

(Bjx +Axji )2 + (Bjy +Ayji )2

The cost functions c(U j) and Ci(U j) are still con-
vex which means that a configuration in which no node
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can move to reduce the cost function is still an optimal
configuration. The proof of optimality is similar to the
proof for the single flow case. Details can be found in
[28]. In our simulations, we observe that 10 iterations
suffice to converge to our error threshold.

This algorithm again can be implemented as a
centralized or a distributed algorithm. The basic mech-
anisms are identical. First a labeling process is needed
which proceeds from the sink to the sources. Then the
node weights are computed which proceeds from the
sources to the sink. Finally, we perform the iterative
algorithm to compute uji for each node si. The only
significant change is that each node has to wait for
an update from all its neighbors before computing its
next position. In the distributed implementation, we
limit this process to 8 rounds. We observe 8 rounds is
sufficient to obtain nearly optimal results.

6. Simulation Results

We carried out simulations on 100 network topolo-
gies for each of the single flow and multiple flows
configurations, each topology consisting of 100 ran-
domly placed nodes in a 150m by 150m area, with
randomly selected sources and sink. To determine the
transmission path between the sources and sink, any
routing algorithm can be used. We arbitrarily picked
greedy geographic forwarding in which each node
forwards the packet to the neighbor that is closest to
the sink. Of the 200 network topologies, only four
networks resulted in a disconnected path between the
sources and the sink, due to the existence of routing
voids. We used 10−4 meters as our error threshold.

In the mobility energy consumption model, we use
k values 0.25, 1, 2, and 4 with k = 2 as the standard
setting because it models several platforms such as
Robomote [16], [17]. For transmission, we use a =
0.6× 10−7 and b = 4× 10−10 as the standard setting
which is consistent with the empirical measurements
on CC2420 motes [25]. We also use other settings
shown in Table 2 to consider other platforms. We set
the maximum communication distance of a node to
be roughly 30m, which was shown to result in a high
packet reception ratio for CC2420 in [25].

6.1. Single Data Flow

We first consider the single data flow scenario. We
compare the minimum cost computed by our central-
ized algorithm to the approaches proposed in [13] and
[19]. In the first approach, nodes move to the evenly
spaced positions along a straight line from the source
to the sink. This results in lower costs than those of

both [13] and [19] since we assume that nodes follow
a straight line to reach their final positions whereas in
[13] and [19], nodes converge to their final destination
by following a series of segments along a broken line.
The second approach we compare to is transmitting
data from the original positions, which is used in [19]
when it is not beneficial for the nodes to move. In
general, for each value of k, we get the same trend as
shown in figure 4. When the data chunk is small, the
optimal positions coincide with the original positions.
As data size increases, the optimal positions diverge
from the original positions towards the evenly spaced
positions. For example, when k = 2, the optimal
positions diverge from the original positions for data
lengths as short as 5 MB (figure 4).

Our algorithms are most effective for data that is
not too short to initiate a move or too long to cause a
convergence to the evenly spaced positions. For these
cases, our algorithm reduces energy consumption by
up to 23% in comparison to [19] as shown in figure
4. This improvement is attained for all energy costs
parameters. The data size at which this improvement is
reached can be as low as 1 MB when the mobility cost
is low compared to the transmission costs. When the
mobility cost is high (k = 4) and the transmission costs
are low (b = 2 × 10−10), the maximum improvement
is reached for data chunks around 60 MB.

We now evaluate the performance of the distributed
implementation. The energy consumed by the dis-
tributed approach is at most 1.5% more than the energy
consumed by the optimal centralized version. This
error margin is due to stopping the computation after
only 4 rounds of updates (i.e. only two updates per
node) as shown in figure 5. The distributed approach
converges to the optimal positions if we allow 8 rounds
of computation. We obtain the same results of quick
convergence and small error margin after 4 rounds for
all settings.

6.2. Multiple Data Flows

We now consider the multiple data flows scenario.
We used between 4 and 12 sources. We used the same

Table 2. Improvement of optimal approach for
various energy model parameters

a (×10−7) b (×10−10) k Reduction Data size (MB)
1.2 8 4 22.61% 32.5
1.2 8 1 22.96% 8
0.6 4 4 22.61% 65
0.6 4 0.25 22.96% 4
0.3 2 1 22.61% 32.5
0.3 2 0.25 22.96% 8

0.15 1 2 22.61% 130
0.15 1 0.25 22.96% 4
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Figure 4. Comparison among the
three approaches for a single data
flow
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Figure 5. Convergence to optimal
configuration for a single data flow
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Figure 6. Comparison among the
three approaches for multiple data
flows
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Figure 7. Convergence to optimal configuration for
multiple data flows

message length at each source. Most of our results are
similar to those from the single flow scenario.

In the centralized case, the cost of the optimal
positions is equal to the cost of the original positions
for small data chunks. It starts moving away as the
data gets longer and finally meets with proportionally
spaced positions for large data chunks as shown in
Figure 6. Our approach performs best when the costs of
the other two approaches are similar. In this example,
this is reached for data chunks around 32 (MB), and
the savings go up to 23%. We obtain similar results for
all parameter values. Table 2 summarizes the reduction
obtained and the data size that yields it for a variety of
parameter settings. In all cases, similar reduction ratios
(≈ 23%) are reached, but the data size is different. It
decreases as k decreases compared to a and b.

We then evaluate the distributed approach for mul-
tiple flows by comparing it to the optimal centralized
approach. For all values of k, a and b, the distributed
approach quickly converges to the optimal configu-
ration. Figure 7 shows the average costs for a =
0.6×10−7, b = 4×10−10, k = 2; after eight rounds of
updates, the distributed costs are insignificantly higher

than the centralized costs. The extra cost incurred is
less than 2% for data chunks shorter than 150MB and
less than 3% for data chunks up to 300MB.

7. Conclusion and Future Work

In this paper, we proposed a holistic approach to
minimize the total energy consumed by both mobility
of relays and wireless transmissions. Most previous
work ignored the energy consumed by moving mobile
relays. We developed an iterative approach to com-
pute the optimal positions of relay nodes that can be
implemented in a centralized or distributed fashion.
Our algorithms are appropriate for a variety of data-
intensive wireless sensor networks. In both single flow
and multiple flow patterns, we show that our holistic
approach can reduce total energy consumption by up
to 23% compared to previous approaches. The optimal
position for a mobile relay is not the midpoint of
its neighbors; instead, it converges to this position as
the amount of data transmitted goes to infinity. Our
algorithms allow some nodes to move while others
do not because any local improvement for a given
mobile relay is a global improvement. This allows us
to potentially extend our approach to handle additional
constraints on individual nodes such as low energy
levels or mobility restrictions due to application re-
quirements.

Our algorithms are optimal when the transmission
routes are predetermined and participating nodes re-
main the same throughout different configurations. In
some cases, it may be beneficial to insert a new relay
along the transmission path after several rounds if the
new route moves into its proximity, or alternatively,
drop a node if the route moves away from it. For future
work, we plan on studying the problem of finding
the optimal routes along with the optimal locations of
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nodes on those routes.
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